PROBLEMS ABOUT LIMITS WITH & WITHOUT ε–δ (REDO)

Problem 3ii.

Show directly from the definition of limits that

$$\lim_{x \to a} \frac{1}{x} = \frac{1}{a}$$

for any $a \neq 0$.

[Avoid, repeat, avoid using Spivak’s problems Lemma on page 101 – “Why?” you ask. Well this is a problem you should be able to do ‘from scratch’ without memorizing the fairly complicated formulas Spivak provides.]

The following two problems have simple short answers, and are not “ε–δ” problems. You’re not asked to (dis)prove the statements directly from the definition, so that means that you can use properties of ‘$\lim_{x \to a}$’ that were proved in chapter 5 of Spivak’s book.

Problem 8a. If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both do not exist, must is be true that $\lim_{x \to a} (f(x) + g(x))$ also does not exist. [If you think so, provide a proof, if you don’t think so, give a counterexample.]

Problem 8b. If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} (f(x) + g(x))$ both do not exist, must is be true that $\lim_{x \to a} g(x)$ also does not exist. [If you think so, provide a proof, if you don’t think so, give a counterexample.]

Solutions should be “well written”: You should be able to read your solution out loud. Every sentence should have a subject and a verb. Avoid using symbols like ‘\to’ when you want to say “implies.”