Please inform your TA if you find any errors in the quiz solutions.

1. (4 points)
 1. (2 points) Is $\int_{u}^{a^3} e^{x^3} \, dv$ a function? If so, of what variable?

 Solution: It is a function (of u).

 2. (2 points) True or false? $\int (\sin(x^2) + x^2 \cos(x^2)) \, dx = x \sin(x^2) + C$.

 Solution: False Taking the derivative of the right hand side (using the product rule and chain rule) we get
 $$
 \frac{d}{dx} x \sin(x^2) = \sin(x^2) + 2x^2 \cos(x^2)
 $$

2. (6 points)
 1. (3 points) Compute $\int \sin(3x) \cos(3x) \, dx$

 Solution: $-\frac{1}{12} \cos(6x) + C$. Using the double angle theorem
 $$
 \int \sin(3x) \cos(3x) \, dx = \int \frac{1}{2} \sin(6x) \, dx
 $$

 Letting $u = 6x$, the latter integral equals
 $$
 \frac{1}{12} \int \sin(u) \, du = -\frac{1}{12} \cos(u) + C = -\frac{1}{12} \cos(6x) + C
 $$

 2. (3 points) Compute $\int x \sin(\pi x) \, dx$

 Solution: Integration by parts gives
 $$
 \int x \sin(\pi x) \, dx = x \cdot -\frac{1}{\pi} \cos(\pi x) - \int -\frac{1}{\pi} \cos(\pi x) \, dx
 = -\frac{1}{\pi} x \cos(\pi x) + \frac{1}{\pi^2} \sin(\pi x) + C
 $$