1. (9 points) Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be a linear transformation such that
\[T(1, 0, 0) = (1, 2, 3), \ T(0, 1, 0) = (2, 1, 4), \ T(0, 0, 1) = (3, 5, 6). \]
Calculate \(T(4, -1, 2). \)

\[(4, -1, 2) = 4(1, 0, 0) - 1(0, 1, 0) + 2(0, 0, 1) \]
so that
\[T(4, -1, 2) = 4T(1, 0, 0) - 1T(0, 1, 0) + 2T(0, 0, 1) = 4(1, 2, 3) - 1(2, 1, 4) + 2(3, 5, 6) = (8, 17, 20). \]

2. [8 points] For each of the following pairs \(A, B \) of matrices, determine whether or not \(A \) and \(B \) are similar. Justify your answer in each case.

(a) \(A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, \ B = \begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix} \). Yes No. Why?

NO: they have different determinants

(b) \(A = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}, \ B = \begin{bmatrix} 6 & -4 \\ 1 & 1 \end{bmatrix} \). Yes No. Why?

No: they have different traces

3. (10 points) Let \(V \) and \(W \) be vector spaces of the same dimension \(n \). Let \(v_1, v_2, \ldots, v_n \) be a basis of \(V \). Let \(T : V \to W \) be a bijective linear transformation (isomorphism).

PROVE that \(T(v_1), T(v_2), \ldots, T(v_n) \) is a basis of \(W \).

Suppose that \(c_1T(v_1) + c_2T(v_2) + \ldots + c_nT(v_n) = 0 \). Then using properties of linear transformations we get that
\[T(c_1v_1 + c_2v_2 + \ldots + c_nv_n) = T(0) = 0. \]
Since \(T \) is bijective, this implies that \(c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0 \). Since \(v_1, v_2, \ldots, v_n \) is a basis of \(V \), we conclude that \(c_1, c_2, \ldots, c_n \) all equal 0, and hence \(T(v_1), T(v_2), \ldots, T(v_n) \) are linearly independent. Since \(W \) has dimension \(n \), \(T(v_1), T(v_2), \ldots, T(v_n) \) is a basis of \(W \).

4. [10 points] Let \(A \) and \(B \) be square matrices of order \(n \) with \(A \) similar to \(B \). Prove that \(A^3 \) is similar to \(B^3 \).

We have \(B = PAP^{-1} \) for some nonsingular matrix \(P \). Calculating we get that \(B^3 = PAP^{-1}PAP^{-1}PAP^{-1} = PA^3P^{-1} \). Thus \(A^3 \) is similar to \(B^3 \)

5. (10 points) Consider the standard ordered basis \(\alpha : e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1) \) of \(\mathbb{R}^3 \)
and the ordered basis
\[\beta : e_2, e_3, e_1 \text{ of } \mathbb{R}^3. \]

Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be the linear transformation given by
\[
T(a, b, c) = (2a - b + c, a + 2b + 4c, 3a + 5c).
\]

Determine \([T]_{\beta}^\alpha \).

We need to write \(T(e_1), T(e_2), T(e_3) \) as linear combinations of \(e_2, e_3, e_1 \) in that order. Using the given formula for \(T \) we have
\[
T(e_1) = (2, 1, 3) = 1e_2 + 3e_3 + 2e_1
\]
\[
T(e_2) = (-1, 2, 0) = 2e_2 + 0e_3 - 1e_1
\]
\[
T(e_3) = (1, 4, 5) = 4e_2 + 5e_3 + 1e_1.
\]

Hence
\[
[T]_{\beta}^\alpha = \begin{bmatrix}
1 & 2 & 4 \\
3 & 0 & 5 \\
2 & -1 & 1
\end{bmatrix}.
\]

6. (15 points) Let \(\ell \) be the line in the plane through the origin making an angle of \(\theta = \pi/6 \) (30 degrees) with the positive \(x \)-axis. Let \(T \) be the linear transformation on \(\mathbb{R}^2 \) given by the reflection in line \(\ell \). Determine the matrix \([T]_{\alpha}^\alpha \) of \(T \) with respect to the standard basis \(\alpha : e_1 = (1, 0), e_2 = (0, 1) \) of \(\mathbb{R}^2 \).

We can do \(T \) by rotating by \(-\pi/6\) to bring \(\ell \) to the horizontal axis, reflect about the horizontal axis, and then rotate back by \(\pi/6 \). Thus the matrix is
\[
\begin{bmatrix}
\cos \pi/6 & -\sin \pi/6 \\
\sin \pi/6 & \cos \pi/6
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
\cos -\pi/6 & -\sin -\pi/6 \\
\sin -\pi/6 & \cos -\pi/6
\end{bmatrix}.
\]

It is then an easy matter to substitute for the sines and cosines and carry out the multiplication.

7. [10 points] Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be the linear transformation given by
\[
T(x_1, x_2, x_3) = (x_1 + x_3, x_2 + x_3, 2x_1 + x_3)
\]

Determine, with justification, whether or not

1. \(T \) is injective (one to one),
2. \(T \) is surjective (onto),
3. \(T \) is an isomorphism?
Circle those that are correct and then explain why the statements are correct or not correct.

The matrix of T relative to the standard basis is

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix},$$

whose determinant is -1. Hence A is nonsingular (invertible) and so T is injective, surjective, and hence an isomorphism.

8. [18 points] Consider R^4 and the (standard) Euclidean inner product (the dot product). Answer the following questions (no reason necessary):

(a) Are the vectors $x = (1, 2, -1, 4)$ and $y = (3, 2, 3, -1)$ orthogonal? YES

(b) The length $||x||$ of X equals:

$\sqrt{22}$

(c) If a vector z in R^4 is orthogonal to x and y, then does z have to be orthogonal to $3x + 2y$? YES

(d) What is the statement of Cauchy-Schwarz inequality for this dot product on R^4.

$$|x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4| \leq \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2} \sqrt{y_1^2 + y_2^2 + y_3^2 + y_4^2}.$$

(e) Four nonzero vectors in R^4 which are mutually orthogonal must be a basis of R^4. YES

(f) Four nonzero vectors of R^4 which are a basis must be mutually orthogonal. No