1. [15 points] Consider \mathbb{Z}_{22}.

 (i) List the elements of the unit group U_{22}.

 Since $\phi(22) = \phi(2)\phi(11) = 1 \cdot 10 = 10$, we should expect 10 integers (relatively prime to 22). They are:

 $1, 3, 5, 7, 9, 13, 15, 17, 19, 21$.

 (ii) What are the possible orders of the elements of U_{22}?

 Since the order of U_{22} is 10, the order of its elements are divisors of 10 and so one of 1, 2, 5, 10.

2. [10 points] Prove Fermat’s Theorem for finite abelian groups: Let $G = \{e = a_1, a_2, \ldots, a_n\}$ be an abelian group with n elements. Then for each a in G, $a^n = e$, the identity of G.

 Proof: By the cancellation law for groups, if a is any element of G, then $\{a a_1, a a_2, \ldots, a a_n\} = \{a_1, a_2, \ldots, a_n\}$. So

 $a a_1 a_2 \cdots a_n = a_1 a_2 \cdots a_n$.

 That is, $a^n(a_1 a_2 \cdots a_n) = (a_1 a_2 \cdots a_n)$. By cancellation, we get $a^n = e$.

3. [10 points] Let G be a multiplicative group. Using only the definition of a group (the group axioms), prove that a linear equation of the form $ax = b$ has exactly one solution.

 Proof: First $a^{-1}b$ is a solution, since $a(a^{-1}b) = (aa^{-1})b = eb = b$. Suppose there are two solutions g and h. Then $ag = b$ and $ah = b$ so that $ag = ah$. By cancellation, $h = g$. So the solution is unique.

4. [20 points] Let G be a multiplicative group and let H be a nonempty subset of G.

 (i) What two properties need to be checked for H to be a subgroup of G?

 Closure under multipication and closure under taking inverses.

 (ii) If H is a subgroup of G, state Lagrange’s theorem.

 The order of H is a divisor of the order of G.

 (iii) Let G be the group U_{13} of units of \mathbb{Z}_{13}. Determine a subgroup H of 3 elements and then determine its distinct cosets (as subsets of U_{13}).

 We need to find an element of order 3, The element 2 doesn’t work but 3 does: $3^1 = 3, 3^2 = 9, 3^3 = 1$ (all mod 13). So $H = \{1, 3, 9\}$ is a subgroup of order 3. H is a coset, and the other cosets are:
\[2H = \{2, 6, 18 = 5\}, \quad 4H = \{4, 12, 36 = 10\}, \quad 7H = \{7, 21 = 8, 63 = 11\}. \]

5. [10 points] Let \(G \) and \(G' \) be multiplicative groups with identities \(e \) and \(e' \), respectively. Let \(f : G \to G' \) be a homomorphism. Using that \(f(e) = e' \), prove that

\[f(a^{-1}) = f(a)^{-1} \quad (a \in G). \]

We have \(aa^{-1} = e \), and so \(f(aa^{-1}) = f(e) = e' \). Since \(f \) is a homomorphism, this gives \(f(a)f(a^{-1}) = e' \). Hence \(f(a^{-1}) \) is the inverse of \(f(a) \), that is, \(f(a)^{-1} = f(a^{-1}) \).

6. [15 points] What is the order of the subgroup of \(S_{12} \) generated by the permutation

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
7 & 10 & 9 & 8 & 1 & 12 & 3 & 4 & 11 & 6 & 5 & 2
\end{pmatrix}.
\]

\(f \) partitions into cycles of lengths 6, 4, and 2. Hence the order is \(\text{LCM}(6, 4, 2) = 12 \).

7. [20 points] Use the **Euclidean algorithm** to find the GCD of the two polynomials in \(\mathbb{Z}_2[x] \):

\[f(x) = x^4 + x^2 + 1 \quad \text{and} \quad g(x) = x^3 + 1, \]

and express it as a linear combination of \(f(x) \) and \(g(x) \).

We have

\[
x^4 + x^2 + 1 = x(x^3 + 1) + (x^2 + x + 1) \\
x^3 + 1 = (x + 1)(x^2 + x + 1) + 0.
\]

Hence the GCD is \(x^2 + x + 1 \) and

\[x^2 + x + 1 = 1(x^4 + x^2 + 1) + x(x^3 + 1). \]