
1. Let \(d \geq 2t + 1 \) be the minimum distance of a linear code of length \(n \). Prove that every vector of weight \(t \) is a coset leader and is the unique coset leader of the coset containing it.

 Let \(x \) be a vector of weight 2, and consider the coset \(x + C \) of the code \(C \) that contains \(x \). Let \(y = x + c \) be any vector different from \(x \) in this coset where \(0 \neq c \in C \). If the weight of \(y \) is \(t \) or less, then \(c = y - x \) is a nonzero codeword of weight at most the weight of \(y \) plus the weight of \(x \), that is \(2t \). This contradicts \(d \geq 2t + 1 \). Hence the weight of \(y \) is at least \(t + 1 \) verifying that \(x \) is the unique coset leader of its coset.

2. Let \(C \) be an \((n, k, d)\) linear code over a finite field \(F \), and let \(H \) be a \(n - k \) by \(n \) parity check matrix for \(C \). Let \(x \) an \(n \)-tuple over \(F \).
 (i) In terms of \(H \) when is \(x \) a codeword of \(C \)?

 Exactly when \(Hx^T = 0 \).

 (ii) Prove that \(d \leq n - k + 1 \)

 The matrix \(H \) has rank equal to \(n - k \). Hence every set of \(n - k + 1 \) columns of \(H \) is linearly dependent. Thus every set of \(n - k + 1 \) columns produces a codeword of weight \(n - k + 1 \) at most, and \(d \leq n - k + 1 \). Note that in order for \(d = n - k + 1 \) to occur, every set of \(n - k \) columns of \(H \) would have to be linearly independent.

 (iii) Apply the upperbound in (ii) to the binary repetition code of length \(n \) and its dual. What do you get?

 For the binary repetition code, we get \(k = 1 \) and \(d = n \) and so we have equality in \(d = n - k + 1 \). For the dual (the even weight code) we have \(k = n - 1 \) and \(d = 2 \) and we also have equality in \(d = n - k + 1 \)

3. Find, with verification, the minimum distance of the binary code with generator matrix \(G \) where

\[
G^T = \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1
\end{bmatrix}
\]

\[I_7 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}\]

The minimum distance equals the minimum weight of a nonzero codeword. Since we have codewords in the generator matrix of weight 3, \(d \leq 3 \). If we add any three or more rows of \(G^T \) we get weight at least 3 (because of the \(I_7 \)). If we add any two rows of \(G^T \), we get weight at least 3, since no two rows to the right of the \(I_7 \) are identical. So \(d = 3 \).
4. Let C be a binary code with generator matrix

$$G = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}.$$

Decode the following received words (using nearest-neighbor decoding):

A parity check matrix is

$$H = \begin{bmatrix}
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}.$$

(a) $x = (1, 1, 0, 1, 0, 1, 1)$

We have $Hx^T = 0$ and so x is a codeword and thus should be decoded as x.

(b) $x = (0, 1, 1, 0, 1, 1, 1)$

We have $Hx^T = \begin{bmatrix} 1 \\
0 \\
1 \end{bmatrix}$ so that x is not a codeword. Since this syndrome is the last column of H, $(0, 1, 1, 0, 1, 1, 0)$ is a codeword at distance 1 from x.

(c) $x = (0, 1, 1, 1, 0, 0, 0)$

We have $Hx^T = \begin{bmatrix} 1 \\
0 \\
1 \end{bmatrix}$ so that x is not a codeword. Since this syndrome is both the first and second column of H, both $(1, 1, 1, 1, 0, 0, 0)$ and $x = (0, 0, 1, 1, 0, 0, 0)$ are codewords at distance 1 from x.