Examples:

1. Compute the 5th degree Taylor polynomial for \(f(x) = \frac{1}{1-x} \) at \(a = 0 \).

2. Do the same for \(f(x) = \frac{1}{1-x^2} \).

3. Do the same for \(f(x) = \frac{1}{(1-x)^2} \).

4. Do the same for \(f(x) = \frac{x^2}{1-x} \).

Exercises: For each of the following functions, find the corresponding Taylor polynomial of degree 4 at the specified point \(a \).

1. \(f(x) = \frac{1}{x}, a = 2 \).

2. \(f(x) = \frac{1}{x^2}, a = 2 \) (careful with this one!).

3. \(f(x) = \tan x, a = 0 \).

4. \(f(x) = \tan(x^2), a = 0 \).

5. \(f(x) = e^x, a = 0 \).

6. \(f(x) = e^{2x^2}, a = 0 \).

7. \(f(x) = \cosh x = \frac{e^x + e^{-x}}{2}, a = 0 \).

8. \(f(x) = \sinh x = \frac{e^x - e^{-x}}{2}, a = 0 \).

9. \(f(x) = \sin x, a = \frac{\pi}{4} \).

10. \(f(x) = \sin x, a = 0 \).