PERSISTENCE AND PERMANENCE OF MASS-ACTION AND
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Abstract. Persistence and permanence are properties of dynamical systems that describe the
long-term behavior of the solutions, and in particular specify whether positive solutions approach
the boundary of the positive orthant. Mass-action systems (or more generally power-law systems)
are very common in chemistry, biology, and engineering, and are often used to describe the dynam-
ics in interaction networks. We prove that two-species mass-action systems derived from weakly
reversible networks are both persistent and permanent, for any values of the reaction rate parame-
ters. Moreover, we prove that a larger class of networks, called endotactic networks, also give rise
to permanent systems, even if the reaction rate parameters vary in time (to allow for the influence
of external signals). These results also apply to power-law systems and other nonlinear dynamical
systems. In addition, ideas behind these results allow us to prove the Global Attractor Conjecture
for three-species systems.
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1. Introduction. Determining qualitative properties of solutions of dynamical
systems arising from nonlinear interactions is generally a daunting task. However, a
relevant mathematical theory that pertains to biochemical interactions obeying mass-
action kinetics has been developed over the last 40 years, starting with the seminal
work of Fritz Horn, Roy Jackson and Martin Feinberg, [9, 12, [13]. Generally termed
“Chemical Reaction Network Theory”, this theory establishes qualitative results that
describe the surprisingly stable dynamic behavior of large classes of mass-action sys-
tems, independently of the values of the reaction rate parameters [9]. This fact is
especially useful since the exact values of the system parameters are usually unknown.

Here we focus on the properties of persistence and permanence for mass-action
systems, and the more general power-law systems. A dynamical system on RZ is
called persistent if no trajectory that starts in the positive orthant has an w-limit
point on the boundary of R%,, and is called permanent if all trajectories that start
in the positive orthant eventually enter a compact subset of RZ,. Persistence and
permanence are important in understanding properties of biochemical networks (e.g.,
will each chemical species be available indefinitely in the future), and also in ecology
(e.g., will a species become extinct in an ecosystem), and in the dynamics of infectious
diseases (e.g., will an infection die off, or will it infect the whole population).

In the context of biochemical networks we formulate the following conjecture:

Persistence Conjecture. Any weakly reversible mass-action system is persistent.

Here a weakly reversible mass-action system is one for which its directed reaction
graph has the property that each of its connected components is strongly connecte(ﬂ
[9). A version of this conjecture was first mentioned in [10]ﬂ

In this paper we prove the Persistence Conjecture for two-species networks. More-
over, we introduce a new class of networks called endotactic networks, which contains
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the class of weakly reversible networks, and we show that endotactic two-species k-
variable mass action systems are permanent (Theorem [6.4)).

For two-species systems, this is a stronger statement than the Persistence Con-
jecture, in several ways. First, permanence here means that there is a compact set
K in the interior of the positive orthant such that all forward trajectories of positive
initial condition end up in K. Therefore, our result implies both strong persistence
and uniform boundedness of trajectories for two-species x-variable mass-action sys-
tems. Second, our mass-action system is k-variable, meaning that the reaction rate
constants are allowed to vary within a compact subset of (0, c0), to allow for the influ-
ence of external signals. This makes our result applicable to a larger class of kinetics
than just mass-action. Finally, the class of endotactic networks, explained in detail in
Section [ strictly contains the class of weakly reversible networks. We conjecture that
endotactic k-variable mass action systems are permanent for any number of species.

On the other hand, note that the Persistence Conjecture for three or more species
remains open.

The Persistence Conjecture is also strongly related to the Global Attractor Con-
jecture, which was first stated over 35 years ago [12], and is one of the main open ques-
tions in Chemical Reaction Network Theory. It is concerned with the global asymp-
totic stability of positive equilibria for the class of “complex-balanced” [13], 12} @l 10]
mass-action systems. It is known that such systems admit a unique positive equi-
librium ¢y within each stoichiometric compatibility clasaﬂ Y. Moreover, each such
equilibrium admits a strict Lyapunov function and therefore cy is locally asymptoti-
cally stable with respect to X [9, [13]. However, the existence of this Lyapunov function
does not guarantee that cyx; is a global attractor, which is the object of the following
conjecture:

Global Attractor Conjecture. Given a complex-balanced mass-action system and
any of its stoichiometric compatibility classes 3, the positive equilibrium point cx is
a global attractor on int(X).

Trajectories of complex-balanced mass-action systems must converge to the set of
equilibria [T9] 21]. This makes the Global Attractor Conjecture equivalent to showing
that any complex-balanced system is persistent, i.e. no trajectory with positive initial
condition gets arbitrarily close to the boundary of the positive orthant. Therefore,
since a complex-balanced mass-action system is necessarily weakly reversible [9], a
proof of the Persistence Conjecture would imply the Global Attractor Conjecture.
In general, both conjectures are still open; the Persistence Conjecture has not been
proved previously in any dimension, but recent developments have been achieved to-
wards a proof of the Global Attractor Conjecture. For instance, Anderson [I] and
Craciun, Dickenstein, Shiu and Sturmfels [6] showed that vertices of the stoichio-
metric compatibility class ¥ cannot be w-limit points and that the Global Attractor
Conjecture is true for a class of systems with two-dimensional stoichiometric compat-
ibility classes. Anderson and Shiu proved that for a weakly reversible mass-action
system, the trajectories that originate in the interior of ¥ are “repelled” away from
the codimension-one faces of ¥. This allowed them to prove that the Global Attractor
Conjecture is true if the stoichiometric compatibility class is two-dimensional [2].

2. Definitions and notation. A chemical reaction network is usually given by
a finite list of reactions that involve a finite set of chemical species. For example, a
reaction network involving two species A; and As is given in Figure [2.1

3A stoichiometric compatibility class is a minimal linear invariant subset; see Definition



2A] ——= A; + Ay ——=2A,

Fic. 2.1. A two-species reaction network.

We define the functions cy4, (¢) and c4, (t) to be the molar concentrations of species
Ay, Ay at time ¢t. The changes in the concentrations are dictated by the chemical
reactions in the network; for instance, whenever the reaction A; + Ay — 2A; occurs,
the net gain is a molecule of Ay, whereas one molecule of As is lost.

2.1. Chemical reaction networks. Here we recall some standard terminology
of Chemical Reaction Network Theory (see [9] [13]). In what follows the set of non-
negative, respectively strictly positive real numbers are denoted by R>g and Rsq .
For any integer n > 1 we call RY, the positive orthant and R%, the closed positive

orthant. For an arbitrary finite set I we denote by ZL, and Rég the set of all formal

sums o = Z ;% where «; are nonnegative integers, respectively reals. The support
il

of an element o € RY is supp(a) = {i € I : a;; # 0}.

DEFINITION 2.1. A chemical reaction network N is a triple N' = (S8,C,R), where
S is the set of chemical species, C C Zio is the set of complexes (i.e., the objects on
left or right side of the reaction arrows), and R is a relation on C, denoted P — P’,
representing the set of reactions in the network. Here P is called the source complex
and P’ is called the target complex of the reaction P — P’. Moreover, the set R must
satisfy the following three conditions: it cannot contain elements of the form P — P;
for any P € C there exists some P’ € C such that either P — P’ or P — P; and the
union of the supports of all P € C is S.
The second condition in Definition [2.I] guarantees that each complex appears in at
least one reaction, and the third condition assures that each species appears in at
least one complex. For the reaction network in Figure the set of species is § =
{41, Az}, the set of complexes is C = {247, A1 + As,2A5} and the set of reactions is
R ={24; = A; + Ag, A1 + Ay = 245,245 = 2A,}, which consists of 6 reactions,
represented as three reversible reactions. For convenience, we refer to a chemical
reaction network by specifying R only, since it encompasses all the information about
the network.

By a slight abuse of notation we may view all complexes as (column) vectors of
dimension equal to the number of elements of S, via an identification given by a fixed

ordering of the species. To exemplify, the complexes in Figure are 2A; = B],

and 245 = . For any reaction P — P’ we may thus consider the

1
Al + A2 - |:1:| ’ 2
vector P’ — P, called the reaction vector of P — P’.
DEFINITION 2.2. The stoichiometric subspace S of N' = (S,C,R) is defined as
S = span{P' — P | P — P' € R}.

Suppose the reaction network N has d species, fix an order among them and
let ¢(t) € RS = R denote the vector of species concentrations at time . We refer
to ¢(t) as the concentration vector of R at t. As we will see soon, for all ¢ > 0, the
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concentration vector ¢(t) is constrained to the stoichiometric compatibility class of
c(0), a special polytope in R<,, defined below.

DEFINITION 2.3. Let ¢y € R%. The polytope (co + S) NRL, is called the stoichio-
metric compatibility class of cg. a

The reaction network N can be viewed as a directed graph whose vertices are
given by complexes and whose edges correspond to reactions of A/. The connected
components of this graph are called linkage classes of N.

DEFINITION 2.4. A reaction network N' = (S,C,R) is called reversible if P' —
P € R whenever P — P' € R.

DEFINITION 2.5. A reaction network N is called weakly reversible if its associated
directed graph has strongly connected components.

2.2. k-variable mass-action systems. Throughout this paper, the differential
equations that govern the evolution of the concentration vector ¢(t) will be given by
k-variable mass-action kinetics. The next definition clarifies this notion; to state it,
we need the following notation: given two vectors u = Zuss and v = szs in

s€S seS
Rgo, we denote u¥ = H(us)vs, with the convention 0° = 1.

seS
DEFINITION 2.6. A k-variable mass-action system is a quadruple (S,C, R, k)

where N' = (S,C,R) is a reaction network and k : R>o — (1, 1/n)® for somen € (0,1)
is a piecewise differentiable function called the rate constants function. Given the
initial condition c(0) = co € R, the concentration vector c(t) is the solution of the
k-variable mass-action ODE system

dt)y= > kpop(t)et)’ (P - P). (2.1)

P—P'ER

We will often denote (S,C,R,k) by (N, k).

The k-variable mass-action kinetics extends the usual mass-action kinetics by
allowing the rate constants to vary with time. Therefore any results we prove for
k-variable mass-action systems are also true for mass-action systems. Time-varying
kinetics has also been considered in the context of persistence of reaction network
models in the recent paper [4]. Alternatively, one could reformulate the results in
this paper in terms of autonomous systems by using differential inclusions instead of
differential equations.

Note that integration of yields

wW=crt 3 ([ o) @ - p

p—prer N0

and therefore ¢(t) € ¢(0) + S for all times ¢t > 0. Moreover, it is easy to check that
c(t) € RY,; indeed, all the negative terms in the expression of ¢;(t) coming from the
right hand side of contain ¢;(t) as a factor and vanish on the face ¢; = 0 of Rgo.
We conclude that (co + .5) N R%O is forward invariant for . Similarly one can
notice that (cy +.5) NRY, is also forward invariant for .

2.3. Persistence and permanence of dynamical systems. We review some
more vocabulary ([IT], 18] 22]).

DEFINITION 2.7. A d-dimensional dynamical system is called persistent if for
any forward trajectory T(co) = {c(t) = (1(t),...,z4(t)) | t > 0} with positive initial



condition ¢y € RL ) we have
litrginfxi(t) >0 forallie{l,...,d}.

Note that some authors call a dynamical system that satisfies the condition in
Definition strongly persistent [22]. In their work, persistence requires only that
limsup,_, zi(t) >0 for all i € {1,...,d}.

Going back to Definition [2.7] persistence means that no forward trajectory with
positive initial condition approaches the coordinate axes arbitrarily close. Note that a
dynamical system with bounded trajectories is persistent if the open positive quadrant
is forward invariant and there are no w-limit points on BR%O; recall the definition of
w-limit points below. a

DEFINITION 2.8. Let ¢(t,€) denote the flow of a d-dimensional dynamical system
and let T(co) = {c(t,co) | t > 0} denote its forward trajectory with initial condition
co € R%,. The set of w-limit points of T'(co) is

lim,, T(co) = {I € R? | lim,, 00 c(tn, o) = | for some sequence t,, — 0o}.

Note that, for shortness, in what follows the flow c(t, ¢g) will simply be denoted
by ¢(t) once ¢ has been chosen.

DEFINITION 2.9. A d-dimensional dynamical system is called permanent on a
forward invariant set D C R‘io if there exists € > 0 such that for any forward trajectory
T(co) with positive initial condition co € D we have

e < liminfz;(¢) and limsupxz;(t) < 1/e for all i € {1,...,d}.
t—oo t—o0
In other words, a dynamical system is permanent on a forward invariant set
D C R‘io if there is a compact set K C R‘io such that any forward trajectory with
positive initial condition ¢y € D ends up in K.

In the case of a k-variable mass-action system, where the trajectories are confined
to subspaces of R?, it is meaningful to require that the system is permanent on each
stoichiometric compatibility class, as we do in the following definition.

DEFINITION 2.10. A k-variable mass-action system is called permanent if, for
any stoichiometric compatibility class X, the dynamical system is permanent on 3.
Clearly, a permanent k-variable mass-action system is persistent.

3. An illustrative example. Before introducing endotactic networks and prov-
ing their persistence (Theorem 7 we take an intermediary step and discuss an ex-
ample which illustrates some key points in our strategy for the proof of Theorem [6.2
Consider the following x-variable mass-action system:

k‘l k2 kg
2X2Y X2Y X=22X+Y (3.1)
k_1 k-z k'—3

where k; = ki(t) € (n,1/n) for all ¢ € {-3,-2,...,3} and all ¢t > 0. Let ¢(t) =
(z(t),y(t)), where x(t) and y(t) denote the concentrations of species X and Y at time
t > 0. Then (x(t), y(t)) satisfy the system of differential equations (3.2):

o00] = a2 hayo] | 7] #kaa) ka0 | 3| +lkan(0-k-antoPyco) |
(3.2)



Fic. 3.1. Inwvariant polygons for the reactions in example , taken separately ((a),(b),(c))
and together (d). Outside the shaded regions the direction of the flow component corresponding to
each reaction is known, while inside each shaded region at least one such direction is unknown.

Let us fix an initial condition ¢(0) for . We want to construct a convex polygon
P such that its convex hull conv(P) is forward invariant for the dynamics given by
and contains c(O)E| According to a theorem of Nagumo (see [I5 [5]), this is
equivalent to requiring that the flow satisfy the sub-tangentiality condition, which in
our case simply means that the vector ¢(tp) points towards the interior of P whenever
¢(to) € P. In example 7 the flow has three components along reaction vectors
corresponding to the three pairs of reversible reactions (see (3.2])). We would like
to construct P such that each component of the flow satisfies the sub-tangentiality
condition; this will clearly imply that the aggregate flow also satisfies the sub-
tangentiality condition and therefore P is forward invariant for .

Following up on the preceding observation, we next try to characterize the poly-
gons that are forward invariant for one component of the flow, i.e., corresponding
to a single reversible reaction. Let us fix ¢ for a moment. The first reaction of

lb drives the flow along the vector [12} with rate ki(t)z(t)? — k_1(t)y(t). The

4In this case we will simply say that P is forward invariant for 1'
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-2
1
side of the curve y = (k1(t)/k_1(t))x? the phase point c(t) belongs to. The coeffi-
cient ki (t)/k_1(t) is unknown, but we know it is bounded, k1 (t)/k_1(t) € (n?,1/n?).
Therefore the component of ¢(¢) in corresponding to the first reaction is in

direction [2} if ¢(t) € {(z,y) € R, | y > (1/6)2?} and in direction [_2] if

. . .. 2 . .
sign of the rate gives the direction of the flow, ] or {_ J , according to which

1 1
c(t) € {(z,y) € R%, | y < dz?}, where § = n?. In other words, if c(t) is not in the
shaded region

L= {(z,y) € R, | (1/6)2* >y > 6},

then, as shown in Figure (a), there is an interplay between the directions of the
reaction vectors and the sizes of the corresponding scalar functions that multiply them
in 7 which ensures that the state ¢(t) is driven towards the shaded region I' and
away from the boundary. Within the region I'" the flow corresponding to the first
reaction can go both ways; the sub-tantiality condition forces P NT to be parallel

1
(*) T' cannot contain any vertices of P, and the two sides of P that intersect I' must
be parallel to the reaction vector that corresponds to T.

to [_2 . In other words, as in Figure the following is true:

k
This is the only requirement that reaction 2X =Y (or any other reversible reac-
-1

tion) imposes on P, since convexity of P guarantees that sub-tangentiality is satisfied
everywhere else.

Figure|3.1] (b), (c) illustrates the flow corresponding to the two remaining pairs of
reversible reactions. We may now combine conditions (*) imposed by the three pairs
of reversible reactions and obtain the polygon P in Figure (d) that is forward
invariant for . We may realize P from a rectangle in the positive quadrant whose
sides are parallel to to axes and whose corners are “cut” at intersections with I'-type
regions in the direction of the corresponding reaction vector (see Figure[3.1](d)). The
original rectangle must be close enough to the axes and “large” enough to contain ¢(0)
in its interior and to allow for cuts in regions where the curves y = 6z%,y = (1/6)z?,
o € {1,2} are ordered with respect to o. For instance, the cuts at the (0,0) or SW
corner are in a region where

6x? < (1/0)x* < dx < (1/6),
whereas in the NE corner we have
ox < (1/8)x < d2? < (1/8)x>.

This arrangement of the curves avoids the ambiguity of cuts intersecting more than
one I'-type region and is necessary for obtaining a convex P.

We therefore conclude that the mass-action system is persistent. In fact,
our informal discussion can be made rigorous and extended to apply to any reversible
network:

THEOREM 3.1. Any two-species reversible k-variable mass-action system is per-
sistent.

Although our discussion of Theorem has been informal, a rigorous proof will
be given through the more general result of Theorem [6.2



In the next sections we extend ideas discussed here for the case of endotactic
networks which we will define soon. For reversible networks, this section revealed
an important ingredient in constructing P and proving persistence. Namely, when
c(t) € P, the aggregate effect of a pair of reversible reactions P = P’ is to push the
trajectory towards the corresponding I' region, therefore towards the interior of P.
The “bad” reaction in P = P’, i.e. the one that points outside P is cancelled by the
other, “good reaction”. Both reactions are good if ¢(t) lies on one of the two sides
parallel to P’ — P. Which reaction is good and which is bad comes from the sign of
binomials of the form

K —C- (3.3)

where C' is some positive constant, in this case C' = § or C' = 1/§. Analyzing the sign
of (3.3) for source complexes P and P’ is a recurring theme throughout the paper.
We will refer to this informally as “comparing source monomials up to a constant.”

4. Endotactic networks. The results we obtained in this paper are applicable
to two-dimensional endotactic networks, which is a large class of reaction networks
characterized by a simple geometric property. As we will see shortly, the class of
endotactic networks is larger than the well-known class of weakly reversible networks.

In what follows a reaction network for which all complexes belong to the same
line is called a 1D reaction network (see Figure (a), (b), (c) for some examples).
Such a reaction network has either a single source complex, or it has two extreme
source complexes such that the other source complexes lie between these extreme
source complexes.

In this section we do not require that the complexes of a reaction network are rep-
resented by points of nonnegative integer coordinates, but we allow their coordinates
to be real. In fact, all the results in this paper are applicable to reaction networks for
which the coordinates of the complexes are not necessarily nonnegative integers. In
that case the mass-action kinetics is replaced by the more general power-law kinetics
(see Section [8.2).

If AV is any reaction network with n species and L is any line in R”, then we may
obtain the projection of N' on L by projecting all complexes and reactions of A on
L. Note that the projection of A" on L is a 1D reaction network. If the projection
of a reaction from A is a single point of L (i.e., the corresponding reaction vector is
orthogonal to L), then we disregard that projection. This way, if all reaction vectors
of a reaction network N are orthogonal to a line L, then the projection of A" on L is
empty.

DEFINITION 4.1. (i) A 1D reaction network is called endotactic if it is either
empty or it has at least two source complexes and each reaction that starts at the
extreme source complexes point in the direction of the other source complezes.

(i) A reaction network is called endotactic if its projection on any line is endo-
tactic.

Note that Definition (i) requires that each “extreme reaction” (that is, a
reaction that starts at an extreme source complex) points in the direction of another
source complex, but not necessarily that each extreme reaction has a source complex
as target. The examples in Figure [4.1] illustrate Definition

Next we discuss a useful characterization of endotactic reaction networks with
two species; we start with a few geometric notions.

DEFINITION 4.2. Let N = (S,C,R) denote a reaction network with two species
and let S = {X, Y} denote its set of species. The set of lattice points corresponding



F1G. 4.1. Out of the three 1D reaction networks (a), (b) and (c), only (a) is endotactic. The
examples (d), (e) and (f) illustrate two-dimensional reaction networks and their projections on a
line L, chosen to be orthogonal to one of the reaction vectors. Since the projected networks are not
endotactic in examples (e) and (f), it follows that (e) and (f) are not endotactic reaction networks.
On the other hand, (d) is endotactic; the projection on L is one of the finitely many projections that
need to be considered, as explained in Remark@ The solid lines represent the sweeping lines and
their final positions (see Proposition .

to source complexes of N is
SC(N) = {(m,n) € R? such that mX +nY € C is a source complex of N'}.

By a slight abuse of terminology, we call SC(N') the set of source complexes of N.
The source monomial corresponding to (m,n) € SC(N) is z™y".

DEFINITION 4.3. Let N = (S,C,R) be a reaction network with two species X, Y,
and let v be a vector in R2.

(i) The v-essential subnetwork N, = (Sy,Cy,Ry) of (S,C,R) contains the reac-
tions of R whose reaction vectors are not orthogonal to v:

Ry={P—>P eR|(P —P)-v+0}

Cy C C is defined as the set of complexes appearing in reactions of Ry, and Sy C S
is the set of species that appear in complezes of Cy.

(ii) The v-essential support of N is the supporting line L of conv(SC(N,)) that
is orthogonal to v and such that the positive direction of v lies on the same side of L
as SC(N,). The line L is denoted by esupp” (N).

Note that Ry = ) implies that all reaction vectors in R are orthogonal to v. In
that case esupp¥(N) = @.
Example. In Figure the dots represent six complexes and the arrows describe
the four reactions among them. The two lines shown in the picture are the essential
supports corresponding to the two vectors vi; and vs.
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FiG. 4.2. Essential supports of N corresponding to vectors vi and va. Note that SC(N,)
consists of both source complexes of N, whereas SC(NVQ) contains only one source complex of N.

Throughout this paper we will also use the notation
esupp’(N)co = {PeR? | (P -Q)-v <0 for all Q € esupp” (N)}

and define esupp”(N)sg similarly.
LEMMA 4.4. A reaction network with two species N = (S,C, R) is endotactic if
and only if for any nonzero vector v.€ R? we have

{P— P eR|Peesupp’(N) and P’ € esupp’(N)<o} =0 (4.1)

Proof. The claim in the lemma is a consequence of the following fact: if v is a
vector and L denotes its supporting line, then the projection 7z, (N) of N on L is
endotactic if and only if

esupp” (N) <o = esupp™¥(N) <o = O, (4.2)

which is clearly true if 7, (N) = @; otherwise, follows from the fact that
71 (esupp¥ (N)) and 7p (esupp™ (N)) are extreme source complexes of 77, (N). O

In other words, and perhaps more illuminating, Lemma [f.4] states that a network
is endotactic if and only if it passes the “parallel sweep test” for any nonzero vector
v: sweep the lattice plane with a line L orthogonal to v, going in the direction of v,
and stop when L encounters a source complex corresponding to a reaction which is
not parallel to L. Now check that no reactions with source on L points towards the
swept region. Note that if R, = @ then L never stops. In this case we still say that
the network has passed the parallel sweep test for v. Note that Lemma [4.4] extends
naturally from two species to any number n of species, by replacing the “sweeping
line” L in R? from the two-species case with a “sweeping hyperplane” in R™.

It is easy to verify if a reaction network is endotactic. Although, by definition,
condition needs to be met by any vector v, we will see that only a finite number
of vectors v need to satisfy in order to conclude that the network is endotactic.
This fact makes it easy to check whether a network is endotactic or not and is explained
in Proposition which we discuss next.
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Let N = (8,C,R) be a reaction network with two species and let V denote the
set of inward normal unit vectors to the sides of conv(SC(N)). If conv(SC(N)) is a
line segment, we consider both normal unit vectors as inward.

PROPOSITION 4.1. A reaction network N is endotactic if and only if condition
holds for any vector v.e V U {=%i, £j}, where {i,j} is the standard basis of the
cartestan plane.

Proof. The “only if” implication is clear. For the “if” implication, let v be any
unit vector such that Ry # @. If v.€ V U {+i, £j}, there is nothing to prove. Else,
if [Q1 ... Q] denotes the polygon dconv(SC(N)), assume that esupp¥ (N)NSC(N) =
{Qx}-

eSUppv (

Fi1c. 4.3. Possible reactions Qp — P’ in the proof of Proposition In (a), the lines Qr_1Qk
and QrQr+1 are essential supports for their inward normal vectors; the target P’ belongs to the

interior of the angle Qkfmk+1< In (b), only QrQr+1 is essential support; P’ is constrained on
the half line [QrQr—_1. In both cases, P’ € esupp¥(N)>o.

First suppose that conv(SC(N)) is not contained in a line. Let vi_1 and v
denote inward normal vectors to Qr_1Qk and QrQx+1. The source complex () may
belong to both or exactly one of the sets esupp¥<(N) and esuppVx+t(N).

If Qr € esupp¥<(N) N esupp¥+*(N), then (see Figure (a)) condition

applied to vk and viy; shows that the target P’ of any reaction Qr — P’ must

belong to the closed positive cone generated by the vectors QrQr—1 and QxQy1-
This cone (except its vertex Q) is contained in esupp’(N)sg.

If Qr € esupp’s(N)\esuppVs+1(N), all reactions Q — P’ are along the line
Q.k,le. In fact condition appl.led to vky1 shows that they must have the
direction of QQ—1. Therefore (see Figure (b)) P’ € esupp”(N)so.

Finally, if conv(SC(N)) = [Q1Q2] is a line segment then applied to the two
normal vectors of the line (Q1Q2 shows that all target complexes lie on the line Q1 Q5.
Moreover, applied to {+i, £j} guarantees that in fact the all target complexes
of reactions with sources @1 and Q3 lie on the segment [Q1Q2]. It is now clear that
holds for any vector v. O

REMARK 4.1. The result of Proposition[{.1] holds for reaction networks with more
than two species, and the proof for that case is similar. In view of , Proposition
[£-) implies that in order to check that a reaction network N is endotactic, it is enough
to verify that the projections of N on lines that are either orthogonal to the facets of
the convex hull of SC(R) or parallel to the coordinate axes are endotactic.

We have mentioned that the class of endotactic networks includes the class of
weakly reversible networks. This is easy to see:

LEMMA 4.5. Any weakly reversible reaction network is endotactic.

Proof. In a weakly reversible network all complexes are sources, SC(N) = S.
The definition of the essential support implies that for every vector v all reactions
originating on esupp¥ (N) point inside esupp” (N)s¢. O
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Note that the class of endotactic reaction networks is strictly larger than the class
of weakly reversible networks. For instance, the reaction networks in Figure (a)
and (d) are endotactic, but not weakly reversible.

Because of its relation to complex-balancing, weak reversibility is a widespread
assumption in much of the work done in Chemical Reaction Network Theory ([9]).
On the other hand, the results of the present paper naturally lend themselves to the
much larger class of endotactic networks. In the next sections we will prove persistence
and permanence of endotactic k-variable mass-action systems with two species. We
conjecture that the same results are true for any number of species:

Extended Persistence Conjecture. Any endotactic k-variable mass-action system
s persistent.

Extended Permanence Conjecture. Any endotactic k-variable mass-actiorﬂ SYs-
tem is permanent.

Here “extended” refers to two different generalizations: (i) the assumption of
an endotactic, and not necessarily weakly reversible network, and (ii) the use of the
k-variable mass-action kinetics, and not the usual mass-action kinetics where « is a
fixed vector of parameters.

5. Construction of a forward-invariant polygon for an endotactic net-
work. As in the proof of persistence of the reversible example , our approach
to proving Theorem is based on defining a convex polygon P whose convex hull
contains T'(¢(0)). Here we explain how this construction is carried out for a not
necessarily reversible network.

In example the aggregate effect of any two reverse reactions P = P’ is to
drive the trajectory towards the I' region § < ¢ P < /0, therefore towards the
interior of P. In other words, the source of the “bad” reaction that might force the
trajectory to cross to the exterior of P is smaller (up to some constant) than the
source of the “good” reaction that keeps the trajectory in the interior of P.

The proof of persistence for example contains all the ingredients for the
proof of the persistence for any two-species reversible x-variable mass-action system.
In the more general setup of an endotactic network, we need to adjust the setup of
the invariant polygon and parts of our discussion.

In the reversible case we saw that if ¢(tg) € P, every pair of reactions P = P’
contains a “good” reaction that dictates the overall effect of the reversible reaction.
In the endotactic case we show that there is a “good” reaction that dictates the
direction of ¢(ty), i.e. the aggregate effect of the whole network, up to a small enough
perturbation. This amounts to showing that at time to with c(tg) € P there is a
complex that is source to a “good” reaction and whose corresponding monomial is
larger than the monomials corresponding to all other source complexes (up to some
constant). This way we are led to comparing monomials ¢’ and ¢ " for all pairwise
combinations of source complexes P and P’.

Let (M,x) = (S,C,R,k) be a k-variable mass-action systems, fix a trajectory
T(c(0)) of and denote c(t) = (z(t),y(t)) for t > 0. Let (1,71)...,(1,7r.) and
(1,s1)...,(1,sr) be normal vectors of edges with finite and nonzero slope in the
complete graph with vertices SC(N) :

{Tl,...,T’e,Sl,...,Sf} = {W | (ml,nl),(m2,n2) S SC(./\/),ml 75 ma, 7& ng}

N2 —ni

5or, more generally, power-law.
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where 51 < ... <s5p <0< <...<7e.

Let 0 < § < 1 be fixed. The pairwise comparison of source complexes P = (m,n)
and (m’,n’) up to a constant leads to ¢ — dc” = 0 and ¢ — (1/6)c? = 0, or
y =64 =m) 0o and y = (1/6)Y/ =127 where o € {r1,...,Te, 51, .., sf}. Let

8 = min(6Y ™ =" | (m,n), (m',n’) € SCN),n # n')

and consider the curves

y=08x" y=(1/0)a" and y = 6'z%,y = (1/8")x* for alli € {1,...,e} and j € {1,...

depicted using dots in Figure We further let r;1 5 be positive reals and s;4 5 be
negative reals for all i € {0,...,e} and j € {0,..., f} such that

Ties < T <Titrs and s;_5 < 8; < Sit.5-
The solid curves in Figure [5.1| are given by
y=2a"*% and y = 2*+3, i€ {0,...,e} and j € {0,..., f}.

REMARK 5.1. In our construction, the vertices of P will be confined to these
“fractional indices” curves. Although this constraint is not necessary and we may
allow more freedom in choosing the vertices of P as in the reversible example ,
our construction conveniently makes P depend continuously on a single parameter.
This will be useful in the proof of Theorem [6.)

Let £ < 1 be positive and small enough and M > 1 be positive and large enough
such that (see Figure [5.1)):

(P1) ¢(0) € (&, M)*;

(P2) all intersection of the curves in Figure lie in the square (£, M)?;

(P3) (0,€)? and (M, c0)? lie below, respectively above all negative-exponent
(sj or sj+.5) curves. Likewise, (0,&) x (M, 00) and (M, o0) x (0,&) lie above,
respectively below all curves of positive exponent (r; or 7,1 5);

(P4) All negative exponent curves intersect the line segments (0,&) x {M} and
{M} x(0,); ,

(P5) £ < min(8Y™ = | (m,n), (m',n") € SCN),n #n'),

)
¢ <min(8Y ™= | (m,n), (m,n') € SC(N),m #m’),

M > max((1/8)Y =) | (m,n), (m',n') € SC(N),n # n'),
M > max((1/6)Y =) | (m,n), (m',n') € SC(N),m # m’).

The goal is to obtain P = Ay...Aci1B1...By1Cr...Cep1D1...Dyiq as in
Figure with the property that
(P*) the dotted curves y = §'z° and y = (1/8")x? intersect the two sides of P that
are orthogonal to the vector (1,0) and only these two sides.

Conditions (P1-P5) allow for the construction of such a polygon, and moreover,
assure that P is invariant, as we will see in the proof of Theorem m Due to (P4), the
B, and D, vertices are easily constructed in the correct shaded regions. Condition (P2)
guarantees that on the shaded areas the pair of dotted curves y = §’z7, y = (1/6")z°,
oe{r,....,re,81,...,55} lie between the corresponding solid curves, an important
fact that we will take advantage of later. Conditions (P3) and (P5) will also come in
handy, as it will make some pairwise comparisons of source monomials straightforward.
Finally, condition (P1) make the initial condition lie in conv(P).

af}7
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F1G. 5.1. Setup of the invariant polygon P = Ay ... Aet1B1...By11C1...Cep1D1... Dy

(€,0)

A S

N‘@ A
N VP
Vi 2 ®
Z
)

FiG.

5.2. Detail of vertices Aq,...

’Ae+1
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We construct P = Ay...Aet1B1...Bf11C1...Cep1 D1 ... Dyyq one vertex at
the time starting with A; = (a, a®0*) and going counterclockwise. All vertices of P
lie on a fractional index curve and satisfy property (P*) above. In other words the
sides A;A;41, C;C;y1 are orthogonal to (1,7;) and the sides B;B;y1 and D; D, are
orthogonal to (1, s;). We also require that Aet1B1, Cer1 D1 are horizontal and that
By11C; is vertical. The polygon P constructed this way is unique.

The vertices of P can indeed be chosen to lie in the four shaded areas of Figure
For instance, lim,—,0 A; = (0,0); therefore A; € (0,£)? for all i € {1,...,e+ 1}
for small «, whereas (P4) guarantees that B; € (M, 00) x (0,&) for all j. Finally, note
that the side Dy11A; of P need not be vertical, but in the limit & — 0, D414, is
vertical. In particular, P(«) is convex for small a.

Let ag be such that P(ay) is a convex polygon whose construction is as explained
above. Then a € (0,qp] defines a one-parameter family of convex polygons; the
generic P(«) is outlined in Figure The vertices Ay, ..., A, are illustrated in more
detail in Figure [5.2

Finally, let us remark that P(«) varies continuously with a and conv(P(a)) is
decreasing in a € (0, ap) and is a cover of R2, :

conv(P(a’)) D conv(P(a)) if &' < o and U conv(P(a)) = RZ,,. (5.1)

a=0

6. Endotactic two-species k-variable mass-action systems: persistence
and permanence.

6.1. Persistence. Let (N, k) = (R,S,C, k) denote a two-species, endotactic -
variable mass action system with kp_, p/(t) € (,1/n) for all P — P’ € R. Recall that
c(t) = (z(t), y(t)) denotes a solution of (2.1)) with initial condition ¢(0).

The following lemma is a key ingredient in the proof of Theorem [6.2} It states
that if for some tg, the source monomial of the reaction Py — P} is much larger than
all other source monomials, then ¢(¢p) does not deviate too far from Pj — Py.

LEMMA 6.1. Let Py — Pj € R and let v be a vector such that (Pj — Py) - v > 0.
Also let U C SC(N)\{Po}. There exists a constant § such that if c € R and
P <o forallPeld
then, for allt > 0 we have

Kpys 2y (1)(Py — Po)e™ + Z kpop (t)(P' = P)c" | v >0.
P—P/ER,PEU

Proof. We take

n*(Py— Po)-v

vl > 1P =Pl

P—P'eR
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and we have

kpospy (P — P+ Y kpap ()P = P)” | v
P—P eR,PeU

> fipyspy (1) (P — By) - v — > (fﬁpap/ ) IvllllP"— Pl 50P°> >
P—P/eR,PeU

> (n(Pé —Po)-v=3(Ivl /) Y 1P~ P) =0

P—P/ER

We may now state and prove our main result.

THEOREM 6.2. Any two-species, endotactic k-variable mass-action system is
persistent and has bounded trajectories.

Proof. Recall that V denotes the set of inward normal vectors to the sides of
conv(SC(N)). Let n € V U {%i, £j}, and let P, — P) denote a fixed reaction such
as Py € esupp™(N) and P} € esupp™(N)s¢. Since N is endotactic, such a reaction
exists for all n € V U {#£i, £j}.

Note that including {+i, +j} here guarantees that at least one vector n € V U
{%i,+j} satisfies esupp™(N) # @. For every such vector n we let d, denote the
constant from Lemma that corresponds to reaction P, — P,, v =n and U =
SC(N) Nesupp™(N)so and

0 = mindy,. (6.1)
Then § < 1 and the construction from section [f] yields the convex polygon
Plaw) =A1... Ac1B1 ... B§41C1...Ceq1 D1 ... Dy =P for simplicity of notation.

We view P as the union of its sides, so that P = d(conv(P)). By construction, ¢(0) €
(&, M)? C conv(P). We show that conv(P) is forward invariant for the dynamics (2.6),
ie. c(t) € conv(P) for all t > 0. More precisely, we prove that c(t) cannot cross to
the exterior of P by showing that if c(¢y) € P for some ty > 0, then

¢(tog) - n > 0 whenever c(tg) € P (6.2)
where —n is a generator of the normal cone Np(c(tg)) of P at c(to). Recall that
Np(c(tg)) = {v e R? | v-(x —c(to))) < 0 for all x € conv(P)}.

Note that n is orthogonal to one of the sides of P and points inside P.
Inequality (6.2) is rewritten as

( Z Rp_spr (to)(Pl - P)C(to)P> -n 2 0 (63)
P—P'€Ry

and is satisfied if R,, = @. Otherwise, let P, — P, € Ry, with P, € esupp®(N).
We rewrite the left hand side of (6.3)) by separating the reactions with source on the
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n - essential support of A/ and further isolating the effect of the reaction P, — Py, :

( Z Kkp—pr (to) (P — P)C(to)P> ‘n=

P—P'cRy

= ( Z K,P_>pl(t0)(Pl — P)C(to)P +
P—P'#P,—P)
Peesupp™(N)

+KEP, P, (to)(PIII — Pn)c(to)P“ + Z Hp%p/(to)(Pl — P)C(tO)P> -n.
P—P’'€Rn,Péesupp™(N)

Since all source complexes of Ny lie in esupp™(Ny)>o, the reaction vector P’ — P with
source P € esupp™(N) satisfies (P’ — P) -n > 0. Note that for the reaction P, — P},
the inequality is strict,

(P, — P,)-n>0.

n

It is therefore enough to show that

K Py— P, (to)(PI/l — Pn)c(to)P“ + Z Kp—p’ (to)(P/ — P)C(to)P ‘n>0

PP cR,
Piesupp™(N)

(6.4)
in order to verify (6.3). In turn, (6.4) will follow from Lemma [6.1] with & = SC(N) N
esupp™(N)so and the fact that

Se(to)P > c(to)? (6.5)

for all P € U, inequality whose verification will complete the proof of the theorem.

The proof of inequality depends on the position of ¢(tg) on P. More pre-
cisely, c(to) might belong to one of the four polygonal lines [A; ... Act1], [B1 ... Byt
[C1...Ceq1] and [Dy ... Dysyq] or to one of the four remaining sides of P. We discuss
the first case, c(tg) € [A1...Act1]. Suppose c(ty) = (x(to),y(to)) lies on the side
[A;A;1+1]. Then (see Figure we have

(1/6")a(to)" <ylto) < 0'z(to)",

where only one side of the inequality holds if i =1 or i = e.

Let P = (m,n) and recall the notation Py = (mn,nn). We let o = 2= if
nn 7 n. Relative to Py, the source complex P may belong to one of the three shaded
regions in Figure [6.1]

Region I. Here m > my and n < ny,. Also, o > r; and therefore ¢ > r; 1 and we have
y(to) > (1/6")a(te)"+* > (1/8)"/ =™ a(t0)?,

which implies dx(tg) ™ y(to)™™ > x(to)"y(to)™.
Region II. If m # my and n # ny we have m > my, n > ny and o < 0. Condition
(P3) implies

y(to) < 5’$(t0)0 < 51/(’”_"")1’(?50)07
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F1G. 6.1. Positions of a source monomial P relative to Pn

which again implies z(to)™y(to)™ < dz(to)™y(to)™. If m = my or n = n, we need
to show § > y™ =™ or 0 > 2™~ "= which are immediate from (P5).
Region III. Here m < my and n > n,. We have ¢ < r;, so o < r;_1 and

y(to) < 8a(tg)" =1 < 6V (=) g (t4)7,

therefore 0z (to)=y(to)™ > x(to)™y(to)™.

The cases when ¢(t¢) lies on the other three polygonal lines [By ... By11], [C1 ... Cet1]
and [D; ... Dyi4] are similar. Finally, suppose that ¢(¢¢) is on one of the four remain-
ing sides, [Act1B1], [Bf+1C1], [Cet1D1] and [Dyyq1A4q], for instance c(tg) € [Aet1B1].
Then we must have n > n, and

y(to) < 5/1‘(t0)a < 51/(n7n“)$(t0)6,

or z(tg)™y(to)™ < dx(to) ™ y(te)™=. O

REMARK 6.1. Note that, in the proof of Theorem if k(t) € (n,1/n)® is not
necessarily true for all t > 0, but holds for t =ty then the inequality is true (at
time tg):

( > kpospi(to)(P - P)c(to)P> n>0 (6.6)

P—P'e€R

This provides a local condition which will be used in the proof of Theorem |7.2

Lower-endotactic networks. A useful observation can be made from the proof
of Theorem Namely, we need not require that the network is endotactic in order
to conclude that a bounded trajectory T'(cq) is persistent. Instead, it is enough that
the network is merely lower-endotactic, meaning that it passes the parallel sweep test
for vectors that point inside the closed positive quadrant. In other words, a network
is lower-endotactic if condition is satisfied for all vectors v € V,,,, U{i,j}, where
Viow is the set of vectors with strictly positive coordinates that are inward normal
vectors to the sides of conv(SC(N)). For instance, the reaction networks in Figure
(b) and (e) are not endotactic, but are lower-endotactic; on the other hand, examples
(c) and (f) are not lower-endotactic.

To see why the requirement of a lower-endotactic network is enough for persistence
of two-species reaction networks, note that we may construct the invariant polygon
P such that the square [0, M]? contains T'(cg). Then, if ¢(t) reaches P, it must be on
the polygonal line [Dyy1A1As ... Ac11By]. and the proof of only requires that
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N is lower endotactic. We cast this result as a corollary to the proof of Theorem [6.2]

COROLLARY 6.3. Any bounded trajectory of a lower-endotactic k-variable mass-
action system with two species is persistent.

6.2. Permanence. The proof of Theorem allows us to say more about the
dynamics of . Indeed, without much additional effort we can prove the following
stronger version of Theorem

THEOREM 6.4. Any two-species endotactic k-variable reaction system is perma-
nent.

Proof. Suppose that for some small € > 0 and for some oy > 0 we can construct
the polygon P(ap + €). Recall that the polygon P = P(«) depends continuously on «
and the function conv(P) : (0,9 + €) — R is strictly decreasing, i.e. conv(P(a)) D
conv(P(a’)) whenever a < o < ag + €. Let T'(¢(0)) denote a trajectory of with
initial condition ¢(0). We will show that the trajectory T(c(0)) eventually ends up in
conv(P(ayp)).

Since Uye(0,a9+¢ conv(P(a)) = R2, we may choose 0 < a; < ap such that
c(0) € Unefay,ap+e COV(P(@)). Let @ 2 Uyeay a4 P(@) = [a1, a0 + €] be defined
as ®(z,y) = a if (z,y) € P(a). We need to show that ®(c(t)) > «ag for large enough
t. Suppose this was false; then, since ®~![ag, 00) = conv(P(ap)) and & ag,o0) =
conv(P(aq)) are both forward invariant sets for (2.I)), we must have that ®(c(t)) €
[, ag] for all ¢ > 0.

Note that ® is differentiable on its domain except at the points on the fractional
index curves y = 2° for all 0 € {ro.5,...,7e4.5,505,---,5f+.5}. Let ¢ € RZ be such a
point, and let ®; and ®5 denote the smooth functions that define ® on the two sides
of the fractional curve in a neighborhood of c¢. The subgradient [23| Definition 8.3] of
P at cis

0%(c) = {aVPi(c) + (1 —a)VPy(c) | a € [0,1]} (6.7)

and therefore @ is strictly continuous [23, Definition 9.1]. Note that is also
valid for points c¢ that do not belong to a fractional index curve and in that case
V®,(c) = VPs(c) = V&(c). Since ¢(t) is smooth, it follows that ® o ¢(t) is also
strictly continuous; in particular, a generalized mean value theorem [23, Theorem
10.48] implies that for all £ > 0 there is 7z € [0, ¢] such that

D(c(t)) — @(c(0)) = st for some scalar sy € (P o ¢)(1) (6.8)
The chain rule for subgradients [23] Theorem 10.6]
O(Poc)(t) C{v-eé(t)|vedd(t)} (6.9)

connects the subgradient of ® o ¢ to that of ®. Note that the proof of Lemma [6.1
can be modified to show that for any compact set K C R2>0 there exists ¢ > 0 such
thatV® (c(t)) - ¢(t) > ¢ and V®o(c(t)) - ¢(t) > ¢ for ¢(t) € K. This, together with the
special form of 0®, and together with shows that

inf O(® 0 0)(t) > ¢,

From we obtain
D (c(t)) > ®(0) + ¢t for all t > 0,
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which contradicts the fact that ®(c(t)) € [aq, o] for all ¢ > 0. 0

REMARK 6.2. (Existence of positive equilibria for two-species autonomous en-
dotatic mass-action systems). The ezistence of a positive equilibrium has been shown
for weakly reversible mass-action systems in [8]. For endotactic networks we may
observe that if the rate constant function depends on both time and the phase point
¢, k = k(t,c) € (n,1/n) then the set of all possible trajectories is still the same as
for k = k(t), and our persistence and permanence results still hold. In particular, if
k= k(c) € (n,1/n) for all c € R2,, then Theorem together with the Brouwer Fized
Point Theorem guarantees the existence of a positive equilibrium in conv(P(ay)).

7. The Global Attractor Conjecture for three-species networks. As
mentioned in the Introduction, the Global Attractor Conjecture concerns the asymp-
totic behavior of complex-balanced mass-action systems and is of central importance
in Chemical Reaction Network Theory.

DEFINITION 7.1. An equilibrium point ¢, € R, of a mass-action system (N, k) =
(R,S,C, k) is called complex-balanced equilibrium if the aggregate flow at each complex
of N is zero. More precisely, for each Py € C we have

P P
E KPP, Cx = E KPy—PCsx" °.

P—Py Py—P

A complex-balanced system is a mass-action system that admits a strictly positive
complex-balanced equilibrium.

A complex-balanced system is necessarily weakly reversible [9]. A very important
class of complex-balanced mass-action systems is that of weakly reversible, deficiency
zero systems [9, [10]. The deficiency of a network is given by n—1—s, where n, [ and s
denote the number of complexes, the number of linkage classes and the dimension of
the stoichiometric subspace. Computing the deficiency of a network is straightforward,
as opposed to checking the existence of a complex-balanced equilibrium.

It is known that a complex-balanced system admits a unique positive equilib-
rium cy, in each stoichiometric compatibility class > and this equilibrium is complex-
balanced [9]. Moreover, each such equilibrium admits a strict Lyapunov function
which guarantees that ¢y is locally asymptotically stable with respect to X [9] [13].
Recall from the Introduction that the Global Attractor Conjecture states that cy is
in fact globally asymptotically stable with respect to 3.

It is known that for complex-balanced mass-action systems, all trajectories with
positive initial condition converge to the set of equilibria [19] 2I]. As a consequence,
showing that the unique positive equilibrium cy in the stoichiometric compatibility
class ¥ is globally attractive amounts to showing that no trajectories with positive
initial conditions have w-limit points on the boundary of X.

In particular, any condition that guarantees the non-existence of boundary equi-
libria for a stoichiometric compatibility class 3 implies that cy is globally attractive.
For instance, it was shown that a face F' of ¥ contains boundary equilibria only if the
species corresponding to coordinates that vanish on F' form a semilocking set (siphon
in Petri nets terminology) [3, [, 2]. Tt follows that if no face of ¥ corresponds to a
semilocking set then ¥ does not have boundary equilibria and cy is globally attractive.
Algebraic methods for computing siphons have been devised in [20].

Some progress has been made for the remaining case where boundary equilibria
cannot be ruled out. It was shown that w-limit points cannot be vertices of X [0 [I]
and that codimension-one faces of ¥ are “repelling” [2]. As a consequence, the Gobal
Attractor Conjecture holds for systems with two-dimensional stoichiometric subspace
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[2]. For systems with three-dimensional and higher-dimensional stoichiometric sub-
space the conjecture is open. In particular, previous results do not apply to the general
three-species systems. In what follows we show the conjecture to be true in this case.

THEOREM 7.2. The Global Attractor Conjecture holds for three-species networks.

Proof. Let (N, k) = (S,C, R, ) denote a complex-balanced reaction system with
ordered set of species {X,Y, Z} and denote the corresponding concentration vector
at time t by c(t) = (z(t),y(t), 2(t)). Let co € R, be arbitrary and let T'(co) denote
the forward trajectory of the concentration vector with initial condition c¢q. We want
to prove that T'(¢o) converges to the unique positive equilibrium in the stoichiometric
compatibility class of cg.

The existence of the Lyapunov function guarantees, on one hand, that there is a
neighborhood of the origin that is not visited by T'(¢g), and on the other hand, that
T'(co) is bounded [6] [1]. In other words, there exists € > 0 such that x(t)+y(t) +z(t) >
3e and z(t), y(t) and z(t) are all smaller than 1/e at all times ¢ > 0.

Our previous discussion explained that it is enough to rule out boundary w-limit
points for T'(co). We will construct a compact set K C R2  such that T'(co) C K.

If 74, denotes the projection onto the coordinate coordinate plane xy, then

D SR G CCRT U R (A

P—P/ER

where Pz denotes the stoichiometric coefficient of the species Z in P and 7., (P) is
the complex with species {X,Y} obtained by removing species Z from P.

Let fmin = min{k, 1/ | k is a rate constant of some reaction of '} and let s,,44
denote the maximum stoichiometric coefficient of any species in a complex of . Let

n= "@ninesmam (72)

and note that n < 1.

The reactions of N project onto reactions among complexes m,, (C) with species X
and Y. Let 7,y (N) = (m54(S), m4(C), m5+(R)) denote the resulting reaction network.
Motivated by we consider the k-variable mass-action system of variables x and
y given by

D S SCICUNOUE) (73)

P P/Emyy (R)

where £(t) € (n,1/n) for all t > 0. Since N is weakly reversible, m,(N) is weakly
reversible as well. In particular, m,,(N) is endotactic and we may construct an
invariant polygon P, for as in the proof of Theorem Section contains the
details of the construction and we use its notations in what follows.

In Section [o] the vertices of P lie on the “fractional indices” curves to make
P = P(a) vary continuously with a. As noted in Remark this constraint is not
necessary for proving that P is an invariant set for the corresponding k-variable mass-
action kinetics. For the purpose of this section we will instead construct P = Py,
such that A; Dy is a vertical line and that its distance to the y axis is equal to the
distance from the horizontal line A1 B; to the x axis; let d > 0 denote this distance.
Since P, may be chosen to contain any compact subset of R (see ), we assume
that it satisfies (using the notations from Figure [5.1)):

the square [e, 1/€]? is included in the square [¢, M]2. (7.4)
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1 (d,1/€,1/€)

(d, 3¢, 3¢)
L]

¥

Fic. 7.1. The subset of OK that can be reached by T(co). The phase point c(to) may belong to
one of the three flat parts where one of the coordinate is d, or on one of the cylindrical parts along
the azes.

We construct in the same way Py, and P,, and we define

K = {(z,y,2) €[0,1/€]*| (x,y) € conv(Pwy), (y,2) € conv(Py.), (z,) € conv(P..)}.

(7.5)

Note that K is a compact subset of R3 ; and ¢y € K. We show that the trajectory

T(cp) is included in K. To this end, suppose that at some time point ¢y the trajectory
reaches the boundary of /C. It is then enough to check that

é(to) >0 (7.6)

where —n € Ni(c(to)) is any generator of the normal cone of K at ¢(to).
Let £, denote the subset of P,,, given by the polygonal line Dy 1 A1 Ay ... Acy1B1
(see ﬁgure and similarly define £,. and L.,,. Because c(t) € (0,1/¢)? for all ¢t > 0,

implies
c(to) € [0,1/m]° N ((Lay X Rx0) U (Lyz X Rx0) U (Lzz X Rso)) (7.7)

Since x(tg) + y(to) + 2(to) > 3e, at least one of x(ty), y(to) and z(to) is larger than
€. Assume z(tg) > €. Then (7.7) implies that

c(to) € Pay x R, (7.8)

and therefore the z coordinate of n is zero. It follows that inequality ([7.6) is equivalent
to

my(n)-< > nmprz(to)PZ(m(to),y(to))””(P)(my(P’)—my(P))) > 0. (7.9)

P—P'cR

where Pz denotes the stoichiometric coefficient of the species Z in P. Note that
—mzy(n) is a generator of the normal cone of Py, at (z(fo),y(to)). Our choice of n
implies that kp_,p2(tg)7Z € (n,1/n) and is implied by Remark 0

REMARK 7.1. In the subsequent paper [16] we show how the techniques used here
can be extended to prove the Global Attractor Conjecture not only for systems with
three species, but for systems with three-dimensional stoichiometric subspace. In that
work we also prove a version of the Extended Persistence Conjecture for systems with
two-dimensional stoichiometric subspace.
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8. Examples.

8.1. Thomas-type models. The Thomas mechanism (see [14, ch. 6]) is a
substrate inhibition model for a specific reaction involving oxygen and uric acid in
the presence of the enzyme uricase. After nondimensionalization the ODEs for oxygen
(v) and uric acid (u) become

du

pn =a—u—T(u,v)uv, (8.1)
z—;} = a(b—v) — T(u,v)uv,

where in the Thomas model T'(u,v) = p(1+u+ Ku?)~!. Here all parameters a, b, o, p
and K are positive. Using Theorem we can show that is permanent for
any function T'(u,v) > 0 that is continuous and does not vanish on a compact K D
[0,a] x [0,b] (in particular, this is true for function T in the Thomas mechanism).
Indeed, for some time point ¢y we have (u(t),v(t)) € K; continuity of T guarantees
that for ¢ > tg we have n < T'(u(t),v(t)) < 1/n for some n > 0. The dynamical
system (8.1) can be written as a k-variable mass-action system with reactions given
in Figure (a), where the reaction rates are specified on the reaction arrows and
T(t) = T(u(t),v(t)). This network is endotactic and Theorem implies that the
dynamical system is permanent.

8.2. Power-law systems. In the proof of Theorem [6.2] we have not used the
fact that the exponents P of monomials ¢f in are nonnegative integers; this is
the case when P C Zio represents a chemical complex, which has been our framework
thus far. In fact, the proof of Theorem accommodates the case when P C R? has
any real coordinates.

More precisely, keeping the notation c(t) = (z(t),y(t)), we consider an ODE
system of the following form:

et)y=>_ Y rpv(t)c’v (8.2)

PeSCveV(P)

where SC C R? is the set of “sources” P and V(P) is the set of “reaction vectors”
with source P. We also suppose that kpy(t) € (1,1/n) for some 0 < n < 1. With this
interpretation, is a generalization of a x-variable mass-action ODE system
and Theorems [6.2] and [6.4] still apply.

A particularly important example of power-law, not necessarily polynomial sys-
tems is the class of S-systems ([17]), where each component of the right hand side
of consists of a difference of two “generalized monomials” (i.e., monomials with
real exponents). S-systems are common in the modeling of metabolic and genetic
networks. For example, consider the following S-system:

dzx

ke 2 -1,15 _ 0.8 83
=2y (8.3)
dy —2 —1,1.5

27— — /5 :

o =v = VhaTly

Note that it is not obvious that trajectories of 1) cannot reach 6R2>0 in finite
time. However, using Theorem we can easily see that (8.3) is in fact permanent,
and, in particular, all trajectories with positive initial condition will be bounded



Fia. 8.1. Ezamples of reaction networks: (a)Thomas model (8.); (b)the S-system (8.3);
(¢)Lotka-Volterra system .

away from zero and infinity. Indeed, the generalized monomials in , i.e. the
points (—1,1.5),(0,0.8) and (0, —2), as well as the corresponding “reaction vectors”
(2,—v/5),(=1,0) and (0,1) are illustrated in Figure (b). This configuration is
endotactic and Theorem applies.

Note that the same conclusion holds for any system of the form

dx

i 261 () 1yt — ko (t)y"® (8.4)
d

d—g; = k3(t)y =2 — VBry (t)z " 1yt?

where k;(t) € (n,1/n) for all i € {1,2,3} and for all ¢t > 0.

8.3. Lotka-Volterra systems. The classical two-species predator-prey model
A—2A A+B—2B B—=0 (8.5)

is neither endotactic nor lower endotactic. Since, for fixed parameters its trajectories
are either constant or closed orbits, the system is not permanent (see Figure
(¢)). On the other hand, the fixed-parameter system has bounded trajectories and is
persistent, which seems to suggest that the requirement of entotactic network may be
weakened in Corollary Note, however, that the result of the corollary concerns
k-variable mass-action systems. It is not hard to show that, in general, the x-variable
Lotka-Volterra system is mot persistent.

8.4. Examples for the three-species Global Attractor Conjecture. We
present two examples of reaction networks for which no previously known results can
resolve the question of global asymptotic stability, but for which Theorem applies.

(@) A=B=A+B=A+C (b)) A+B=A+C A—B

\/

24 (8.6)

The first example, given by (a) is Example 5.4 from [2]; it is reversible with
one linkage class. On the other hand, example (b) is weakly-reversible, but not
reversible and has two linkage classes. Moreover, the deficiency of both networks is
zero and therefore the two mass-action systems are complex-balanced.

In both examples all stoichiometric compatibility classes are equal to Rio. If
(z(t),y(t), 2(t)) denotes the concentrations of (4, B, C), then it is easy to see that all
points on the nonnegative z axis are equilibria for both examples. Therefore boundary



25

equilibria exist, and moreover, except for the origin, they all lie on a codimension-two
face of Rio. In this case all previously known results stay silent, but Theorem
guarantees that, in each example, the unique positive equilibrium is globally asymp-
totically stable.
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