1. Let A be a ring and S a subset closed under multiplication, containing 1. Recall that every ideal of $S^{-1}A$ is of the form $S^{-1}I$, where I is an ideal of A.
 (a) For which I is $S^{-1}I$ equal to $S^{-1}A$?
 (b) For which I is $S^{-1}I$ a prime ideal of $S^{-1}A$? [Hint: look at the quotient ring.]
 (c) The natural ring homomorphism $A \rightarrow S^{-1}A$ induces a map from Spec$(S^{-1}A)$ to Spec(A). Is it injective? What is its image?
 (d) Show that in particular Spec(A_f) is homeomorphic to the basic open set X_f.

2. Let A be a ring, $X = \text{Spec}(A)$. For each basic open U we define a ring $A(U)$.
 (a) Set $A(X_f) = A_f$. Show that this is well-defined, i.e. if $X_f = X_g$, then $A_f = A_g$, so that $A(U)$ is unique up to a unique isomorphism.
 (b) Identify $A(\emptyset)$ and $A(X)$.
 (c) Suppose $U = X_f$ and $U' = X_g$ are basic open sets such that $U' \subseteq U$. How are f and g related? Use this to define a homomorphism $\rho : A(U) \rightarrow A(U')$. Show that ρ depends only on U and U'. Show that if $U = U'$, then ρ is the identity map.
 (d) If $U'' \subseteq U' \subseteq U$, show that $\rho_{U',U''} \circ \rho_{U'',U'} = \rho_{U',U''}$.
 (e) Let $\varphi \in X$. Show that $\varprojlim A(U) \cong A_\varphi$, where the direct limit is over basic open sets U containing φ.

3. (a) We showed that if $f : M \rightarrow N$ is an A-module homomorphism such that the induced map $f_\varphi : M_\varphi \rightarrow N_\varphi$ is an isomorphism for every prime ideal φ of A, then f is an isomorphism. Give an example of A-modules M, N such that $M_\varphi \cong N_\varphi$ for every prime ideal φ, but M and N are not isomorphic.
 (b) Let $B = \mathbb{C}[x,y]/(xy)$ considered as an $A = \mathbb{C}[x]$-module. Show that for every maximal ideal $m = (x - a)$ of A ($a \neq 0$), B_m is free of rank 1 (so flat) over A_m, but for $a = 0$ it is not flat (because of torsion).

4. Which of the following rings are Noetherian? (Coefficients are in \mathbb{C}.)
 (a) The ring of rational functions of z having no pole on the circle $|z| = 1$.
 (b) The ring of power series in z with a positive radius of convergence.
 (c) The ring of power series in z with an infinite radius of convergence.
 (d) The ring of polynomials in z whose first 9 derivatives vanish at the origin.

5. Let A be a Noetherian ring, I an ideal, generated by a_1,\ldots,a_r. Say $x \in \cap I^n$.
 (a) Since $x \in I^n$, write $x = P_n(a_1,\ldots,a_r)$, where $P_n \in A[t_1,\ldots,t_r]$. Let J_n be the ideal generated by P_1,\ldots,P_n. Show there exists N such that $J_N = J_{N+1}$.
 (b) Let $P_{N+1} = Q_N P_1 + \ldots + Q_1 P_N$, show each $Q_i(a_1,\ldots,a_r) \in I$. Deduce $x \in I.$
 (c) Show that if I is contained in the Jacobson radical of A, then $\cap I^n \neq \{0\}$. [Hint: idempotents.]