1. Suppose Alice’s RSA public key is $N = 91, e = 7$.
 (a) Compute her decryption exponent.
 (b) Alice wants to sign the message $x = 21$. Calculate her signature.
 (c) Bob receives the message-signature pair $(x, s) = (54, 89)$. Is the signature authentic?

2. (a) Show that if $p = 11, q = 5, x = 3, k = 3$, then $(x^k \pmod{p}) \pmod{q}$ and $(x^k \pmod{q}) \pmod{p}$ are different.
 (b) Alice and Bob want to exchange encrypted signed messages. Alice’s public key is (N, e) and private decryption exponent d, whereas Bob’s public key is (N', e') and private decryption exponent d'. Alice wants to send x to Bob. She signs a message encrypted by Bob’s public key so sends $y = (x^{e'} \pmod{N'})^d \pmod{N}$ to Bob. To read the message and verify the signature, Bob computes $z = y^e \pmod{N} = x^{e'} \pmod{N'}$ and then computes $z^{d'} \pmod{N'} = x^{e'd'} \pmod{N'} = x$. Will this work? Explain why or why not.