6. Call a smooth projective curve C over \mathbb{F}_q maximal if $|C(\mathbb{F}_q)| = q + 1 + 2g\sqrt{q}$ (g being its genus).

(a) Show that there are no maximal curves of positive genus over \mathbb{F}_2.
(b) Show that the Hermitian curve $x^{q+1} + y^{q+1} + z^{q+1} = 0$ over \mathbb{F}_{q^2} is maximal.
(c) If a curve is maximal, what are the α_i that appear in the numerator of its zeta function?
(d) If C is a maximal curve over \mathbb{F}_q, compute $|C(\mathbb{F}_{q^2})|$. Deduce an upper bound for its genus in terms of q. [Remark: maximal curves arise in coding theory and finance applications.]