Mixing Problem:

Rate of change of amount in the container = \(\text{(rate at which chemical arrives)} - \text{(rate at which chemical departs)} \)

\[y(t) \]: amount of chemical in the container at time \(t \)
\[v(t) \]: total volume of liquid in the container at time \(t \)

Departure rate = \(\frac{y(t)}{v(t)} \cdot \text{(overflow rate)} \)

\[\frac{dy}{dt} = \text{(chemical's arrival rate)} - \frac{y(t)}{v(t)} \cdot \text{(overflow rate)} \]

Units:

\[\text{gallons} = \frac{\text{gallons}}{\text{minutes}} = \frac{\text{gallons}}{\text{gallons}} \cdot \frac{\text{gallons}}{\text{minutes}} \]

Exercise Problem:

A tank contains 100 gal of fresh water. A solution containing 1 lb/gal of soluble lawn fertilizer runs into the tank at the rate of 1 gal/min, and the mixture is pumped out of the tank at the rate of 3 gal/min. Find the maximum amount of fertilizer in the tank and the required time to reach the maximum.
Idea of Taylor Series

Using polynomials to approximate a function near the point \(x = a \) such that they have the same signature.

The signature of a function \(f \) at \(x = a \) is defined by:

\[
(f(a), f'(a), f''(a), \ldots, f^{(k)}(a), \ldots)
\]

where \(f^{(k)}(a) \) is the \(k \)-th derivative of \(f(x) \) at \(x = a \).

Defn. \(T_n f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n \)

where \(n! = 1 \cdot 2 \cdot 3 \cdots n \) and \(0! = 1 \) by definition.

Some Special Taylor Polynomials:

\[
T_n e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + (-1)^n \frac{x^{2n+1}}{(2n+1)!}
\]

\[
T_{n+1} \sin x = x - \frac{x^3}{3!} + \cdots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}
\]

\[
T_n \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + (-1)^n \frac{x^{2n}}{(2n)!}
\]

\[
T_n \left(\frac{1}{1-x} \right) = 1 + x + x^2 + \cdots + x^n \quad \text{(Geometric Sum)}
\]

\[
T_n \ln (1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + (-1)^{n+1} \frac{x^n}{n}
\]

\[
T_n (1+x)^n = 1 + \binom{n}{1} x + \binom{n}{2} x^2 + \cdots + \binom{n}{n} x^n.
\]

where \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \).
In general: The coefficient of x^n in $T_\infty^a f(x)$ is:

$$\frac{f^{(n)}(a)}{n!}$$

(Notation: $T_n f(x) := T_0^a f(x)$, $T_\infty f(x) := T_0^\infty f(x)$)

Example:

1. $T_\infty (f(x) + g(x)) = T_\infty f(x) + T_\infty g(x)$.
2. $T_\infty (af(x)) = a T_\infty f(x)$, $a \in \mathbb{R}$.
3. $T_\infty (f(ax + b)) = (T_\infty f)(ax + b)$, a, b are real numbers.

The coefficient of x^n in $T_\infty^a f(x) + g(x)$ is:

$$\frac{(f+g)^{(n)}(a)}{n!} = \frac{f^{(n)}(a) + g^{(n)}(a)}{n!}$$ (Sum Rule)

The coefficient of x^n in $T_\infty^a (cf(x))$ is:

$$\frac{(cf)^{(n)}(a)}{n!} = c \cdot \frac{f^{(n)}(a)}{n!} = c \cdot \frac{f^{(n)}(a)}{n!}$$

The coefficient of x^n in $T_\infty^a (f(cx))$ is:

$$\frac{f^{(n)}(a)}{n!} \cdot c^n$$ (Ex: Prove this one) (use chain rule)
Example

Find the coefficient of x^n in $\ln(f(t))$ for the following functions.

1. $\sinh t = \frac{e^t - e^{-t}}{2}$

Using 1 and 2, 3

The coefficient of x^n in $\ln(f(t))$ for e^{-t} is.

$$\frac{(-1)^n}{n!}$$

The coefficient of x^n in $\ln(f(t))$ for e^t is.

$$\frac{1}{n!}$$

The coefficient of x^n in $\ln(f(t))$ for $\frac{e^t - e^{-t}}{2}$ is.

$$\frac{1}{n!} - \frac{(-1)^n}{2n!} = \begin{cases} 0 & \text{if } n \text{ is even} \\ \frac{1}{n!} & \text{if } n \text{ is odd} \end{cases} \quad (1) \text{ and (2)}$$

2. $\ln(1+2t)$

The coefficient of x^n in $\ln(f(t))$ for $\ln(1+t)$ is.

$$\frac{(-1)^{n+1}}{n}$$

The coefficient of x^n in $\ln(f(t))$ for $\ln(1+2t)$ is.

$$2^n \cdot \frac{(-1)^{n+1}}{n} \quad (3)$$
Exercise:

3) \(\ln \left(\frac{1+x}{1-x} \right) \)

4) \(\ln \sqrt{\frac{1+x}{1-x}} \)

5) \(2 \sin t \cos t \)

(Hint: \(2 \sin t \cos t = \sin 2t \))

6) \(x \cos x \)

The Remainder Term:

\[f(x) = T_n^a f(x) + R_n^a f(x) \]

\[\text{approximation} \quad \text{error term} \]

Theorem:

\[R_n f(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1} \]

(\(\xi \) is a variable depending on \(x \) and \(\xi \) lies between 0 and \(x \).)

Example. Find the fourth degree Taylor polynomial \(T_4 \cos x \) for the function \(f(x) = \cos x \) and estimate the error \(|\cos x - T_4 \cos x| \) for \(|x| < 1 \).

Thus:

\[R_4 \cos x = \cos x - T_4 \cos x \]

\[R_4 \cos x = \frac{f^{(5)}(\xi)}{5!} x^5 = \frac{\sin \xi}{5!} x^5 \]

\[f^{(5)}(x) = -\sin x \]

Estimate (Find an upper bound of) \(|R_4 \cos x| \) for \(|x| < 1 \).

\[|R_4 \cos x| = \left| \frac{\sin \xi}{5!} x^5 \right| \leq \frac{1}{5!} |\sin \xi| |x^5|

| \leq \frac{1}{5!} |x|^5 \]

| \leq \frac{1}{5!} \]
Exercise:

1. The approximation $e^x = 1 + x + \frac{x^2}{2}$ is used when x is small. Use the Remainder Estimation Theorem to estimate the error when $|x| < 0.1$.

2. Estimate the error if $P_3(x) = x - \frac{x^3}{6}$ is used to estimate the value of $\sin x$ at $x = 0.1$.

3. Estimate ϵ_{10} using Taylor series such that the error is less than or equal to 10^{-5}.

Advance Exercise:

1. Compute $\ln 2$ for $f(x) = e^{-x^2}$, for $x \neq 0$ and $f(0) = 0$.

2. Estimate $\ln 2$ using Taylor series such that the error is less than 10^{-6}. (Hint: Use a function other than $\ln(1+x)$.) The answer should not have too much computation involved.