Let G be a group acting by automorphisms on another (not necessarily abelian) group M. Define $H^0(G, M)$ to be M^G as usual. A 1-cocycle is a map $f : G \to M$ such that $f(\sigma \tau) = f(\sigma)\sigma f(\tau)$ holds for all $\sigma, \tau \in G$. Two cocycles f, g are called equivalent if there exists $m \in M$ such that $g(\sigma) = m^{-1}f(\sigma)\sigma(m)$ for all $\sigma \in G$. Then $H^1(G, M)$ is the set defined as 1-cocycles modulo equivalence. Note that it contains a distinguished element corresponding to the cocycle that sends every element of G to the identity of M.

1. (a) Show that ”equivalence” really is an equivalence relation, and that if $\sigma \mapsto f(\sigma)$ is a cocycle, then so is $\sigma \mapsto m^{-1}f(\sigma)\sigma(m)$ for every $m \in M$.
(b) Suppose $1 \to M' \to M \to M'' \to 1$ is a short exact sequence of groups with G-action. Show that the induced $1 \to M'^G \to M^G \to M''^G$ is exact.
(c) Construct a map $\delta : M''^G \to H^1(G, M')$ such that the image of M^G consists of those elements mapping under δ to the distinguished element of $H^1(G, M')$ and such that the image of δ consists of those elements of $H^1(G, M')$ mapping to the distinguished element of $H^1(G, M)$.

2. (a) Let L/K be a finite Galois extension with Galois group G and $f : G \to GL_n(L)$ be a cocycle. Show that $f(\sigma) = A\sigma(A^{-1})$ if and only if each of the column vectors v of A satisfies the condition $v = f(\sigma)\sigma(v)$ for every $\sigma \in G$.
(b) Construct for each $w \in L^n$ a vector $v(w) \in L^n$ such that $v(w) = f(\sigma)\sigma(v(w))$ for every $\sigma \in G$.
(c) Show that the L-span of $\{v(w) : w \in L^n\}$ is all of L^n. Find $H^1(G, GL_n(L))$.