1. Find the largest possible domain of the function

\[f(x) = \frac{1}{\sin x}. \]

(Not for points bonus: What is the range of this function?)

This is well defined for all \(x \) such that \(\sin x \neq 0 \). \(\sin x = 0 \) for \(x = k\pi \) for all integers \(k \). Hence the domain is:

\[\mathbb{R} \setminus \mathbb{Z}\pi : k \in \mathbb{Z} \}

Since \(\sin x \) takes all values between -1 and 1, the range of \(f(x) \) is \((-\infty, -1] \cup [1, \infty) \).

2. Find a formula for the function \(g \) that is defined by the requirement that

\[y = g(x) \iff y^2 - x^2 = 0 \text{ and } y \geq 0. \]

Solving \(y^2 - x^2 = 0 \), we get \(y = x \) or \(y = -x \). Since we want \(y \geq 0 \), we choose \(y = x \) if \(x \geq 0 \) and \(y = -x \) if \(x \leq 0 \). Thus the function \(g(x) \) is given by \(g(x) = |x| \).