This week we are going to work on inverse functions. I really want to highlight that generally \(f^{-1}(x) \neq \frac{1}{f(x)} \).

To start with, let’s discuss what an inverse actually is. The inverse image \(f^{-1}(y) \) is the set of all \(x \) with \(f(x) = y \). For example \(\sin^{-1}(0) = \{k\pi \text{ for } k \in \mathbb{Z}\} \).

Similarly, if \(f(x) = x^2 \) then \(f^{-1}(y) = \{\sqrt{y}, -\sqrt{y}\} \).

We say that a function \(f \) is invertible if \(f^{-1}(y) \) has only one element in it for each \(y \) (i.e. the map that takes \(y \) to \(f^{-1}(y) \) defines a function). Notice that this implies that \(\sin \) is not invertible. I only want to do a little with this, so let’s just recall one big theorem:

Theorem. If \(f \) is a continuous function on an interval then \(f \) is one to one if and only if \(f \) is strictly increasing or decreasing.

There were some questions about one of the examples that the professor did in class on the last day before break, so I wanted to go over that again first.

We would like to show the existence of a function satisfying

\[
[f(x)]^5 + f(x) + x = 0
\]

which we rewrite as

\[-[f(x)]^5 - f(x) = x.
\]

Looking at the problem this way suggests looking for the function \(f(x) \) which is the inverse function of \(g(y) = -y^5 - y \). Notice that if \(f(x) \) is the inverse function of \(g \) then \(g(f(x)) = x \), or \(-[f(x)]^5 - f(x) = x \). It therefore suffices to show that \(g \) is invertible. The theorem above gives us a nice test for invertibility: if we can show that \(g \) is strictly decreasing, then we are done.

\[
g'(y) = -5y^4 - 1 < 0
\]

for all \(y \). This shows that \(g \) is a strictly decreasing function. Therefore \(g \) is invertible and if we call \(g^{-1}(x) = f(x) \) we have found \(f \) with

\[-[f(x)]^5 - f(x) = x.
\]

We used the result that a strictly decreasing or increasing function is invertible above, but we can often actually solve for inverse functions algebraically.

Example. Find \(f^{-1}(y) \) for \(f(x) = (x - 1)^3 \). If \(y = (x - 1)^3 \) then \(y^{\frac{1}{3}} = x - 1 \) so \(x = y^{\frac{1}{3}} + 1 \). We have implicitly used the fact that \(f(x) = x^3 \) is invertible to prove this—this follows from the fact that \(f(x) \) is a strictly increasing function.
Example. If

\[f(x) = \begin{cases}
 x & \text{x rational} \\
 -x & \text{x irrational}
\end{cases} \]

then take \(y \) with \(f(x) \). Notice that \(f(x) \) is rational if and only if \(x \) is rational. Then suppose \(f(x) = y \) where \(y \) is irrational; we find that \(y = -x \) so \(x = -y \). Similarly for \(f(x) = y \) rational, we have \(x = y \). It follows then that

\[f^{-1}(y) = \begin{cases}
 y & \text{y rational} \\
 -y & \text{y irrational}
\end{cases} \]

Example. Consider

\[f(x) = \begin{cases}
 -x^2 & x \geq 0 \\
 1 - x^3 & x < 0
\end{cases} \]

We start by figuring out what the range of this thing is: it’s actually all of \(\mathbb{R} \). Notice that if \(f(x) \leq 0 \) then \(x \geq 0 \) and if \(f(x) > 0 \) then \(x < 0 \). Take \(y \in [0, \infty) \), then \(f^{-1}(y) = \sqrt{-y} \) and for \(y \in (-\infty, 0) \) \(f^{-1}(y) = -(y - 1)^{\frac{1}{3}} \).

Problem. Find \(f^{-1}(y) \) for \(f(x) = \frac{x}{1-x^2} \) \(-1 < x < 1 \).

If \(f(x) = 0 \) then \(x = 0 \). If \(f(x) = y > 0 \) then

\[y = \frac{x}{1-x^2} \implies \frac{1}{y} = \frac{1-x^2}{x} = \frac{1}{x} - x \]

so

\[x^2 + x \frac{1}{y} - 1 = 0 \]

and we find that the inverse function is \(\frac{-1 \pm \sqrt{1+4y^2}}{2y} \) by the quadratic formula. Notice that I haven’t actually given the inverse function yet: we still need to figure out whether there should be a positive sign or a negative sign. We can determine that the correct function is \(\frac{-1+\sqrt{4y^2+1}}{2y} \) by observing that \(\frac{x}{1-x^2} \to \infty \) as \(x \to 1 \) while \(\frac{x}{1-x^2} \to -\infty \) as \(x \to -1 \).

Problem. On which intervals is \(f(x) = x^3 - 3x^2 \) one to one?

We first find where the derivative is positive or negative. \(f'(x) = 3x^2 - 6x = 3x(x-2) \) which is zero at 0 and 2. For \(x < 0 \), this is strictly positive; for \(0 < x < 2 \) it is strictly negative; for \(x > 2 \) it is positive again. Since the function goes from increasing to decreasing and decreasing to increasing at 0 and 2 respectively, it is not 1–1 on any larger intervals.

Recall that we have the following theorem:
Theorem. Let \(f \) be a continuous one-to-one function defined on an interval and suppose that \(f \) is differentiable at \(f^{-1}(b) \) with derivative \(f'(f^{-1}(b)) \neq 0 \). Then \(f^{-1} \) is differentiable at \(b \) and

\[
(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}
\]

Problem. Show that if \(f \) is a one-to-one function and \(f^{-1} \) is defined on the entire real line and has a derivative which is nowhere zero then \(f \) is differentiable.

Proof. Notice that \(f = (f^{-1})^{-1} \) so we may directly apply the previous theorem. \(\square \)