On the average number of octahedral modular forms

Jordan S. Ellenberg *
Princeton University
ellenber@math.princeton.edu
30 Dec 2002

Let $N > 0$ be an integer, χ a Dirichlet character modulo N, and k either 0 or 1. Let f be a primitive eigenform, not necessarily holomorphic, of level N and Nebentypus χ, and let $\lambda_f(n)$ be the eigenvalue of T_p on f. We say f is associated to a Galois representation $\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{C})$ if

$$\lambda_f(p) = \text{Tr}(\rho(Frob_p))$$
$$\chi(p) = \det(\rho(Frob_p))$$

for all p not dividing N. Following [4], we define $S_{\text{Artin}}^{1/4,k}(N,\chi)$ to be the finite set of primitive weight k cuspidal eigenforms which admit an associated Galois representation. If $\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{C})$ is a Galois representation, we define $\mathbb{P}\rho$ to be the composition of ρ with the natural projection $\text{GL}_2(\mathbb{C}) \to \text{PGL}_2(\mathbb{C})$.

Two-dimensional complex Galois representations fall naturally into four types; we call ρ dihedral, tetrahedral, octahedral, or icosahedral according as the projectivized image $\mathbb{P}\rho(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ is isomorphic to a dihedral group, A_4, S_4, or A_5. Cusp forms associated to Galois representations are classified likewise.

The latter three types are called “exotic”; it is widely believed that the number of exotic cusp forms of level N is at most N^{ϵ}. The first results in this direction are due to Duke [3]. These results were later sharpened by Wong [6] and Michel and Venkatesh [4]. The latter authors proved that

$$n^{\text{tetr}}(N,\chi,k) \ll \epsilon N^{2/3+\epsilon}, n^{\text{oct}}(N,\chi,k) \ll \epsilon N^{4/5+\epsilon}, n^{\text{icos}}(N,\chi,k) \ll \epsilon N^{6/7+\epsilon}$$

where $n^T(N,\chi,k)$ is the number of weight k cusp forms of level N, Dirichlet character χ, and type T. (Note that $n^T(N,\chi,k) = 0$ unless χ sends complex conjugation to $(-1)^k$.)

The goal of this paper is to show that the Michel-Venkatesh bound on octahedral forms can be sharpened on average over squarefree levels N.

We begin by showing that, in the case of square-free level, one does not need to consider very many different Dirichlet characters χ when counting exotic cusp forms.

*Partially supported by NSA Young Investigator Grant MDA905-02-1-0097.
Lemma 1. Let N range over square-free integers. Then the number of Dirichlet characters χ of conductor N such that there exists an exotic cusp form of level N and Nebentypus χ is $O(N^\epsilon)$.

Proof. Let ρ be the Galois representation attached to an exotic cusp form of level N and conductor χ. Let p be a prime dividing N. Then, since $p | N$, the restriction $\rho : I_p \to GL_2(\mathbb{C})$ must decompose as $\chi \oplus 1$. In particular, the projection from $\rho(I_p)$ to $\mathbb{P}(\rho(I_p))$ is an isomorphism. So $\chi(I_p)$ is a cyclic subgroup of either A_4, S_4, or S_5; in particular, χ^{60} is unramified everywhere, whence trivial. Now the number of characters χ of level N such that $\chi^{60} = 1$ is $O(N^\epsilon)$, which proves the lemma.

Suppose from now on that N is squarefree. Let $n_{\mathrm{oct}}(N)$ be the number of octahedral cusp forms of level N. It follows from Lemma 1 and the theorem of Michel and Venkatesh that

$$n_{\mathrm{oct}}(N) \ll \epsilon N^{4/5 + \epsilon}.$$

Let $p : S_4 \to S_3$ be the natural surjection. Then every homomorphism $\mathrm{Gal} \left(\overline{\mathbb{Q}} \Big/ \mathbb{Q} \right) \to S_4$ can be composed with p to yield a homomorphism $\psi : \mathrm{Gal} \left(\overline{\mathbb{Q}} \Big/ \mathbb{Q} \right) \to S_3$. By combining arguments from [6] and [4], we obtain the following sharpening of Theorem 10 of [6]:

Proposition 2. Let k be 0 or 1, and N a positive squarefree integer. Let $\psi : \mathrm{Gal} \left(\overline{\mathbb{Q}} \Big/ \mathbb{Q} \right) \to S_3$ be a homomorphism, and let $n_{\psi \mathrm{oct}}(N)$ be the number of octahedral weight k cusp forms associated to Galois representations ρ such that $p \circ \mathbb{P}\rho = \psi$.

Then $n_{\psi \mathrm{oct}}(N) \ll \epsilon N^{2/3 + \epsilon}$.

Proof. Let χ be a character of level N. In the proof of [6, Thm. 10], Wong constructs an amplifier—that is, a set of complex numbers $\{c_n\}_{n \in \mathbb{N}}$ such that, for some absolute constants C and C',

- $\sum_{n \leq B} |c_n| \leq C B^{1/4}$.
- $\sum_{n \leq B} |c_n|^2 \leq C B^{1/4}$.
- If ρ is an octahedral Galois representation such that $p \circ \mathbb{P}\rho = \psi$, and f is a cusp form in $\mathcal{S}_{1/4,k}(N,\chi)$ associated to ρ, then $|\sum_{n \leq B} c_n \lambda_f(n)| \geq C' B^{1/4} / \log B$.

In [4, §3], Michel and Venkatesh use the Petersson-Kuznetzov formula and standard bounds on Kloosterman sums to obtain the following inequality:

$$\sum_{f \in \Sigma} (f,f)^{-1} \sum_{\substack{n \leq B \\mid (n,N) = 1}} c_n \lambda_f(n)^2 \ll \epsilon \sum_{\substack{n \leq B \\mid (n,N) = 1}} |c_n|^2 + (BN)^\epsilon B^{1/2} N^{-1} \left(\sum_{\substack{n \leq B \\mid (n,N) = 1}} |c_n| \right)^2$$ \hspace{1cm} (1)

where

$$\sum_{\substack{n \leq B \\mid (n,N) = 1}} |c_n|^2 + (BN)^\epsilon B^{1/2} N^{-1} \left(\sum_{\substack{n \leq B \\mid (n,N) = 1}} |c_n| \right)^2$$
• Σ is a set of eigenforms in $S_{1/4,k}^{\text{Artin}}(N,\chi)$;
• (f,f) is the Petersson self-product of f;
• $\{c_n\}$ is an arbitrary sequence of complex numbers.

Speaking loosely, the idea of [4] and [3] is that, by the Petersson-Kuznetzov formula, the vectors $\{\lambda_f(n)\}_{f \in \Sigma}$ and $\{\lambda_f(m)\}_{f \in \Sigma}$ are “approximately orthogonal” when m and n are distinct integers. On the other hand, Wong shows that there exists a large set of n such that the Fourier coefficients $\lambda_f(n)$ are real numbers of a fixed sign as f ranges over Σ. The desired bound on Σ will follow from the tension between these two constraints.

In the above inequality, take $\{c_n\}$ to be Wong’s amplifier and Σ to be the set of octahedral forms in $S_{1/4,k}^{\text{Artin}}(N,\chi)$.

Note that $(f,f) = O(N \log^3 N)$ by [6, Lemma 6]. So the left hand side of (1) is bounded below by a constant multiple of

$$N^{-1} \log^{-3} N \sum_{f \in \Sigma} \left| \sum_{n \leq B} c_n \lambda_f(n) \right|^2 \geq N^{-1} \log^{-3}(N) |\Sigma| (C')^2 B^{1/2} \log^{-2}(B)$$

while the right hand side is bounded above by a constant multiple of

$$B^{1/4} + (BN)^\epsilon B^{1/2} N^{-1} B^{1/2}.$$

Combining these bounds, one has

$$|\Sigma| \ll \epsilon N \log^3(N) B^{-1/2} \log^2(B) (B^{1/4} + (BN)^\epsilon BN^{-1})$$

The bound is optimized when we take $B \sim N^{4/3}$, which yields

$$|\Sigma| \ll \epsilon N^{2/3+\epsilon}.$$

Combined with the fact that the number of χ under consideration is $O(N^\epsilon)$, this yields the desired result. \qed

Proposition 2, in combination with the theorem of Davenport and Heilbronn on cubic fields, allows us to improve Michel and Venkatesh’s bound on $n^\text{Oct}(N)$ in the average.

Theorem 3. For all $\epsilon > 0$ there exists a constant C_ϵ such that

$$(1/X) \sum_{n < X \atop N_{\text{sq.free}}} n^\text{Oct}(N) < C_\epsilon N^{2/3+\epsilon}$$

for all $X > 1$.

3
Proof. Let \(f \) be an octahedral form of level \(N \) associated to a representation \(\rho \). For each prime \(p | N \), the group \(\mathbb{P} \rho (I_p) \) is a cyclic subgroup of \(S_4 \). (Recall that \(N \) is squarefree.) Define

- \(N_1 \) to be the product of primes \(p \) such that \(\mathbb{P} \rho (I_p) \) is a nontrivial subgroup of the Klein four-group;
- \(N_2 \) to be the product of primes \(p \) such that \(\mathbb{P} \rho (I_p) \) is contained in \(A_4 \) but not in the Klein four-group;
- \(N_3 \) to be the product of primes \(p \) such that \(\mathbb{P} \rho (I_p) \) is not contained in \(A_4 \).

Then \(N_1 N_2 N_3 = N \). Let \(\psi : \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to S_3 \) be the composition \(p \circ \mathbb{P} \rho \). Then the fixed field \(L \) of \(\ker \psi \) is a cyclic 3-cover of a quadratic number field \(K \), where \(K/\mathbb{Q} \) is the unique quadratic field ramified precisely at primes dividing \(N_3 \), and \(L/K \) is ramified only at primes dividing \(N_2 \).

Let \(b(N_2, N_3) \) be the number of such \(S_3 \)-extensions \(L \). (For notational convenience we take \(b(N_2, N_3) = 0 \) when either \(N_2 \) or \(N_3 \) is not square-free.) From Proposition 2, we have

\[
n_{\text{oct}}(N) \ll \epsilon \sum_{N_1 N_2 N_3 = N} b(N_2, N_3) N^{2/3+\epsilon}. \tag{2}
\]

Let \(T \) be the set of places of \(K \) dividing \(3N_2 \infty \), and let \(G_T(K) \) be the Galois group of the maximal extension of \(K \) unramified away from \(T \). Each cubic field counted in \(b(N_2, N_3) \) is a cyclic 3-extension of \(K \) unramified away from \(T \), so

\[
b(N_2, N_3) \leq |\text{Hom}(G_T(K), \mathbb{Z}/3\mathbb{Z})|.
\]

The Galois cohomology group above fits in an exact sequence

\[
0 \to \text{Hom}(\text{Cl}_T(K), \mathbb{Z}/3\mathbb{Z}) \to \text{Hom}(G_T(K), \mathbb{Z}/3\mathbb{Z}) \to \prod_{v \in T} \text{Hom}(\text{Gal}(\bar{K}_v/K_v), \mathbb{Z}/3\mathbb{Z})
\]

where \(\text{Cl}_T(K) \) is the quotient of the class group of \(K \) by all primes in \(T \). (See [5, (8.6.3)]). Let \(h_3(N_3) \) be the order of the 3-torsion subgroup of the class group of \(K \). Since \(\dim_{\mathbb{F}_3} \text{Hom}(\text{Gal}(\bar{K}_v/K_v), \mathbb{Z}/3\mathbb{Z}) \) is at most 4 (see [5, (7.3.9)]), we have

\[
b(N_2, N_3) \leq h_3(N_3) 3^{4|T|} \ll \epsilon N_2^{4|T|} h_3(N_3). \tag{3}
\]

Combining (3) and (2) yields

\[
n_{\text{oct}}(N) \ll \epsilon \sum_{N_1 N_2 N_3 = N} h_3(N_3) N^{2/3+\epsilon}. \]

Since the sums over N_1 and N_2 have length at most $d(N) = O(N^\epsilon)$, we have

$$n^\text{oct}(N) \ll \sum_{N_3 | N} h_3(N_3) N^{2/3 + \epsilon}.$$

So

$$\sum_{N < X \text{ sq.free}} n^\text{oct}(N) \ll \sum_{N_3 = 0}^{X} h_3(N_3) \sum_{k=0}^{X/N_3} (kN_3)^{2/3 + \epsilon} \leq X^{5/3 + \epsilon} \sum_{N_3 = 0}^{X} h_3(N_3)(1/N_3). \quad (4)$$

The sum $\sum_{d=0}^{X} h_3(d)/d$ can be estimated as follows. Integration by parts yields

$$\sum_{d=0}^{X} h_3(d)/d = \left(1/X\right) \sum_{d=0}^{X} h_3(d) + \int_{1}^{X} (\sum_{d=1}^{t} h_3(d)) t^{-2} dt.$$

Now by the theorem of Davenport and Heilbronn [2, Theorem 3] we have $\sum_{d=0}^{t} h_3(d) = O(t)$. It follows that

$$\sum_{d=0}^{X} h_3(d)/d = O(\log X).$$

Substituting this bound into (4) gives

$$\sum_{N < X \text{ sq.free}} n^\text{oct}(N) \ll \epsilon X^{5/3 + \epsilon}$$

which yields the desired result. \qed

Theorem 3 can be thought of as a bound for the number of quartic extensions of \mathbb{Q} whose Artin conductor, with respect to a certain 2-dimensional projective representation of S_4, is bounded by X. This is quite different from the problem, recently solved by Bhargava [1], of counting the number of quartic extensions of \mathbb{Q} with discriminant less than X. For instance, quartic extensions attached to cusp forms of conductor N might have discriminant as large as N^3.

References

