2. As x increases, the plane tilts downwards, so a < 0. As y increases, the plane slopes upwards, so b > 0.
when x = 0, y = 0, the point z lies above the x, y plane, so z > 0.

3. (a) \(z = 3x - y + 6 \). This intersects the z-axis when \(x, y = 0 \), at \((0, 0, 6) \).

Intersects x-axis when \(y = 0, z = 0 \), at point \((-2, 0, 0) \).
Intersects y-axis when \(x = 0, z = 0 \), at point \((0, 6, 0) \).

(b) \(z = ax + by + c \). Intersects x-axis at \(z = 0 \) \(\Rightarrow c = 0 \).
\(z = ax + by + 3 \) Intersescts x-axis at \(y = 0 \) \(\Rightarrow 0 = a(0) + 3 \Rightarrow a = -\frac{3}{4} \).
\(z = -\frac{3}{4}x + by + 3 \) Intersects y-axis at \(z = 0 \) \(\Rightarrow 0 = b(0) + 3 \Rightarrow b = -\frac{3}{2} \).
\(z = -\frac{3}{4}x - \frac{3}{2}y + 3 \).

4. (45) \(z = ax + by + c \). We can rewrite this as \(-ax - by + z = c \), and see that the point \(P = (0, 0, c) \) is in the plane. Then \(\mathbf{n} = (-a, -b, 1) \) is a normal vector to this plane. A point \(X = (x, y, z) \) is in the plane if and only if \(\mathbf{n} \cdot \mathbf{P} = 0 \).

To determine the distance from the origin to the plane we use the formula:
\[
d = \frac{|\mathbf{n} \cdot \mathbf{P}|}{||\mathbf{n}||} = \frac{|-c|}{\sqrt{a^2 + b^2 + 1}} = \frac{c}{\sqrt{a^2 + b^2 + 1}}.
\]
5. \(f(x,y) = x^2 + 2y^2 \). \(x^2 \) and \(2y^2 \) \(\geq 0 \) for any \(x, y \). The zero set is only the origin \(x=0, y=0 \), and \(f \) is otherwise positive, so \(f(x,y) \) is positive definite.

(b) \(Q(x,y) = x^2 - y^2 = (x-y)(x+y) \). This has the zero set \(x=y \) and \(x=-y \). \(Q \) is positive when \((x-y)>0, (x+y)>0 \) or when \((x-y)<0 \) and \((x+y)<0 \).

(c) \(g(x,y) = x^2 - 4xy + 3y^2 = (x^2 - 4xy + 4y^2) - y^2 = (x-2y)^2 - y^2 = (x-2y-y)(x-2y+y) = (x-3y)(x-y) \).

\(g \) has zero set \(x=3y \) and \(x=y \). Positive when \((x-3y)>0, (x-y)>0 \) or when \((x-3y)<0, x-y <0 \). Negative when \((x-3y)>0, (x-y)<0 \) or when \((x-3y)<0, (x-y)>0 \).

(d) \(Q(s,t) = 9s^2 - 36st + 36t^2 = 9(s^2 - 4st + 4t^2) = 9((s-2t)^2 + 4t^2) \). \((s-2t)^2 \geq 0\) and \(4t^2 \geq 0 \) for all \(s, t \). \(Q \) is zero \(\iff (s-2t)^2 = 0 \) and \(4t^2 \geq 0 \) \(\iff s = 0, t = 0 \). So the origin is the only zero of \(Q \), otherwise \(Q \) is positive, so \(Q(s,t) \) is positive definite.
(e) \(M(\alpha, \beta) = \frac{1}{2} \alpha^2 - \alpha \beta + \beta^2 = \frac{1}{2} (\alpha^2 - 2 \alpha \beta + 2 \beta^2) = \frac{1}{2} (\alpha^2 - 2 \alpha \beta + \beta^2 + \beta^2) \)
\[\quad = \frac{1}{2} (\alpha \beta + \beta^2). \]

Same as (d), two at origin, \([\text{positive definite!}]\)

(f) \(Q(x, y) = xy + y^2 = y(y + \alpha). \)
This is zero when \(y = 0 \) or when

\[y + x = 0, \quad y = 0, \quad y(x + \alpha) = 0. \]

Positive when \(y > 0, y + x > 0 \)

or \(y < 0, y + x < 0. \)

Negative when \(y > 0, y + x < 0 \)

or \(y < 0, y + x > 0. \)

\([\text{Indefinite!}]\)

(g) \(Q(x, y) = x^2 + 2xy = x(x + 2y). \) Zero when \(x = 0 \) or \(x + 2y = 0. \)

Positive when \(x > 0, x + 2y > 0 \)

or \(x < 0, x + 2y < 0. \)

Negative when \(x > 0, x + 2y < 0 \)

or \(x < 0, x + 2y > 0. \)

\([\text{Indefinite!}]\)
7. (a) $z = xy$. The domain of this function is the entire xy-plane.

(b) Trivial.

(c) Domain is $x \geq 0, y \in \mathbb{R}$, so the right half-plane.

(d) $z = x^2 - y^2 = 0$. Domain is all of \mathbb{R}, level set at $z = c$ is a circle of radius \sqrt{c}. Graph is a paraboloid.

(e) $z = x^2 + y^2$. Domain is all of \mathbb{R}, level set at $z = c$ is a circle of radius c. Graph is a cone.

(f) $xyz = 1$. Domain is set of points (x, y) such that $x \neq 0$ and $y \neq 0$, so the xy plane w/ coordinate axes removed. Level sets are hyperbolas.

(g) $\frac{xy}{z^2} = 1$. Here we can't have $xy = 0$, otherwise this has no solution. Also can't have xy be negative, so the domain is the first and third quadrants of xy plane. Level sets are hyperbolas.
11. (c) \(f(x, y) = \sqrt[3]{x \cdot y} \).

This function only makes sense when \(x \geq 0 \) and \(y \geq 0 \), so this is defined on the closed first quadrant in the xy-plane.

(d) \(f(x, y) = \sqrt{xy} \).

This function only makes sense when \(xy \geq 0 \), so this is defined when \(x \geq 0 \) and \(y \geq 0 \) or when \(x \leq 0 \) and \(y \leq 0 \), so the domain is the closed first and third quadrants in the xy-plane.

14. (a) \(f(x, t) = xsin(t) \).

So, as time progresses, this line rocks back and forth between a slope of 1 and -1.

(b) Almost same as (a), but this time the line is rocking twice as fast.

(c) \(f(x, t) = t \cdot sin(x) \).

As time progresses, we have a sine curve whose amplitude increases.
(f) \(f(x,t) = (x-t)^2 \).

As time progresses, we have a parabola that moves to the right.

(g) \(f(x,t) = (x-\sin t)^2 \).

As time progresses, we have a parabola that oscillates from right to left.