1. Define a relation \sim on the set of real numbers \mathbb{R} by saying that $x \sim y$ if and only if $x - y$ is an integer. Is this relation an equivalence relation? If so, describe the equivalence class that contains 0.5 and describe the partition of \mathbb{R} produced by the equivalence relation.

2. Show that every integer x satisfies $x^3 \equiv x \pmod{3}$. Show by induction that $x^{3^n} \equiv x \pmod{3}$. What is the remainder on dividing 2^{28} by 3? (There is a quick way.)

3. Show that $\sqrt{3}$ is not a rational number. Let $\mathbb{Q}[\sqrt{3}]$ consist of all real numbers of the form $a + b\sqrt{3}$, where a, b are any rational numbers. You may assume that $\mathbb{Q}[\sqrt{3}]$ is a ring. Assuming this, is it true that $\mathbb{Q}[\sqrt{3}]$ is a field?

4. Find integers r, s such that $1 = 11r + 13s$. Find an integer x satisfying $11x \equiv 3 \pmod{13}$. What are the units of $\mathbb{Z}/13\mathbb{Z}$?
(1) Need to check R,S,T.

R holds since \(x - x \) is an integer for every \(x \) in \(\mathbb{R} \). S holds since if \(x - y \) is an integer, say \(n \), then \(y - x \) is an integer, namely \(-n\). T holds since if \(x - y \) and \(y - z \) are integers, then \(x - z = (x - y) + (y - z) \) is also an integer.

\(x - 0.5 \) is an integer if \(x \) is an integer plus a half, so the equivalence class is \(\{..., -0.5, 0.5, 1.5, 2.5, ... \} \).

Likewise a typical subset in the partition is \(\{..., -1 + a, a, 1 + a, 2 + a, ... \} \) where \(a \) can be chosen in \([0, 1)\).

(2) If \(x \equiv 0, 1, 2 \pmod{3} \), then \(x^3 \equiv 0, 1, 2 \pmod{3} \) respectively, so \(x^3 \equiv x \pmod{3} \).

Let \(P(n) \) be the statement \(x^{3^n} \equiv x \pmod{3} \). We just showed \(P(1) \). Now assume \(P(n) \) is true. Look at \(x^{3^{n+1}} = (x^{3^n})^3 \). This \(\equiv x^3 \) by \(P(n) \). But by what we just showed, this \(\equiv x \pmod{3} \). So \(P(n + 1) \) is established. That completes the induction.

By what we just showed, \(2^{27} \equiv 2 \pmod{3} \) and so \(2^{28} \equiv 4 \equiv 1 \pmod{3} \), so the remainder is 1.

(3) Suppose \(\sqrt{3} = a/b \) where \(a, b \) are positive integers. Then \(3 = a^2/b^2 \), so \(a^2 = 3b^2 \). The power of 3 dividing \(a^2 \) must be even, whereas the power of 3 dividing \(3b^2 \) is odd. A contradiction, so \(\sqrt{3} \) is not rational.

Let \(a + b\sqrt{3} \) be a nonzero element. Then \(\frac{1}{a+b\sqrt{3}} = \frac{(a-b\sqrt{3})}{(a+b\sqrt{3})(a-b\sqrt{3})} = \frac{a-b\sqrt{3}}{a^2-3b^2} = \frac{a}{a^2-3b^2} + \frac{-b}{a^2-3b^2} \) so every nonzero element is a unit, so \(\mathbb{Q}[\sqrt{3}] \) is a field.

(4) \(13 = 1 \cdot 11 + 2, 11 = 5 \cdot 2 + 1 \), so \(1 = 11 - 5 \cdot 2 = 11 - 5 \cdot (13 - 11) = 6 \cdot 11 - 5 \cdot 13 \pmod{13} \), so take \(r = 6, s = -5 \). Taking \(\pmod{13} \), \(1 \equiv 6 \cdot 11 \pmod{13} \). Multiplying by \(3, 3 \equiv 18 \cdot 11 \pmod{13} \). So \(x = 18 \) works. Since 13 is prime, every nonzero element of \(\mathbb{Z}/13\mathbb{Z} \) is a unit.