Moving Walls Accelerate Mixing

Jean-Luc Thiffeault

Department of Mathematics
University of Wisconsin – Madison

APS-DFD, Minneapolis, 23 November 2009

Supported by NSF (DMS-0806821)

Collaborators:

Emmanuelle Gouillart
CNRS / Saint-Gobain Recherche

Olivier Dauchot
CEA Saclay

Stéphane Roux
CNRS / ENS Cachan
Stirring and Mixing of Viscous Fluids

- Viscous flows ⇒ no turbulence! (laminar)
- Open and closed systems
- Active (rods) and passive

Understand the mechanisms involved.
Characterise and optimise the efficiency of mixing.
The Figure-Eight Stirring Protocol

- Circular container of viscous fluid (sugar syrup);
- A rod is moved slowly in a ‘figure-eight’ pattern;
- Gradients are created by stretching and folding, the signature of chaos.

The Mixing Pattern

- Kidney-shaped mixed region extends to wall;
- Two parabolic points on the wall, one associated with injection of material;
- Asymptotically self-similar, so expect an exponential decay of the concentration (‘strange eigenmode’ regime).

(Pierrehumbert, 1994; Rothstein et al., 1999; Voth et al., 2003)
Mixing is Slower Than Expected

Concentration field in a well-mixed central region

\[\text{Variance} = \int |\theta|^2 dV \]

\[\Rightarrow \text{Algebraic decay of variance} \neq \text{Exponential} \]

The ‘stretching and folding’ action induced by the rod is an exponentially rapid process (chaos!), so why aren’t we seeing exponential decay?
The Problem: Separatrix at the Wall

The decay is algebraic near a reattachment point at the wall:

A fluid particle following the separatrix approaches the wall as $1/t$.

[Chertkov & Lebedev (2003); Lebedev & Turitsyn (2004); Salman & Haynes (2007); Gouillart et al. (2007, 2008, 2009a); Chernykh & Lebedev (2008)]
How can we mimic a slip boundary condition?

Create closed orbits near the wall:

There will be a ‘last closed orbit’ followed by one or more fixed or periodic points and a separatrix, for example a hyperbolic orbit. Particles approach the hyperbolic fixed point exponentially fast. [Gouillart et al. (2009b)]
Rotating the Wall

We can create a hyperbolic fixed point by rotation:

Fixed wall: parabolic separation point (algebraic)
Moving wall: hyperbolic fixed point (exponential)

El Omari & Le Guer (2009) see exponential decay with a rotating wall.
A Second Experiment

Rotating the wall is not crucial: create closed orbits.

“Epitrochoid” protocol

Central chaotic region + regular region near the walls.
Recover Exponential Decay

![Graph showing exponential decay](image-url)
Conclusions

- If the chaotic region extends to the walls, then the decay of concentration is algebraic (typically $(\log t)/t^{-2}$ for variance).
- The no-slip boundary condition at the walls is to blame.
- Would recover a strange eigenmode for very long times, once the mixing pattern is within a Batchelor length from the edge (not very useful in practice!).
- We can shield the mixing region from the walls by wrapping it in a regular island — rotate the wall!
- We then recover exponential decay.
- How to control this in practice? Is it really advantageous? Is scraping the walls better?

