GENERAL LINEAR GROUPS AND THE
TECHNICAL LEMMA FOR THE J-THEOREMS

We need the following fact.

Lemma. Let $G = GL(2, p)$, where p is an odd prime, and let $P \in \text{Syl}_p(G)$. Suppose that $L \subseteq G$ is normalized by P and that p does not divide $|L|$. If a Sylow 2-subgroup of L is abelian, then P centralizes L.

Actually, a slightly stronger result is true since the hypothesis on the Sylow 2-subgroup of L is needed only in the case $p = 3$. We will not bother to prove this refinement, however.

We begin with a discussion of some basic facts about the **General Linear Group** $GL(n, q)$ and related groups. Here, n is a positive integer and q is a power of the prime p. The group $G = GL(n, q)$ is the full group of invertible $n \times n$ matrices over the unique field F of order q. It is not hard to see that

$$|G| = (q^n - 1)(q^n - q)(q^n - q^2) \cdots (q^n - q^{n-1}),$$

and thus a Sylow p-subgroup of G has order $qq^2q^3 \cdots q^{n-1} = q^{n(n-1)/2}$. Now, consider the set U of $n \times n$ matrices over F having all diagonal entries equal to 1 and all below-diagonal entries equal to 0. These matrices have determinant 1, and so they are invertible, and it is easy to see that U is a subgroup of G. Each of the $n(n - 1)/2$ above-diagonal entries in each matrix in U is an arbitrary member of F and it follows that $|U| = q^{n(n-1)/2}$. We conclude that U is a Sylow p-subgroup of G. If $n = 2$ (which is the smallest interesting case) we have $|G| = q(q - 1)^2(q + 1)$ and $|U| = q$.

The determinant defines a group homomorphism from G onto the multiplicative group F^\times of F (which has order $q - 1$). The kernel of this determinant map is the normal subgroup $S = SL(n, q)$, the **Special Linear** group. It follows that $G/S \cong F^\times$, and in particular $|G : S| = q - 1$. In other words, $|S| = |G|/(q - 1)$. Since the matrices in U all have determinant 1, we see that $U \subseteq S$, and thus all Sylow p-subgroups of G lie in the normal subgroup S. Also, since $G/S \cong F^\times$ is abelian, we see that $G' \subseteq S$. In the case where $n = 2$, we have $|S| = q(q - 1)(q + 1)$.

Let Z be the subgroup of $S = SL(n, q)$ consisting of the scalar matrices in S. (These are the matrices of determinant 1 that have the form αI, where $\alpha \in F$.) The determinant condition yields that $\alpha^n = 1$, and thus α must lie in the (unique) subgroup of order $d = (q - 1, n)$ of F^\times. Thus $|Z| = d$, and clearly $Z \subseteq Z(G)$. It is not too hard to show, in fact, that $Z = Z(S)$. The factor group S/Z is usually denoted $PSL(n, q)$; it is the **Projective Special Linear** group. If $n = 2$ and q is odd, then $d = 2$ and we have $|PSL(2, q)| = q(q - 1)(q + 1)/2$. If $n = 2$ and q is a power of 2, then $d = 1$ and in this case $|Z| = 1$ and $PSL(2, q) = SL(2, q)$ has order $q(q - 1)(q + 1)$.

We mention the following important theorem without proof.
THEOREM. The group $PSL(n,q)$ is simple for $n \geq 2$ except in the cases where $n = 2$ and $q \in \{2, 3\}$.

Note that $|PSL(2,2)| = 6$ and $|PSL(2,3)| = 12$, and so these groups certainly are not simple. We see that $|PSL(2,4)| = 60 = |PSL(2,5)|$, and in fact, each of these groups is isomorphic to the alternating group A_5. Also, $|PSL(2,9)| = 360$, and it turns out that this group is isomorphic to A_6. It is also true that $PSL(4,2) \cong A_8$, but all of the other simple groups of the form $PSL(n,q)$ are different from alternating groups.

Let us now focus on $S = SL(2,q)$, where q is odd. If $t \in S$ and $t^2 = 1$, then each of the two eigenvalues of t lies in the set $\{1, -1\}$ and the product of these eigenvalues is $\det(t) = 1$. There are just two possibilities therefore: either both eigenvalues are 1 or both are -1. The characteristic polynomial of the matrix t is thus either $(X + 1)^2$ or $(X - 1)^2$. But $t^2 = 1$, and so the minimal polynomial of t divides $X^2 - 1$. The minimal polynomial of an arbitrary square matrix, however, divides the characteristic polynomial, and so in this case, we see that there are just two possibilities for the minimal polynomial: $X + 1$ or $X - 1$. (We are using the fact that $1 \neq -1$, which is true because the characteristic is $p \neq 2$.) It follows that t is either the identity matrix 1 or its negative. In particular, this shows that -1, the negative of the identity matrix, is the unique involution in $SL(2,q)$ when q is odd.

Proof of the technical lemma. We assume that P does not centralize L and we work toward a contradiction. If there is a proper subgroup of L that is normalized but not centralized by P, we can replace L by that subgroup, and so we can assume that L is minimal with the property that it is normalized but not centralized by P.

Let $C = C_L(P) < L$ and let q be any prime divisor of $[L : C]$. Choose a P-invariant Sylow r-subgroup R of L. (This is possible since p does not divide $[L, L]$.) Then $R \not\subseteq C$, and so P normalizes but does not centralize R. By the minimality of L, we see that $R = L$, and so L is an r-group.

Now $1 < [L, P] = [L, P, P]$, and thus $[L, P]$ is a P-invariant subgroup of L that is not centralized by P. By the minimality of L, it follows that $L = [L, P] \subseteq G^r \subseteq SL(2,p)$.

If $r = 2$, then L is abelian, by hypothesis. But $SL(2,p)$ contains a unique involution, and thus L is cyclic. This is impossible, however, because a group of order $p \neq 2$ cannot act nontrivially on a cyclic 2-group. (This is because the order of the automorphism group of a cyclic group of order 2^e is $\varphi(2^e) = 2^{e-1}$, and this is not divisible by p.) We conclude, therefore, that r is odd and L has odd order.

Now $|L|$ is an odd prime power dividing $|SL(2,p)| = p(p+1)(p-1)/2$. Since $p+1$ and $p-1$ have no common odd prime divisor and we know that $(|L|, p) = 1$, it follows that $|L|$ divides $p+1$ or $|L|$ divides $p-1$, and thus $|L| \leq p+1$. But P is not normal in PL (since otherwise P would centralize L), and hence the number n of Sylow p-subgroups of PL exceeds 1. It follows by Sylow theory that $p+1 \leq n \leq |L|$, and since we already know that $|L| \leq p+1$, we deduce that $|L| = p+1$. But this implies that $|L|$ is even, which is a contradiction.
