MATH 240; EXAM # 1, 100 points, October 13, 2003 (R.A.Brualdi)

TOTAL SCORE (11 problems; 100 points possible):

Name: SOLUTIONS

TA: Josh Davis, (circle) TUES 1:20 TUES 2:25 THURS. 1:20 THUR 2:25
TA: Neil Ramsamooj, (circle) TUES 8:50 TUES 12:05 THUR 8:50 THUR 12:05

1. [6 points] First state the converse and contrapositive in English of: If I am a CS major, then I get an A in this course.

Converse: If I get an A in this course, then I am a CS major.

Contrapositive: If I do not get an A in this course, then I am not a CS major.

2. [8 points] Determine all values of \(x \) with \(1 \leq x \leq 2 \) for which \(b x + 1 \leq c \leq d x \)?

Just \(x = 3/2 \).

3. [8 points] What is the disjunctive normal form (sum of products) of the Boolean function \(f(x, y, z) \) which equals 1 if and only if \(x, y, z \) has an even number of 1’s.

\(f(x, y, z) = \bar{x}yz + x\bar{y}z + xy\bar{z} + \bar{x}\bar{y}\bar{z} \)

Note that 0 is an even number.

4. [8 points] Let \(P(x) \) and \(Q(x) \) be predicates where the universe of discourse for \(x \) is some set \(U \). Let

\[A = \{ x : P(x) \text{ is true} \} \quad \text{and} \quad B = \{ x : Q(x) \text{ is true} \} \]

be the truth sets of \(P(x) \) and \(Q(x) \), respectively. In terms of \(A \) and \(B \) and set operations, give:

(a) the truth set of the predicate \(Q(x) \rightarrow P(x) \):

\(\overline{B} \cup A \) since this predicate is logically equivalent to \(\neg Q(x) \lor P(x) \).

(b) Then give a predicate, obtained using only \(\neg \) (negation) and \(\lor \) (disjunction) from \(P(x) \) and \(Q(x) \), whose truth set is \(\overline{A} \cap B \).

\(\overline{A} \cap B = \overline{A} \cup \overline{B} \) by DeMorgan’s law; hence \(\neg(Q(x) \rightarrow P(x)) \)

5. [6 points] Determine the truth value (TRUE or FALSE) of each of the following statements where the universe of discourse for all variables is the set \(Z^+ \) of positive integers.

(a) \(\exists m, \forall n, (mn = 0) \): F
(b) \(\exists m, \forall n, (mn = 1) \): T

(c) \(\neg \forall m, (\exists n, m|n) \): F

6. [6 points] Which of the following propositions doesn’t belong in this group?
 (a) \(\neg (\neg p \land q) \)
 (b) \(p \lor \neg q \)
 (c) \(q \rightarrow p \)
 (d) \(\neg q \) is a sufficient condition for \(p \)
 (e) \(p \) is a necessary condition for \(q \)

(d) doesn’t belong; all the others are logically equivalent.

7. [8 points] Arrange the following functions in order of increasing order of magnitude (no proof necessary):
 (a) \(f(x) = 10x^2 \log x + 100x^2 + 200 \)
 (b) \(g(x) = \frac{x^4}{3x^2 - 20x + 5} \)
 (c) \(h(x) = x \sin x \)
 (d) \(l(x) = (1.001)^x \)

Smallest order of magnitude to largest order of magnitude:
(c), then (b), then (a), then (d). (Note that \(|\sin x| \leq 1\).)
8. [20 points] Alice wants to communicate with Bob using the secure RSA system and Bob’s public key. She finds \(n = 437 \) and \(e = 35 \) on Bob’s public page. Unlike Alice or anyone else, Bob knows that \(437 = 19 \cdot 23 \). (You must show your work; a calculator example is unacceptable.)

(a) What is Bob’s decryption key (a positive integer)?

Using the Euclidean algorithm with \(a = 396 = 18 \cdot 22 \) and \(b = 35 \), and then working backwards we get that \(1 = 16 \cdot 396 - 181 \cdot 35 \). Hence the inverse of \(e = 35 \) is \(-181\) which mod 396 is 215. So \(d = 215 \).

(b) Check that your decryption key is correct:

We check that \(35 \cdot 215 = 19 \cdot 396 + 1 \).

(c) Suppose that Bob receives the integer 3 from Alice. What integer did Alice send Bob?

Alice sent \(3^{215} \mod 437 \) which using modular exponentiation equals 108.

9. [10 points] Give an indirect proof of: If \(n \) is an integer and \(n^2 + 8 \) is odd, then \(n \) is odd.

Assume that \(n \) is not odd, then \(n \) is even and so \(n = 2k \) for some integer \(k \). Then

\[
 n^2 + 8 = (2k)^2 + 8 = 4k^2 + 8 = 2(2k^2 + 4),
\]

and \(n^2 + 8 \) is also even.

10. [10 points] Give a direct proof of the following cancellation law: Let \(n \) be a positive integer. Let \(a, b, c \) be positive integers with \(c \) and \(n \) relatively prime. If \(ac \equiv bc \pmod{n} \), then \(a \equiv b \pmod{n} \).

Assume that \(ac \equiv bc \pmod{n} \). Then \(n \mid (ac - bc) \) and so \(n \mid c(a - b) \). Since \(n \) and \(c \) are relatively prime, \(n \) and \(c \) have no common factor other than 1. Thus all the prime factorization of \(n \) is in \(a - b \). So \(n \mid (a - b) \) and hence \(a \equiv b \pmod{n} \).

Or one could use that fact that \(c \) has an inverse \(d \) modulo \(n \), since \(c \) and \(n \) are relatively prime, and then multiply \(ac \equiv bc \pmod{n} \) by \(d \), etc.

11. [10 points] Given a sequence of numbers \(a_1, a_2, \ldots, a_n \), describe an algorithm (using the pseudocode as practiced in class) which locates the last occurrence of the largest element on the list and the value of the largest element.

\[
x := a_1 \\
\text{loc} := 1 \\
\text{For } i = 2, \ldots, n, \text{ if } a_i \geq x, \text{ then} \\
\quad x := a_i \\
\quad \text{loc} := i.
\]

(\(x \) is the largest element and \(\text{loc} \) is the location of its last occurrence.)