1. [27 points] A and B are real matrices of order 4 with determinants 3, and 7 respectively. Answer the following questions:

1. $\det(-A) = (-1)^4 3 = 3$

2. $\det A^T = 3$

3. $\det B^{-1} = 7^{-1} = 1/7$

4. $\det(AB) = 3 \cdot 7 = 21$

5. If $1 + i$ and $2 - 3i$ are complex eigenvalues of A, what are its other two eigenvalues? $1 - i$ and $2 + 3i$.

6. The row space of A equals: R^4

7. The product of the eigenvalues of A^T equals $\det A^T = 3$:

8. The product of the eigenvalues of B^{-1} equals $(-1)^4 \det B^{-1} = 1/7$:

9. The dot product of the first column vector of A with the second row vector of A^{-1} equals: 0 (since $A^{-1} \cdot A = I_4$)
2. [14 points] Let \(A = \begin{bmatrix} 8 & 3 \\ -1 & 4 \end{bmatrix} \). Determine an invertible matrix \(Q \) that diagonalizes \(A \): \(Q^{-1}AQ = D \) and the diagonal matrix \(D \).

The characteristic polynomial of \(A \) equals
\[
\lambda^2 - 12\lambda + 35 = (\lambda - 5)(\lambda - 7).
\]
Hence the eigenvalues of \(A \) are 5, 7. We need to find an eigenvector of \(A \) for each of these eigenvalues.

5\(I_2 - A = \begin{bmatrix} -3 & -3 \\ 1 & 1 \end{bmatrix} \).

Hence an eigenvector is \([1 \ -1]^T\).

7\(I_2 - A = \begin{bmatrix} -1 & -3 \\ 1 & 3 \end{bmatrix} \).

Hence an eigenvector is \([3 \ -1]^T\) Let

\[Q = \begin{bmatrix} 1 & 3 \\ -1 & -1 \end{bmatrix} \]

The \(Q \) is invertible with
\[
Q^{-1} = 1/2 \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix}.
\]

We must have
\[
Q^{-1}AQ = D = \begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix}.
\]
3. [12 points] Let A and B be orthogonal matrices of order n. Let x and y be n-tuples written as column vectors.

1. **Prove:**

 $$(Ax) \cdot (Ay) = x \cdot y.$$

 We have

 $$(Ax) \cdot (Ay) = (Ax)^T(Ay) = x^TA^T Ay = x^TI_n y = x^T y = x \cdot y,$$

 since A is orthogonal and so $A^{-1} = A^T$.

2. **Prove:** AB is an orthogonal matrix.

 We have

 $$(AB)^T = B^T A^T = B^{-1} A^{-1} = (AB)^{-1}.$$

 Thus AB is an orthogonal matrix.
4. [15 points] Let A and B be 4 by 4 matrices that have the same column space. (Note we are not assuming that A and B have the same columns, only that they have the same column space.)

(i) Are A and B sure to have the same number of pivots?

YES: WHY? Because the number of pivots equals the dimension of the column space.

NO: Exhibit an Example

(ii) Are A and B sure to have the same row space?

YES: WHY?

NO: Exhibit an Example.

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

have the the same column space but clearly different row spaces. (The first row of A is a basis for the row space of A, and the first row of B is a basis for the row space of B, and clearly these row spaces are different.)

(iii) If A is invertible, are you sure that B is invertible?

YES: WHY? Then the dimension of column space of A, and so of B equals 4. So rank of B is 4 and B is invertible too.

NO: Exhibit an Example.
5. [20 points]

(i) Find an **orthonormal basis** for the null space U of the equation $x + y + z = 0$.

Clearly a basis of the null space U is $x = [1 -1 0]^T$ and $y = [1 0 -1]^T$. Applying the G-S process, we get

$$u_1 = \frac{1}{\sqrt{2}}[1 -1 0]^T.$$

projecting y onto the space spanned by u and taking the difference vector we get

$$[1 0 -1]^T - \frac{1}{\sqrt{2}}u_1 = [1/2 1/2 -1]^T.$$

Dividing by its length $\sqrt{6}/2$, we get

$$u_2 = \frac{2}{\sqrt{6}}[1/2 1/2 -1]^T = \frac{1}{\sqrt{6}}[1 1; -2]^T.$$

(ii) Find the **orthogonal projection** of the vector $b = [1 2 6]$ onto U.

It’s

$$-\frac{1}{2}[1 -1 0]^T - \frac{9}{6}[1 1 -2]^T = [-2 -1 3]^T.$$
6. [10 points] Let A be a matrix of order n such that 3 is an eigenvalue of A. Prove that 0 is an eigenvalue of $A^2 - 4A + 3I_n$.

Let x be an eigenvector of A (so $x \neq 0$) for its eigenvalue 3. Then

$$(A^2 - 4A + 3I_n)x = A^2x - 4Ax + 3x = A(3x) - 4(3x) + 3x = 9x - 12x + 3x = (9 - 12 + 3)x = 0x,$$

Since $x \neq 0$, x is an eigenvector of the matrix $A^2 - 4A + 3I_n$ for the eigenvalue 0.

7. [17 points] Let A be an m by n matrix and b an m by 1 vector such that $Ax = b$ has exactly one solution.

(i) **Prove** that the null space of A equals $\{0\}$, that is, consists only of the zero vector.

Since $Ax = b$ has exactly one solution, the columns of A must be linearly independent. Hence the nullspace, being the linear combinations of the columns which give the zero vector, of A is $\{0\}$.

(ii) What is the rank of A?

Since the columns of A are linearly independent, the rank must equal n.

(iii) **Prove** that $A^Ty = c$ must have a solution for every n by 1 vector c. Since the rank of A (and hence of the n by m matrix A^T), is n, the dimension of the column space of A^T equals n. Thus every n-tuple c is a linear combination of the columns of A.
8. [20 points] We want to determine the quadratic curve \(y = a + bx + cx^2 \) that gives the best fit to the experimental data \((1, 2), (2, 5), (3, 6),\) and \((-1, 4)\).

(i) What system of linear equations \(Ax = b \) do we want the least squares solution of: specify \(A \) and \(b \).

\[
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & -1 & 1
\end{bmatrix}
\quad \text{and} \quad
b = \begin{bmatrix}
2 \\
5 \\
6 \\
4
\end{bmatrix}.
\]

(ii) Are the columns of \(A \) linearly independent? Why or why not?

Yes, because e.g. the first three rows give an invertible Vandermonde matrix.

(iii) What is the system of equations \(By = c \), a solution \(y \) of which gives a least squares solution of \(Ax = b \)? Compute \(B \) and \(c \) but you are not expected to solve \(By = c \).

\[
B = A^T A = \begin{bmatrix}
4 & 5 & 15 \\
5 & 15 & 35 \\
15 & 35 & 99
\end{bmatrix}
\quad \text{and} \quad
c = \begin{bmatrix}
17 \\
26 \\
80
\end{bmatrix}.
\]