Problem 1 (3 points). Solve the following initial value problem.

\[y'' + 2y' - 3y = 0 , \ y(0) = 8 , \ y'(0) = 0 \]

Solution: We first form the auxiliary equation.

\[r^2 + 2r - 3 = 0 \implies (r + 3)(r - 1) = 0 \]

This gives us that \(y(x) = c_1 e^x + c_2 e^{-3x} \). Taking the derivative gives us that \(y'(x) = c_1 e^x - 3c_2 e^{-3x} \). Evaluating at \(x = 0 \) yields \(y(0) = c_1 + c_2 \) and \(y'(0) = c_1 - 3c_2 \). Applying our initial conditions (\(y(0) = 8 \) and \(y'(0) = 0 \)) yields the two equations

\[
\begin{align*}
 c_1 + c_2 &= 8 \\
 c_1 - 3c_2 &= 0
\end{align*}
\]

We now must solve the two equations simultaneously. For instance, the second equation gives us that \(c_1 = 3c_2 \) and plugging this into the first equation yields \(4c_2 = 8 \). Hence \(c_2 = 2 \). Plugging this into either equation yields \(c_1 = 6 \). So the solution is

\[y = 6e^x + 2e^{-3x} \]

Problem 2 (3 points). Solve the following differential equation.

\[2y'' - 2y' + y = x^2 \]

Solution: To find the solution to the homogeneous equation, we form the auxiliary equation \(2r^2 - 2r + 1 = 0 \) and then use the quadratic equation to solve for \(r \).

\[r = \frac{2 \pm \sqrt{4 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{2 \pm \sqrt{-4}}{4} = \frac{1}{2} \pm \frac{1}{2}i \]

So, writing \(r = \alpha \pm \beta i \), we get \(\alpha = 1/2 \) and \(\beta = 1/2 \). Hence the solution to the homogeneous equation is \(y_h = e^{x/2} [c_1 \sin(x/2) + c_2 \cos(x/2)] \).

To find \(y_p \) we use the method of undetermined coefficients. Since the right hand side is \(x^2 \) (and 0 is not a root of the auxiliary equation), our trial function will be the quadratic \(y_p = Ax^2 + Bx + C \). Taking derivatives yields \(y'_p = 2Ax + B \) and \(y''_p = 2A \).

Now \(2y''_p - 2y'_p + y_p = 2(2A) - 2(2Ax + B) + Ax^2 + Bx + C = Ax^2 + (B - 4A)x + (4A - 2B + C) \). We want \(2y''_p - 2y'_p + y_p = x^2 \), so equating coefficients yields \(A = 1 \), \(B - 4A = 0 \) and \(4A - 2B + C = 0 \). Since \(A = 1 \), we get that \(B = 4 \), which gives us that \(C = 4 \). So our solution is

\[y = e^{x/2} [c_1 \sin(x/2) + c_2 \cos(x/2)] + x^2 + 4x + 4 \]
Problem 3 (4 points). Solve the following differential equation.

\[y'' - 4y' + 4y = e^{2x} \]

Solution: To find the solution to the homogeneous equation, we form the auxiliary equation.

\[r^2 - 4r + 4 = 0 \implies (r - 2)^2 = 0 \]

This gives us that \(y_h = c_1 e^{2x} + c_2 xe^{2x} \). To find \(y_p \) we can use either the method of undetermined coefficients or variation of parameters.

Undetermined Coefficients. Our trial function for \(y_p \) must be linearly independent from \(e^{2x} \) and \(xe^{2x} \), so we will use \(y_p = Ax^2 e^{2x} \). Then \(y_p' = 2Ax^2 e^{2x} + 2Axe^{2x} \) and \(y_p'' = 4Ax^2 e^{2x} + 8Axe^{2x} + 2Ae^{2x} \).

Now \(y_p'' - 4y_p' + 4y_p = 4Ax^2 e^{2x} + 8Axe^{2x} + 2Ae^{2x} - 4(2Ax^2 e^{2x} + 2Axe^{2x}) + 4Ax^2 e^{2x} = 2Ae^{2x} \).

We want \(y_p'' - 4y_p' + 4y_p = e^{2x} \), so equating coefficients yields \(2A = 1 \) and hence \(A = 2 \). Therefore \(y_p = \frac{1}{2} x^2 e^{2x} \).

Variation of Parameters. Let \(y_1 = e^{2x} \) and \(y_2 = xe^{2x} \). Our solution will be \(y_p = v_1 y_1 + v_2 y_2 \), where \(v_1 \) and \(v_2 \) satisfy \(v_1' y_1 + v_2' y_2 = 0 \) and \(v_1' y_1' + v_2' y_2' = e^{2x} \). This gives us the two equations

\[
\begin{align*}
 v_1' e^{2x} + v_2' xe^{2x} &= 0 \\
 v_1' 2e^{2x} + v_2' (1 + 2x)e^{2x} &= e^{2x}
\end{align*}
\]

The first equation gives us that \(v_2' xe^{2x} = -v_1' e^{2x} \) and therefore \(v_1' = -v_2' x \). Plugging this into the second equation yields \((-v_2 x)2e^{2x} + v_2' (1 + 2x)e^{2x} = e^{2x} \) which, after simplifying, gives us \(v_2' e^{2x} = e^{2x} \) and hence \(v_2' = 1 \). Therefore \(v_1' = -v_2' x = -x \).

Then \(v_1 = \int v_1' dx = -\int x dx = -\frac{1}{2} x^2 \) and \(v_2 = \int v_2' dx = \int dx = x \). Therefore \(y_p = -\frac{1}{2} x^2 e^{2x} + x^2 e^{2x} = \frac{1}{2} x^2 e^{2x} \).

Therefore the solution to the differential equation is

\[y = c_1 e^{2x} + c_2 xe^{2x} + \frac{1}{2} x^2 e^{2x} \]