MATH 222 (Lectures 2, 3, and 4) Fall 2017
Practice Midterm 2.2

Name: ____________________________

Circle your TA’s name from the following list.

Allen Zhang Bobby Laudone Dima Kuzmenko Geoff Bentsen Jaeun Park

James Hanson Julia Lindberg Mao Li Polly Yu Qiao He

Tejas Bhojraj Weitong Wang Yu Sun Zihao Zheng

<table>
<thead>
<tr>
<th>Problem 1</th>
<th>Problem 2</th>
<th>Problem 3</th>
<th>Problem 4</th>
<th>Problem 5</th>
<th>Problem 6</th>
<th>Problem 7</th>
<th>Problem 8</th>
</tr>
</thead>
</table>

Instructions

- On Problems 1 and 2 only the answer will be graded. On all other problems, you must show your work and we will grade the work and your justification.

- Problem 1, 2, 3, 4 are multipart problems, and they are worth 14 or 15 points each. Problem 5, 6, 7, 8 are worth 10 or 11 points each.

- No calculators, books, or notes (except for those notes on your 3 inch by 5 inch notecard.)

- Please simplify any formula involving a trigonometric function and an inverse trigonometric function. For example, please write \(\cos(\arcsin x) = \sqrt{1 - x^2} \).

- Final answers should not involve functions applied to either infinity or applied to a point outside of their domain. For instance, \(\arctan(\infty) \) and \(\ln(0) \) and \(\sqrt{-5} \) will not be accepted as a final answer. In a question involving a limit, we will accept a final answer of “\(\infty \)” as synonymous with “The limit does not exist”.

- Please simplify any binomial expression \(\binom{b}{k} \).
Formulas

- \(T_\infty e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \)
- \(T_\infty \sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \)
- \(T_\infty \cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \)
- \(T_\infty \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \)
- \(T_\infty \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k \)
- \(T_\infty (1 + x)^b = \sum_{k=0}^{\infty} \binom{b}{k} x^k \) where \(\binom{b}{k} = \frac{b(b-1)(b-2)\ldots(b-k+1)}{k!} \)
1. For each statement below, CIRCLE the correct answer. You do not need to show your work.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

True or false:

(a) \((x \cos(x) - x)\) is \(o(x^5)\).

(b) If \(f(x)\) is a degree 5 polynomial then \(T_{15} f(x) = f(x)\).

(c) \(R_4 \sin x = \sin x - (x - \frac{x^3}{3!})\)

(d) If \(f(x) = 20 \sin x - 500x^3\) then \(|f(x)| \leq 520\) for all \(-1 \leq x \leq 1\).

(e) Is \(\frac{dy}{dx} = (\sin x)(\cos y)x\) the equation of slope field I or slope field II?
(a) Use Euler’s method with step size $h = 0.1$ to estimate $y(0.1)$ where $y(x)$ satisfies

$$\frac{dy}{dx} = x + y \text{ and } y(0) = 1.$$
3. On this page, partial credit is available.

(a) Use a geometric sum to express $R_{12} \frac{1}{1-2x^3}$ as a fraction of the form $\frac{f(x)}{1-2x^3}$.

(b) Compute $T_4 \left(\sqrt{3} + x^2 \right)$
4. On this page, partial credit is available. Find a solution to each initial value problem.

(a) \[
\frac{dy}{dx} = 4x^3(y + e^{x^4}) \text{ and } y(0) = 1.
\]

Solution Satisfying Initial Condition: \(y = \)

(b) \[
\frac{1}{1 + y^2} \frac{dy}{dx} = \cos x \text{ and } y(0) = 0.
\]

Solution Satisfying Initial Condition: \(y = \)
5. On this page, partial credit is available. Ten thousand dollars is deposited in a bank account on January 1, 1990 with a nominal annual interest rate of 5% compounded continuously. No further deposits are made. Money is withdrawn continuously at a rate of $4000 per year. We are interested in a function that models the amount of money left in the account.

- Variables (2pts):

- Differential equation (6pts)

- Initial condition (2pts):
6. On this page, partial credit is available. Let t stand for time in minutes from 12:00pm and let $B(t)$ denote the number of bacteria in a petri dish at time t. Assume that B satisfies $\frac{dB}{dt} = 50 \cdot B \cdot (1 - B)$. Also assume that at 12:00pm there were 2 bacteria in the dish. Compute $B(t)$.

7. On this page, partial credit is available. Let \(f(x) = \sin(2x) \). Find \(n \) such that
\[
|f(x) - T_n f(x)| \leq \frac{1}{100}
\]
for \(x \) in the range \(-\frac{1}{2} \leq x \leq \frac{1}{2}\). It may be helpful to know that
\[
2! = 2, \quad 3! = 6, \quad 4! = 24, \quad 5! = 120 \quad \text{and} \quad 6! = 720.
\]
8. On this page, partial credit is available. Let $f(x)$ be a function satisfying the differential equation

$$f''(x) + 2e^{2x^2} - f(x) = 0$$

and also satisfying the initial conditions $f(0) = 0$ and $f'(0) = -1$. Compute $T_4f(x)$.
This page left blank for additional work.
This page left blank for additional work.