Fall Semester, 2002-03
Math 743: Comments on solutions of Exercises 3; Due Monday, October 21, 2002.

1. Let T be a linear transformation on the space of complex matrices of order n such that T preserves the spectrum (the eigenvalues, including multiplicities). Prove that there exists a nonsingular matrix P such that $T(A) = P^{-1}AP$ for all A, or $T(A) = P^{-1}A^TP$ for all A.

Proof [This exercise was done well; in some cases there was one small error.] Since T preserves eigenvalues it must preserve determinant and so is of the form $T(A) = PAQ$ (or PA^TQ) for some nonsingular matrices P and Q. In particular, T is nonsingular (a bijection on matrices of order n). With $C = (T(I))^{-1}$ ($T(I)$ must be nonsingular since T preserves eigenvalues) we have

$$\det(\lambda I - A) = \det T(\lambda I - A) = \det(\lambda T(I) - T(A)) = \det T(I) \det(I - CA).$$

From this it follows that $\text{eig}(T(A)) = \text{eig}A = \text{eig}CA$ for all A. Since T is nonsingular, every matrix of order n is of the form CX for some X, i.e. $\text{eig}(X) = \text{eig}(CX)$ for all X. By the polar decomposition there exist unitary U and psdh H such that $CU = H$. Now the eigenvalues of U have absolute value 1, and those of H are nonnegative reals. But by above U and H have the eigenvalues. So eigenvalues of U and H all equal 1. Since U and H are similar to diagonal matrices, they must be I and $C = I$. So $T(I) = I$ and $PQ = PIQ = I$, that is, $Q = P^{-1}$.

2. Let T be a linear transformation on the space of complex matrices of order n. Prove that T preserves the singular values (including multiplicities) if and only if there are unitary matrices P and Q such that $T(A) = PAQ$ for all A, or $T(A) = PA^TQ$ for all A.

Proof Since T preserves singular values and the rank is the number of nonzero singular values, T preserves rank and so is of the form $T(A) = PAQ$ (or PA^TQ) for some nonsingular P and Q.

Let a and b be singular values of P and Q, respectively. Let x, y be the unit vectors such that $Px = au$, and $y^*Q = bv^*$ where x, y, u, v are unit vectors. Then $A = xy^*$ has rank 1 and so has singular values $1, 0, \ldots, 0$ (since
Ay = 1 \cdot x), and T(A) = Pxy^*Q is rank one with singular value \(ab, 0, \ldots, 0 \). So, \(ab = 1 \). From this we conclude that all singular values of \(P \) are the same and the same holds for \(Q \). Thus, after scaling, we can assume that \(P \) and \(Q \) are unitary.

3. Let \(A = \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix} \). Determine

a. The singular values, left singular (real) vectors, and right singular (real) vectors of \(A \).

b. Draw a careful picture of the unit ball in \(\mathbb{R}^2 \) and its image under \(A \), together with the singular vectors.

c. What are the 1-, 2-, \(\infty \)-, and Frobenius norms of \(A \)?

d. The inverse of \(A \) from the SVD.

[This was computational and caused no problem.]