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Abstract

We propose a hybrid method which combines the Bloch decomposition-based time

splitting (BDTS) method and the Gaussian beam method to simulate the Schrödinger

equation with periodic potentials in the case of band-crossings. With the help of

the Bloch transformation, we develop a Bloch decomposition-based Gaussian beam

(BDGB) approximation in the momentum space to solve the Schrödinger equation.

Around the band-crossing a BDTS method is used to capture the inter-band transi-

tions, and away from the crossing, a BDGB method is applied in order to improve the

efficiency. Numerical results show that this method can capture the inter-band tran-

sitions accurately with a computational cost much lower than the direct solver. We

also compare the Schrödinger equation with its Dirac approximation, and numerically

show that, as the rescaled Planck number ε → 0, the Schrödinger equation converges

to the Dirac equations when the external potential is zero or small, but for general ex-

ternal potentials there is an O(1) difference in between the solutions of the Schrödinger

equation and its Dirac approximation.
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1 Introduction: The Schrödinger equation with peri-

odic potential

The linear Schrödinger equation with periodic potentials is an important model in solid

state physics. It describes the motion of electrons in a crystal with a lattice structure. We

consider the following Schrödinger equation in the semiclassical scaling

iε∂tψ
ε(t, r) = −ε

2

2
∆rψ

ε(t, r) +
(
VΓ

(r
ε

)
+ U(r)

)
ψε(t, r), r ∈ Rd, t ∈ R, (1.1)

where ψε is the complex-valued wave function, 0 < ε � 1 is the dimensionless rescaled

Planck constant, U = U(x) is a smooth real-valued external potential function, and VΓ is a

(real) periodic potential function with linearly independent lattice vectors {v1,v2, ...,vd} ⊂
Rd, i.e.

VΓ(r + v) = VΓ(r), for all v =

d∑
j=1

mjvj , mj ∈ Z. (1.2)

The lattice is then denoted by

Γ =


d∑
j=1

mjvj , mj ∈ Z

 , (1.3)

and the fundamental domain of the lattice Γ is C =
{∑d

j=1 xjvj , xj ∈ [0, 1]
}

. The re-

ciprocal lattice Γ∗ is generated by the vectors kj for 1 ≤ j ≤ d which are defined by

vi ·kj = 2πδij , where we denote the Kronecker delta by δij . Then the first Brillouin zone is

given by B =
{∑d

j=1 ξjkj , ξj ∈ [−1/2, 1/2]
}

.

The asymptotic behavior of the solution ψε of (1.1) as ε → 0 has been intensively

studied. One of the most striking effects is that the electrons remain semiclassically in

a certain quantum subsystem, “move along the m-th band” and the dynamics is given by

ṙ = ∂kEm(k), k̇ = −∂rU , where Em is the energy corresponding to the m-th Bloch band [9],

and U is the external potential. This result has been justified both from a physical point of

view in, e.g. [4, 42], and from a mathematical point of view in, e.g. [30, 18, 6, 7]. Higher order

corrections relevant to the Berry phase can be included, see e.g. [34, 35, 15]. One remark is

that all of these results use the adiabatic assumption, namely different Bloch bands are well-

separated and there is no band-crossing. Nevertheless the inter-band transition effect should

be considered whenever the transitions between energy bands of the quantum system play

an important role. This may happen when the gap between the energy bands becomes small
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enough in comparison to the scaled Planck constant ε or at conical crossings where the bands

intersect. The study of such “quantum tunnelings” is important in many applications, from

quantum dynamics in chemical reaction [39], semiconductors to Bose-Einstein condensation

[10]. Mathematical studies on band-crossings can be found in e.g. [20, 26, 29]. One of the

most interesting applications of (1.1) is when Γ has a honeycomb lattice structure, which

can be used to model the electronic behavior in a graphene layer. The Dirac equation has

been used to study the electronic properties of graphene [33] and its connection with the

Schrödinger equation has been studied in [2, 1]. The existence of the Dirac points in a

honeycomb lattice and the convergence of the solution in the semiclassical limit have been

proved in [16, 17], and in the weak nonlinear case in [3].

A review of mathematical and computational method of semiclassical Schrödinger equa-

tion can be found in [25]. The direct numerical simulation of (1.1) is usually very expensive

due to the small parameter ε and the highly oscillating structure of VΓ. The standard time-

splitting spectral method [5] requires both the mesh size and the time step much smaller than

ε. A Bloch decomposition-based time-splitting (BDTS) method [21, 22] can relax the time

step requirement to be O(1), which has a huge advantage in saving the computational time.

However the BDTS still requires a mesh size of O(ε), which is expensive especially for very

small ε and higher dimensions. For the asymptotic methods, a modified WKB method based

on Bloch decomposition was derived in [8], which leads to a system of eikonal and transport

equations. An approximation by system of eikonal and transport equations can be derived

using the Bloch decomposition and a modified WKB method. However the WKB approxi-

mation do not give a good accuracy around caustics. A Gaussian beam method based on the

Bloch decomposition developed in [24] provides an efficient approximate method that allows

an accurate solution to (1.1) around caustics. A common assumption of these approaches is

that the Bloch bands are well separated. When band-crossing happens, the approximations

cannot handle the inter-band transition effect. Different multi-band models have been de-

veloped in order to capture the inter-band transitions, e.g. [11, 32, 31]. In [13] the authors

derived a semiclassical model for the Schrödinger equation with periodic potentials (1.1)

that account for band-crossings using Wigner-Bloch theory and proposed a hybrid method

for multiscale computation.

In this paper, we develop a new Bloch decomposition-based Gaussian beam (BDGB)

approximation in the momentum space to solve the Schrödinger equation (1.1) away from

the band-crossings. The BDGB method is derived in the momentum space by taking the
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Bloch transformation to the Schrödinger equation, which is different from the physical space

Gaussian beam method that was developed in [24]. To deal with the band-crossings (which

happen in the momentum space), we couple the BDGB method with the BDTS method

in a natural way: away from the band-crossing zone the BDGB method is applied, around

the band-crossings the BDTS method is applied, and the exchange of data between differ-

ent zones is achieved simply by Gaussian beam decomposition [38]. We also numerically

investigate the Dirac approximation that Fefferman and Weinstein proposed in [16, 17]. By

comparing the Schrödinger solutions and the Dirac solutions in different external poten-

tial cases, we show that the Dirac system is a good approximation only when the external

potential is zero or small.

The rest of this paper is organized as follows: In Section 2 we recall in detail the Bloch

transformation and decomposition in general d-dimensional space. Then in Section 3 we

present the new BDGB method for the periodic Schrödinger equation. We also present an

implementation of the BDTS method locally in the quasi-momentum space. In Section 4

we present the hybrid method coupling the BDGB method and BDTS method in details,

and test the hybrid method numerically on the periodic Schrödinger equation with band-

crossings. As an application we show simulation result of the Schrödinger equation with

a honeycomb lattice potential in the two dimensional position space. In Section 5, we

briefly review the Dirac approximation and numerically investigate it in presence of different

external potentials.

2 The lattice potential and Bloch transformation

Given a lattice Γ, one can transform it to the standard square lattice by changing vari-

ables. Let

r =
1

2π

d∑
j=1

xjvj = Qx, (2.1)

where Q is the matrix [v1,v2, ...,vd]/(2π) and x is the vector (x1, x2, ..., xd)
T ∈ Rd. Then

the gradient on r can be replaced by ∇r =
(
Q−1

)T ∇x = A∇x, where A =
(
Q−1

)T
=

[k1,k2, ...,kd]. Define ψ̃ε(x) = ψε(Qx), ṼΓ(x) = VΓ(Qx), and Ũ(x) = U(Qx), then from

(1.1) one gets

iε∂tψ̃ε(t,x) = −ε
2

2
(A∇x)

2
ψ̃ε(t,x) +

(
ṼΓ

(x
ε

)
+ Ũ(x)

)
ψ̃ε(t,x), (2.2)

4



where ṼΓ is a periodic potential on the standard square lattice Γ̃ defined by the lattice vectors

{ej = (2πδij)
d
i=1, 1 ≤ j ≤ d}. For example in the two dimensional case, a typical example

is the following honeycomb lattice potential [16, 17] (appears in the model of 2D graphene

by the Dirac equation, with the vertices of the lattice corresponding to Dirac points)

VΓ(r) = cos(k1 · r) + cos(k2 · r) + cos((k1 + k2) · r) + V0, (2.3)

and then corresponding lattice vectors are

v1 = π

√3

1

 , v2 = π

√3

−1

 , (2.4)

with the reciprocal lattice vectors as

k1 =

1/
√

3

1

 , k2 =

1/
√

3

−1

 . (2.5)

See Figures 2.1 and 2.2 for the lattice structures.

−2π −π 0 π 2π

−2π

−π

0

π

2π

v1

v2

Figure 2.1: The honeycomb lattice structure

By taking the lattice transformation (2.1), (2.3) can be transformed to the standard

square lattice potential:

ṼΓ(x) = cos(x1) + cos(x2) + cos(x1 + x2) + V0. (2.6)
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Figure 2.2: The reciprocal honeycomb lattice structure and the Dirac points

From now on we use ∇A and
(
∇A
)2

to denote A∇ and ∇A · ∇A respectively, and drop

the tilde to get the Schrödinger equation with a periodic potential VΓ in a standard square

lattice Γ = aZ:

iε∂tψ
ε(t,x) = −ε

2

2

(
∇A
)2
ψε(t,x) +

(
VΓ

(x
ε

)
+ U(x)

)
ψε(t,x). (2.7)

Notice that the symbol for
(
∇A
)2

is |Aξ|2, which guarantee that
(
∇A
)2

is uniformly elliptic.

2.1 The Bloch decomposition

Let VΓ be a periodic potential on the lattice Γ = 2π Zd, so VΓ(x + ν) = VΓ(x) for

any x ∈ Rd and ν ∈ Γ. We denote the dual lattice of Γ by Γ∗ and Γ∗ = Zd. The

fundamental domain of Γ is C = [0, 2π]d and the first Brillouin zone is B =
[
− 1

2 ,
1
2

]d
.

Define {Em(ξ),Ψm(z, ξ)} as the m-th eigen-pair of the following problem:

−1

2

(
∇Az
)2

Ψm(z, ξ) + VΓ(z)Ψm(z, ξ) = Em(ξ)Ψm(z, ξ),

Ψm(z + ν, ξ) = eiξ·νΨm(z, ξ),

(2.8)

for z ∈ Rd and ξ ∈ B. We then call Em the m-th Bloch band and Ψm the m-th Bloch

function [9]. Define Φm(z, ξ) = e−iξ·zΨm(z, ξ) as the periodic part of the Bloch function
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Ψm one can show that Φm satisfies(
1

2

(
−i∇Az + ξ

)2
+ VΓ(z)

)
Φm(z, ξ) = Em(ξ)Φ(z, ξ),

Φm(z + ν, ξ) = Φm(z, ξ).

(2.9)

It has been shown in [40] that {Em,Ψm}m∈N have the following properties:

(a) The eigenvalues Em = Em(ξ) are Lipschitz continuous and Γ∗−periodic in ξ and can

be ordered according to E1(ξ) ≤ E2(ξ) ≤ ... ≤ Em(ξ) ≤ ... with Em →∞ as m→∞.

(b) For any ξ ∈ B, {Ψm(·, ξ)} forms a complete orthonormal basis in L2(C), i.e.

〈Ψm,Ψn〉 :=

∫
C

Ψm(z, ξ)Ψ̄n(z, ξ)dz = (2π)dδmn. (2.10)

(c) For all φ ∈ L2(Rd), one has the following Bloch decomposition:

φ(x) =

∞∑
m

∫
B
cm(ξ)Ψm(x, ξ) dξ =

∞∑
m

∫
B

∫
Rd

φ(z)Ψ̄m(z, ξ)Ψm(x, ξ) dxdξ. (2.11)

(d) The d-dimensional Lebesgue measure of the band-crossing set {ξ ∈ B̄ : En(ξ) =

Em(ξ), n 6= m} is zero.

For example, in Figure 2.3, we plot the first eighth bands for VΓ(x) = cos(x) in the 1D

case. One can see that some of the band gaps are very small around ξ = 0, ±0.5, e.g. ,

the minimal band gap between E6 and E7 is around 6.76 × 10−5. In Figure 2.4 we plot

the first two bands for VΓ(x1, x2)) = cos(x1) + cos(x2) + cos(x1 + x2) in the 2D case at

ξ = (2/3, 1/3) and ξ = (1/3, 2/3). Actually, it has been proven in [16] that the first two

bands for VΓ(x1, x2) = cos(x1) + cos(x2) + cos(x1 +x2) feature two conical crossings (at the

Dirac points) in the first Brillouin zone.

2.2 The Schrödinger equation under the Bloch transformation

To consider the Schrödinger equation in the quasi-momentum space, we introduce a new

function ψ̃ε by taking the Bloch transformation [35, 21] T of the wave function ψε as

ψ̃ε(y, ξ) =
(
T ψε

)
(y, ξ) =

∑
γ∈Γ

e−iγ·ξψε
(
ε(y + γ)

)
. (2.12)

It is easy to see that ψ̃ε is quasi-periodic with respect to y and periodic with respect to ξ,

i.e. ,

ψ̃ε(y + γ, ξ) =ψ̃ε(y, ξ)eiγ·ξ, ∀γ ∈ Γ, (2.13)

ψ̃ε(y, ξ + ν) =ψ̃ε(y, ξ), ∀ν ∈ Γ∗. (2.14)
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Figure 2.3: The first eight Bloch bands for VΓ(x) = cos(x). The zoom in figure plots the

6-th and 7-th band in the tiny neighborhood of ξ = 0.
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Figure 2.4: The first two Bloch bands for VΓ(x1, x2) = cos(x1) + cos(x2) + cos(x1 + x2).
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Notice that it satisfies∫
B
ψ̃ε
(x
ε
, ξ
)

dξ =

∫
B

∑
γ∈Γ

e−iγ·ξψε (x+ εγ) dξ =
∑
γ∈Γ

δγ0ψ
ε (x+ εγ) = ψε(x),

so it is natural to define the inverse Bloch transformation T −1 by(
T −1ψ̃ε

)
(x) =

∫
B
ψ̃ε
(x
ε
, ξ
)

dξ =

∫
B
ψ̃ε (y, ξ) dξ

∣∣∣∣
y= x

ε

. (2.15)

It is easy to find the following pseudo-differential relations:

T (−iε∇x)T −1 = −i∇y,

T x T −1 = iε∇ξ + εy,

T VΓ(x/ε)T −1 = VΓ(y).

(2.16)

Actually one can verify them by a formal calculation as follows,

T (−iε∇x)T −1ψ̃ε(y, ξ) =

(
T (−iε∇x)

∫
B
ψ̃ε
(x
ε
, ξ
)

dξ

)
(y, ξ)

=

(
T
∫
B

(−i∇y)ψ̃ε (y, ξ) dξ

∣∣∣∣
y= x

ε

)
(y, ξ)

= T T −1(−i∇yψ̃ε(y, ξ)) = −i∇yψ̃ε(y, ξ);

T xT −1ψ̃ε(y, ξ) =

(
T x
∫
B
ψ̃ε
(x
ε
, ξ
)

dξ

)
(y, ξ)

=
∑
γ∈Γ

e−iγ·ξε(y + γ)

∫
B
ψ̃ε
(
y + γ, ξ′

)
dξ′

=
∑
γ∈Γ

ε(y + γ)

∫
B
ψ̃ε
(
y, ξ′

)
e−iγ·(ξ−ξ′) dξ′

= εyψ̃ε(y, ξ) + ε
∑
γ∈Γ

∫
B
γψ̃ε

(
y, ξ′

)
e−iγ·(ξ−ξ′) dξ′

= (iε∇ξ + εy) ψ̃ε(y, ξ).

Now let us apply T (·)T −1 to the Schrödinger equation (2.7) and obtain an equation for ψ̃ε

iε∂tψ̃ε(t,y, ξ) =

(
−1

2

(
∇Ay
)2

+ VΓ(y)

)
ψε(t,y, ξ) + U (iε∇ξ + εy)ψε(t,y, ξ), (2.17)

where we use the pseudo-differential operator U (iε∇ξ + εy) to denote T U(x)T −1.

Since for every ξ ∈ B, the Bloch functions {Ψm(·, ξ)}∞m=1 form an orthonormal basis of

L2(C), the solution of (2.17) can be decomposed as

ψ̃ε(t,y, ξ) =
∑
m

ψ̃εm =
∑
m

cm(t, ξ)Ψm(y, ξ), (2.18)
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with the Bloch coefficient

cm(t, ξ) =

∫
C
ψ̃ε(t,y, ξ)Ψ̄m(y, ξ) dy. (2.19)

Then by taking inner product of (2.17) w.r.t Ψn, one obtains the equation for cn in the

momentum space

iε∂tcn(t, ξ) = En(ξ)cn(t, ξ) +
∑
m

∫
C

(
U (iε∇ξ + εy) cm(t, ξ)Ψm(y, ξ)

)
Ψ̄n(y, ξ) dy

= En(ξ)cn(t, ξ) + U (iε∇ξ + εy) cn(t, ξ) +
∑
m

Rnmcm(t, ξ), (2.20)

where the last term represents the band coupling:

Rnmcm(ξ) =

∫
C

(
U (iε∇ξ + εy) cm(ξ)Ψm(y, ξ)

)
Ψ̄n(y, ξ) dy − U (iε∇ξ + εy) cm(ξ)δmn.

Formally when U is smooth, the terms Rnmcm are small (= O(ε)), so by ignoring them,

one finds the decoupled equations

iε∂tcn(t, ξ) = En(ξ)cn(t, ξ) + U (iε∇ξ + εy) cn(t, ξ). (2.21)

Actually it has been proved rigorously in [12, 34, 19], using different analytical approaches,

that when the bands are well-separated and U is smooth, (2.21) gives ψε as an O(ε) approx-

imation solution of (1.1).

3 Bloch decomposition-based methods

In this section, we propose a Bloch decomposition-based Gaussian Beam method in the

momentum space in order to solve the periodic Schrödinger equation (1.1) in the semiclassical

regime efficiently. We also review the Bloch decomposition-based time splitting method and

adapt it to a local direct solver for (1.1).

3.1 The Bloch decomposition-based Gaussian beam method

The approximation. If initially the Bloch coefficient cm(0, ξ) has a Gaussian beam de-

composition ( e.g. [38])

cm(0, ξ) =
∑

gm∈Gm

a0
m exp

(
− i

ε
T 0
m(ξ)

)

=
∑

gm∈Gm

a0
m exp

(
− i

ε
(S0
m + x0

m · (ξ − p0
m) +

1

2
M0
m : (ξ − p2

m)2)

)
, (3.1)
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where gm = {p0
m,x

0
m, S

0
m,M

0
m, a

0
m} denotes the beam parameter factor and Gm denotes

the set of beam parameters gm. We seek a Bloch decomposition-based Gaussian beam

(BDGB) approximation to (2.17). Assume that the solution of (2.17) can be represented by

a Gaussian beam ansatz:

ψ̃εm(t,y, ξ) = am(t) exp

(
− i

ε
Tm(t, ξ)

)
Ψm(y, ξ), (3.2a)

Tm(t, ξ) = Sm(t) + xm(t) · (ξ − pm(t)) +
1

2
Mm(t) : (ξ − pm(t))2 +O((ξ − pm(t))3),

(3.2b)

where Ψm is the m-th Bloch function, pm, xm,∈ R2, Sm ∈ R and Mm ∈ C2×2. The

imaginary part of Mm will be chosen as negative definite, i.e. , all the eigenvalues of ImMm

are positive.

Remark 3.1. The Gaussian ansatz we used in (3.2) is defined in the momentum space,

and in (3.2a) the Bloch function factor Ψm does not depend on time t. So essentially we

are working on a Gaussian beam approximation of the Bloch coefficient cm defined in (2.18)

and (2.19). This approach is different from that in [24], where a Gaussian beam ansatz

in the position space was used and the Bloch function evolves with the beam propagation.

Later in Section 4 we will see the approach (3.2) is convenient when coupled with the

Bloch decomposition-based time splitting method locally around the band-crossings in the

momentum space.

By defining ϕ̃εm = am exp (−iTm/ε) Φm, where Φm is the periodic part of the Bloch

function Ψm, i.e. Ψm(y, ξ) = exp(iy · ξ)Φm(y, ξ), the operator (i∇ξ + y) acting on ψ̃εm can

be written as

(iε∇ξ + εy)ψ̃εm(y, ξ) = exp(iy · ξ) iε∇ξϕ̃εm(y, ξ). (3.3)

From (3.2) one can compute:

iε∂tψ̃
ε
m =

(
iε

dam
dt

+ am∂tTm

)
Ψme−iTm/ε,

iε∇ξϕ̃εm =am (iε∇ξΦm +∇ξTmΦm) e−iTm/ε,

(iε∇ξ)2ϕ̃εm =am
(
(∇ξTm)2Φ + iε∇2

ξTmΦm − ε2∇2
ξΦm

+ iε(∇ξTm ∧∇ξΦm +∇ξΦm ∧∇ξTm)
)
e−iTm/ε.

(3.4)

11



Doing Taylor expansion of U (iε∇ξ) at xm up to 2nd order, one finds

U (iε∇ξ) ≈U(xm) +∇xU(xm) · (iε∇ξ − xm) +
1

2
∇2
xU(xm) : (iε∇ξ − xm)

2

=U −∇xU · xm +
1

2
∇2
xU : x2

m +
(
∇xU −∇2

xU · xm
)
· iε∇ξ +

1

2
∇2
xU : (iε∇ξ)2.

(3.5)

Plugging (3.4) and (3.5) into (2.17), matching the same order of ε, one obtains the O(1)

terms

d

dt
Tm =Em + U −∇xU · xm +

1

2
∇2
xU : x2

m

+
(
∇xU −∇2

xU · xm
)
· ∇ξTm +

1

2
∇2
xU : (∇ξTm)

2
,

(3.6)

and the O(ε) terms

dam
dt

Φm =am
(
∇xU −∇2

xU · xm
)
· ∇ξΦm +

1

2
am∇2

xU : ∇2
ξTmΦm

+
1

2
am∇2

xU : (∇ξTm ∧∇ξΦm +∇ξΦm ∧∇ξTm) .

(3.7)

Taking derivatives w.r.t ξ to (3.6) gives

d

dt
∇ξTm =∇ξEm +

(
∇xU −∇2

xU · xm
)
· ∇2

ξTm +∇2
ξTm∇2

xU ∇ξTm, (3.8)

d

dt
∇2
ξTm =∇2

ξEm +
(
∇xU −∇2

xU · xm
)
· ∇3

ξTm +∇2
ξTm∇2

xU ∇2
ξTm +∇3

ξTm∇2
xU ∇ξTm.

(3.9)

By evaluating (3.6) – (3.9) at ξ = pm and using dpm

dt = −∇xU , we have

dpm
dt

= −∇xU, (3.10a)

dxm
dt

= ∇ξEm, (3.10b)

dSm
dt

= Em + Um −∇xUm · xm, (3.10c)

dMm

dt
= ∇2

ξEm +Mm∇2
xU Mm, (3.10d)

dam
dt

= ∇xU · 〈∇ξΦm,Φm〉 am +
1

2
∇2
xU : Mm am. (3.10e)

Note that in (3.10e) Am = 〈∇ξΦm,Φm〉 is the so-called Berry-connection [12, 35]. Notice

that we have gauge freedom in choosing Bloch functions, i.e. , for any real function θ(ξ),

eiθ(ξ)Ψm also provides a set of Bloch functions. In general this make it is difficult in numerical

to select the smooth phase dependent Bloch waves, such that the gradient in the Berry-

connection make sense. We remark here that for the numerical examples we proposed in
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this paper, the smooth Bloch waves are selected in advance. On the other hand, we refer to

[14] for a technique in getting the gauge invariant approximation of (3.10e).

The equations (3.10a)-(3.10b) are the ray-tracing equations, (3.10d) is a Riccati equation

for the Hessian Mm, which can be solved by the dynamic first order system of ray tracing

equations

dPm
dt

= −∇2
xU Rm,

dRm
dt

= ∇2
ξEm Pm, (3.11)

Mm = RmP
−1
m . (3.12)

Then, we can solve (3.10) with initial conditions

pm(0, gm) = p0
m, xm(0, gm) = x0

m, Sm(0, gm) = S0
m,

Mm(0, gm) = M0
m, am(0, gm) = a0

m,
(3.13)

where the beam parameter gm = {p0
m,x

0
m, S

0
m,M

0
m, a

0
m} comes from the initial decomposi-

tion (3.1), and compute the solutions am(t, gm), and

Tm(t, ξ, gm) = Sm(t, gm) + xm(t, gm) · (ξ − pm(t, gm)) +
1

2
Mm(t, gm) : (ξ − pm(t, gm))2.

Then the wave function ψ̃ε can be approximated by ψ̃εGB reconstructed from the beam

summation

ψ̃εGB(t,y, ξ) =

∞∑
m=1

∑
gm∈Gm

am(t, gm) exp

(
− i

ε
Tm(t, ξ, gm)

)
Ψm(y, ξ). (3.14)

A numerical test. In order to test the accuracy of the Bloch decomposition-based Gaus-

sian beam method, we take one example in 1D for the periodic potential VΓ(x) = cos(x).

The initial data is chosen as

ψε0(x) = a0(x)e
i
ε ξ0x, with ξ0 = −1/4,

a0(x) =

(
8

επ

) 1
4

exp

(
−4(x− π)2

ε

)
,

(3.15)

and the external potential is chosen as the harmonic potential U(x) = 1
2 (x− π)2. We solve

the Schrödinger equation (2.7) up to time t = 1/4 using the BDGB method and compare

the result with the “exact” solution which is computed using the Bloch decomposition-based

time splitting (BDTS) method with the mesh size and time step chosen small enough.

In Table 3.1, we show the L2-errors between the Schrödinger solution ψε and the Gaussian

beam solution ψεGB . The convergence rate in ε is about of order 0.5. In Figure 3.1 we plot

the densities and the absolute errors for different ε.
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Figure 3.1: The Schrödinger solution versus the Gaussian beam solution at t = 1/4. Left

column: the comparisons of the density at time t = 1/4; right column: the absolute value

of difference between the Schrödinger solution and the Gaussian beam solution.
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Table 3.1: The L2-errors of wave function for the BDGB method at t = 1/4.

ε 2−7 2−8 2−9 2−10

‖ψε − ψεGB‖2 1.12E-2 7.42E-3 5.33E-3 3.66E-3

The Gaussian beam method requires the solution of a system of ODEs, and the number of

ODEs is usually O(1/εd/2) where d is the dimension. Thus it is more efficient when ε� 1 in

comparison with the direct solver like the Bloch decomposition-based time splitting method

which requires O(1/εd) mesh grids. From (3.2) we see the Gaussian beams are defined along

the Bloch bands, and there is not any exchange between different bands, so the BDGB

method is actually a semiclassical approximation under the adiabatic assumption, i.e. no

inter-band transition happens. But when the band gap is small or even when band-crossing

happens, the inter-band transitions become significant and cannot be ignored, and thus the

BDGB approximation is not an accurate approach.

3.2 The Bloch decomposition-based time splitting method

In this section, the Bloch decomposition-based time splitting (BDTS) method [21, 22] is

briefly reviewed. In particular we implement this method locally in the momentum space.

The BDTS method solves the Schrödinger equation (2.7) in two steps, one for the free

periodic Schrödinger equation and the other for the external potential part.

Step 1. Solve the free Schrödinger equation with periodic potential

iε∂tψ
ε(t,x) = −ε

2

2

(
∇A
)2
ψε(t,x) + V

(x
ε

)
ψε(t,x) (3.16)

for one time step using the Bloch decomposition method, of which the intermediate

steps shall be presented as follows.

Step 1.1. Take the Bloch transformation (2.12) of ψε in (3.16), to obtain ψ̃ε.

Step 1.2. Decompose ψ̃ε as a summation of the Bloch functions

ψ̃ε(t,y, ξ) =
∑
m

cm(t, ξ)Ψm(y, ξ). (3.17)

Step 1.3. Evolve the equation for cm(t, ξ) for one time step, where cm(t, ξ) satis-

fies

iε∂tcm = Emcm, (3.18)
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and one gets

cm(t+ ∆t, ξ) = cm(t, ξ) exp

(
− i

ε
Em(ξ)∆t

)
. (3.19)

Step 1.4. Obtain ψ̃ε at t = t+ ∆t from

ψ̃ε(t+ ∆t,y, ξ) =
∑
m

cm(t+ ∆t, ξ)Ψm(y, ξ). (3.20)

Step 1.5 Apply the inverse Bloch transformation to ψ̃ε to get ψε at t+ ∆t.

Step 2. Solve the ordinary differential equation

iε∂tψ
ε = U(x)ψε, (3.21)

for one time step.

Clearly, the algorithm given above is frst order in time. But one can easily obtain a

second order scheme by the Strang splitting method, i.e. perform Step 1 with time-step

∆t/2, then Step 2 with ∆t, and finally once again Step 1 with ∆t/2.

As pointed out in [21, 22], for ε � 1, the BDTS method converges for the physical

observables with a mesh size O(ε) and time step O(1), and thus has a huge advantage in

improving the computational efficiency in comparison to the classical time splitting spectral

method. However, such a mesh size is still too expensive in high dimension simulations

and very small ε. In Section 4, we will propose a hybrid method which applies the BDTS

method locally around the band-crossings to get the necessary quantum information, and

for the rest part of domain, we apply the BDGB method to save the computational cost.

For this purpose, we first implement the BDTS method locally around one point in the

quasi-momentum space.

The local BDTS method. We give an 1D spatially discrete version of the Bloch de-

composition method to show how to realize it and the extension to higher dimension is

straightforward. Let the fundamental domain of the 1D lattice be C = [0, 2π] such that the

first Brillouin zone of the reciprocal lattice is B = [−1/2, 1/2]. Suppose we want to solve

the periodic Schrödinger equation locally in quasi-momentum space B around the origin.

Let a be a real number and 0 < a ≤ 1/2, L = 2a/ε ∈ N, and R ∈ N, we discretize the local

set [−a, a] ∈ B and the fundamental domain [0, 2π] as follows
ξ` = −a+ (`− 1)ε, for ` = 1, 2, ..., L,

yr =
2π(r − 1)

R
, for r = 1, 2, ..., R,

(3.22)
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and the mesh grid points in the spatial variable are

x`,r = ε

(
π(`− 1)

a
+ yr

)
, for ` = 1, 2, ..., L and r = 1, 2, ..., R. (3.23)

Remark 3.2. The mesh grid given in (3.23) is the same as the original BDTS method given

in [21, 22] when a = 1/2, in which one uses the BDTS method in the whole Brillouin zone,

and a uniform mesh with ∆x = 2π/(LR). But when a < 1/2, the mesh is chosen differently

– it is not uniform any more. We first divide the domain [0, 2π] into L cells with size πε/a,

and then refine the mesh with mesh size 2πε/R locally at each grid point πε(` − 1)/a, see

Figure 3.2 for an illustration.

− 1
2 −a ξi 0 a

1
2

∆ξ = ε
ξ

E

(a)

0 2ππε/a

2πε
x

VΓ

(b)

Figure 3.2: Illustration of the mesh points for the local BDTS method in 1D. (a) Mesh

points in the momentum space. (b) Mesh points in the position space.

Suppose that at time t we are given ψε(t, x`,r) = ψ`,r, then we do the following steps to

obtain ψ`,r at time t+ ∆tTS .
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Step 1.1. Compute ψ̃ε(t, x`,r) by

ψ̃`,r =

L∑
j=1

ψj,r exp (−i ξ` xj,1) . (3.24)

Step 1.2. Compute the m-th band Bloch coefficient cm(ξ) by

cm(ξ`) ≈ cm,` =
2π

R

R∑
r=1

ψ̃`,rΨ̄m(yr, ξ`). (3.25)

Step 1.3. Evolve cm,` up to time t+ ∆tTS by

cm,` = cm,` exp

(
− i

ε
Em(ξ`)∆tTS

)
. (3.26)

Step 1.4. Sum up all band contributions to obtain

ψ̃`,r =
∑
m

cm,`Ψm(yr, ξ`). (3.27)

Step 1.5 Take the inverse Bloch transformation to ψ̃ to find

ψ`,r =
1

L

L∑
j=1

ψ̃j,r exp (i ξj x`,1) . (3.28)

Step 2. Evolve the external potential part by

ψ`,r = ψ`,r exp

(
− i

ε
U(x`,r)∆tTS

)
. (3.29)

Then one obtains ψ`,r as approximation of ψε(t+ ∆tTS , x`,r) and one can repeat the above

steps to get the final approximate solution.

4 A hybrid method

In this section we propose a hybrid method which combines the Bloch decomposition

based Gaussian beam solver and time-splitting solver together. We want to gain the ad-

vantages from both of these two methods: the high efficiency of the BDGB method away

from the band-crossing zone, and the high accuracy of the BDTS method around the band-

crossings. A buffer zone is designed in order to exchange the data between the BDGB and

BDTS solvers.

Without loss of generality, we assume that the only band-crossing point is the origin of

the Brillouin zone. The basic idea of the hybrid method is shown in Figures 4.1 and 4.2 for
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the 1D case and 2D case respectively. We solve the Schrödinger equation using the BDTS

method in the domain DTS = [−a, a]d where d = 1, 2 is the dimension, and outside the

domain [−c, c]d, i.e. , in DGB = B \ [−c, c]d, we use the BDGB method. The two domains

DGB and DTS overlap in DGB

⋂
DTS , where waves going towards the outside direction

of DTS are converted to Gaussian beams, and Gaussian beams going inside of DTS are

converted to waves. The partition of different domains is similar to that in [23], but with a

difference – in the case of this paper, the two buffer zones are not separated.

−a −b −c c b a

BDTS

BDGB BDGB

BufferII BufferIIBufferI BufferI

Figure 4.1: Illustration of the hybrid method in 1D

Away from the crossing point, the use of the asymptotic Gaussian beam solution can

reduce the computational cost efficiently. Around the crossing point, the direct simulation

of the Schrödinger equation by BDTS can capture the inter-band transitions, and one has

to use fine spatial mesh and time steps of O(ε) to get the desired accuracy, but since one

can suitably choose the size of DTS as O(
√
ε), the numerical cost of this part can also be

reduced.

4.1 The main algorithm

We discretize the time by tn = n∆t, and denote the time step using for the BDTS and

BDGB as ∆tTS and ∆tGB respectively. Note that ∆t is different from ∆tTS and ∆tGB . It

is the time step between two steps of conversions in the buffer zones between Schrödinger

waves and Gaussian beams. Generally, we choose ∆t ≤ O(
√
ε) and ∆t > ∆tGB > ∆tTS .

Then we proceed for the hybrid method in the following steps:

1. Initialization. From the initial data ψε0(x) using the Bloch decomposition (2.18) and
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Figure 4.2: Illustration of the hybrid method in 2D

(2.19) to get the initial Bloch coefficient cm(t = 0, ξ). Decompose cm(0, ξ) as

cm(0, ξ) = fm(0, ξ) + gm(0, ξ) + tolm, m = 1, 2... (4.1)

where gm is defined as a series of Gaussian beams supported in DGB , fm has support

in B \DGB , and tolm is the numerical tolerance.

2. Main loops. In each time period [tn, tn+1], do the following steps:

2.1. Evolve {fm(t, ξ)} in DTS using the BDTS method with time step ∆tTS to obtain

{f∗m(ξ)};

2.2. Evolve {gm(t, ξ)} in DGB using the BDGB method with time step ∆tGB to obtain

{g∗m(ξ)};

2.3. Call subroutine Sch2GB with input (f∗m, g
∗
m) to convert the BDTS data to BDGB

data in Buffer II and get (f∗∗m , g∗∗m ).

2.4. Call subroutine GB2Sch with input (f∗∗m , g∗∗m ) to convert the BDGB data to

BDTS data in Buffer I and get (fm(tn+1), gm(tn+1)).
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3. Reconstruction. At the final time t = tN , we compute

cm(t, ξ) = fm(t, ξ) + gm(t, ξ), m = 1, 2... (4.2)

and reconstruct the Schrödinger solution ψε(t,x) using (2.18) and (2.15).

Basically the two subroutine Sch2GB and GB2Sch decompose fm into Gaussian beams in

the buffer zone, and check their directions of motion. If a Gaussian beam is in Buffer II and

it is going outwards from the origin, we subtract it from fm and add it to gm; if a Gaussian

beam is in Buffer I and it is going towards the origin, we subtract it from gm and add it to

fm.

4.1.1 The data exchange routines

The algorithm Sch2GB. Input: (f, g); Output (f, g). This subroutine is used to

extract Gaussian beams from the wavefunction in the buffer zone. We use tol1 and

tol2 to denote two (small) numerical tolerances.

1. Determine whether to start the conversion. Define a smooth damping function

La,b(ξ) with support in
{
ξ ∈ Rd | ‖ξ‖∞ ∈ [b, a]

}
. Define P =

∫
|f(ξ)La,b(ξ)|dξ

and check if (P < tol1). If so, which means the wavefunction f is small enough,

then end this algorithm and return;

2. Define fL(ξ) = f(ξ)La,c(ξ) and k = number of Gaussian beams in g, i.e. g(ξ) =∑k
i=1 gi(ξ), where each gi is a Gaussian beam function;

3. Extract outgoing Gaussian beams from the wavefunction f in the buffer zone.

Let gtmp = 0;

while (P > tol2) do

Extract a Gaussian beam g̃(ξ) from fL(ξ), where

g̃(ξ) = a exp

(
− i

ε

(
x · (ξ − p) +

1

2
M(ξ − p)2

))
;

fL = fL − g̃; P =
∫
|fL(ξ)La,b(ξ)|dξ;

if ((p ∈ Buffer II) & (p · (−∇xU(x)) < 0)) then

!# g̃ is going towards the origin. Do not convert.

Break the do loops;

end if

k = k + 1; gk = g̃; gtmp = gtmp + g̃;
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end while

4. Subtract the outgoing Gaussian beams from the wavefunction f , i.e. f = f−gtmp.

The algorithm GB2Sch. Input: (f, g); Output (f, g). This subroutine is used to

convert the Gaussian beams to the wavefunction, and is applied to each beam in the

buffer zone.

1. Find the Gaussian beams to be converted. For each of the Gaussian beams, gk

in g, check its parameters pk and xk. Select the Gaussian beams whose pk are

in Buffer I and (p · (−∇xU(x)) < 0) (going towards the origin);

2. Check the support of the selected Gaussian beams in the first step. If the support

of gk is contained in [−b, b]d, add gk to f and subtract it from g; If not, we need to

decompose gk into smaller beams and only add and subtract those whose supports

are in [−b, b]d.

The method we used in the algorithm Sch2GB to extract Gaussian beams from a oscilla-

tory function comes from [23, 38]. It looks for the Gaussian beam parameter that minimize

the difference between the given oscillatory function and the Gaussian beam.

4.2 The numerical example for the hybrid method

4.2.1 The numerical example in 1D

In this subsection we give an example of the hybrid method in one dimensional space.

We solve the Schrödinger equation (2.7) with the periodic potential VΓ(x) = cos(x). The

initial data is chosen as a wave packet projected on to the 4-th Bloch band with the following

form

ψε0(x) = P4

(
a0(x)e

i
ε ξ0x

)
, with ξ0 = −1/4,

a0(x) =

(
8

επ

) 1
4

exp

(
−4(x− π)2

ε

)
.

(4.3)

The external potential is chosen as a linear potential U(x) = −x.

Remark 4.1. In this example, we project the initial data onto the 4-th Bloch band of

the Mathieu’s model (see Figure 2.3 for the band structure). By choosing the external

potential as U(x) = −x, semi-classically the wave packet is dragged to the right in the

quasi-momentum space. And furthermore one can think about the wave evolving in a
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subsystem with only the 4-th and 5-th Bloch bands included since others are well separated

from these two. We then call the 4-th band and 5-th band as the lower band and the upper

band respectively.

The Buffer zones shown in Figure 4.1 are set by (a, b, c) = (8
√
ε, 4
√
ε,
√
ε).

We compare the result computed from the hybrid method with the “exact” solution

which is computed using the BDTS method with the mesh size and time step small enough.

In Table 4.1, we show the L2-errors between the Schrödinger solution ψε and the solution

ψεhyb by the hybrid method. In Figure 4.3 we plot the densities and the absolute errors for

different ε. In Figure 4.4 we plot the population at the lower Bloch band as a function of

time and one can see that transitions happen around time t = 0.25 when the wave packet

hits the crossing point.

Table 4.1: Numerical example in 4.2.1: The L2-errors of wave function for the hybrid method

at t = 1/2.

ε 2−9 2−10 2−11 2−12 2−13

‖ψε − ψεGB‖2 4.06E-2 1.37E-2 1.20E-2 2.84E-3 1.56E-3

4.2.2 A numerical example in 2D

We give an example for the 2D Schrödinger equation (2.7) with a honeycomb lattice

potential given in (2.6). Set ε = 2−10 and the initial data is chosen as

ψε0(x) = P1

(
a0(x)e

i
εξ0·x

)
, (4.4)

a0(x) = exp
(
−32(x− π)2

)
, (4.5)

where ξ0 = (1/2, 1/2). This will generate a wave packet located at ξ0 in the quasi-momentum

space. The external potential is given by

U(x1, x2) = −x1 + x2, (4.6)

so that −∇xU = (1,−1), and semi-classically the trajectory of ξ will move directly into the

Dirac point ξ∗ = (2/3, 1/3). The domains are defined by [a, b, c] = [4
√
ε, 2.5

√
ε,
√
ε]. For

the BDTS method, we use ∆x = ε/16 and ∆tTS = ε/2; and for the BDGB method, we use

a 4-th order Runge-Kutta method with ∆tGB =
√
ε/8.
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Figure 4.3: Numerical example in 4.2.1: The Schrödinger solution versus the hybrid solution.

Left column: the comparisons of the density at time t = 1/2; right column: the absolute

error between the Schrödinger solution and the hybrid solution.
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Figure 4.4: Numerical example in 4.2.1: Particle population in the lower Bloch band as

function of time.
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Figure 4.5 shows the results computed by the hybrid method at different times. We can

see the hybrid method captures a clear inter-band transition happening at the Dirac point

ξ∗ = (2/3, 1/3).

We remark here that the Schrödinger equation with a honeycomb lattice potential can

be used to model the electron motion in a Graphene layer, and due to the existence of the

Dirac point, inter-band transitions are very important in the simulations. But since this

problem is defined in two dimensional space, when ε is small, to solve (1.1) using the BDTS

method will be a huge challenge for the memory and cpu time. With the help of the hybrid

method, this example can be done in one hour on a personal laptop.

4.2.3 The Klein paradox in the Schrödinger equation

We use the Schrödinger equation with a honeycomb lattice potential to model the motion

of electron in a graphene sheet structure. One of the important phenomena in graphene is

Klein tunneling (e.g. [27, 37, 41]), which is a form of potential scattering originally associated

with the Dirac equation. The Klein paradox happens when a particle approaches a sharp

rectangular potential barrier. In nonrelativistic quantum mechanics, electron tunneling into

a barrier is observed with exponential damping. But for the relativistic particle the barrier

can be nearly transparent, which is the so called Klein tunneling [28]. For the Graphene

layer, due to the band structure and the existence of the Dirac points (as shown in Figure

2.4), one can expect to see the Klein tunneling [27], first observed in graphene experimentally

in [37, 41]. Most of the studies on the Klein tunneling were considering step potentials or

square barriers which are highly idealized. In [36] the Klein tunneling was investigated using

a smooth potential which is given by hyperbolic tangent functions. In this subsection, we

explore this idea to approximate a step potential by a hyperbolic tangent function and give

a numerical example applying the hybrid method.

We consider the Schrödinger equation (2.7) with the honeycomb lattice potential given

in (2.6), and the external potential given by

U(x) = U(x1, x2) =
1

2
U0

(
tanh

(
x1 − π
w

)
+ 1

)
, (4.7)

where U0 is a constant that corresponds to the height of the step potential and w is a constant

corresponding the transition distance of the step potential. Notice that when w → 0, U(x)

approximates a step potential that attains the value 0 for x1 ≤ 0 and U0 for x1 > 0. The
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(a)

(b)

(c)

Figure 4.5: Numerical example in 4.2.2: Solutions at different time by the hybrid method.

Left column: |c1(t, ξ)|, right column: |c2(t, ξ)|. ]GB is the number of Gaussian beams used

for the simulation.
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initial value is given by

ψε0(x) = P2

(
exp

(
−32(x− x0)2

)
e

i
εξ0·x

)
. (4.8)

In this numerical example, we set ε = 2−10, V0 = −0.6266, U0 = 0.0315, w = 0.05,

x0 = (π − 1, 1.5π) and ξ0 = (0.7450, 0.3333). With these choices of the constants, initially

the wavepacket is located at ξ0 in the second Bloch band with energy E2(ξ0) = 0.0232

which is smaller than the step height U0. We then apply the hybrid method in solving this

problem numerically. As time evolves, the wavepacket moves towards to the step potential

and we show the numerical position density in Figure 4.6. Notice that in Figure 4.6 we plot

the results in the real spatial r-coordinate instead of the computational x-coordinate, where

r and x are related by the lattice transformation r = Qx in (2.1). We can see initially (top

plot) the wave packet away from the step (whose location is indicated by the light straight

line across the diagonal), and it “hits” the potential step at t = 3 (middle plot). One can see

the major part of the wavepacket “tunnels” through the potential step while only a slight

part is reflected (bottom plot).

5 The Dirac approximation

5.1 The Dirac equation as the limit of the Schrödinger equation

At the Dirac point, it has been shown that the Schrödinger equation (1.1) has a limit

governed by the 2D Dirac equation [16, 17, 3].

We consider the Schrödinger equation (1.1) in the case of VΓ being a periodic potential

w.r.t the honeycomb lattice Γ. The Bloch functions Ψm, m = 1, 2, ..., are obtained by solving

the eigenvalue problem(
−1

2
∆r + VΓ(r)

)
Ψm(r,p) = Em(p) Ψm(r,p),

Ψ(r + v,p) = eip·v Ψ(r,p), ∀v ∈ Γ.

(5.1)

In [16], it has been shown that the first two Bloch bands denoted by E1(p) and E2(p),

with corresponding eigenfunctions Ψ1(r,p) and Ψ2(r,p) respectively, have conical crossings

at the Dirac points. Assuming K∗ is a Dirac point of K or K ′ type for the honeycomb

lattice potential VΓ, and at p = K∗, E1(K∗) = E2(K∗) = µ. Furthermore, at K∗ the

eigenfunctions can be chosen with certain symmetry. More precisely one can have the

following properties (Proposition 2.2 and Theorem 4.1 in [16]):
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Figure 4.6: Numerical example in 4.2.3: Position density |ψε|2 at different time by the

hybrid method. Top: t = 0; middle: t = 3; bottom: t = 6.
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Proposition 5.1. If Ψ(r,p) is an eigenfunction with p = K∗, then R[Ψ(·,p)](r) is also

an eigenfunction with p = K∗. Here the rotation operator R is defined by

R[f ](r) = f(RTr), for any function f, (5.2)

in which the matrix R is the 2π/3-clockwise-rotation matrix:

R =

 − 1
2

√
3

2

−
√

3
2 − 1

2

 . (5.3)

Proposition 5.2. At the Dirac point K∗, there exists an eigenfunction Ψ1(r) = Ψ1(r,K∗)

corresponding to the eigenvalue µ such that the following statements hold:

1. R[Ψ1](r) = τΨ1(r) with τ = e2πi/3;

2. Ψ2(r) := Ψ1(−r) is also an eigenfunction corresponding to the eigenvalue µ;

3. R[Ψ2](r) = τ̄Ψ2(r);

4. 〈Ψm,Ψn〉 = δmn, m,n = 1, 2;

5. {Ψ1,Ψ2} spans the eigenspace corresponding the eigenvalue µ.

We call Ψ1 and Ψ2 the Dirac-eigenfunctions.

From now on, in this section we will denote Ψ1 = Ψ1(r,K∗) and Ψ2 = Ψ2(r,K∗) as

the two Dirac-eigenfunctions satisfying the properties in Proposition 5.2. Assume that the

initial data of (1.1) are given by

ψε(t = 0, r) = α0
1(r)Ψ1

(r
ε

)
+ α0

2(r)Ψ2

(r
ε

)
. (5.4)

We look for the solution with the ansatz

ψε(t, r) = e−iµt/ε
(
α1(t, r)Ψ1

(r
ε

)
+ α2(t, r)Ψ2

(r
ε

))
. (5.5)

Define the fast variable z = r/ε, then ∇r → ∇r + 1
ε∇z. Plugging (5.5) into (1.1), one gets

iε

2∑
m=1

∂tαm(t, r)Ψm(z) =− ε
2∑

m=1

∇rαm(r) · ∇zΨm(z) + U

2∑
m=1

αmΨm(z)

− ε2

2

2∑
m=1

∆rαmΨm(z).

(5.6)
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Formally if one assumes U = O(ε), neglects the O(ε2) term in (5.6), and takes inner product

w.r.t Ψ1 and Ψ2, one gets

∂tαn = i

2∑
m=1

〈∇zΨm,Ψn〉 · ∇rαm −
i

ε
Uαm, m = 1, 2. (5.7)

From Theorem 4.1 and Proposition 4.2 of [16], one has

i〈∇zΨ1,Ψ1〉 = i〈∇zΨ2,Ψ2〉 = 0, (5.8)

i〈∇zΨ2,Ψ1〉 = i〈∇zΨ1,Ψ2〉 = −λ̄]

1

i

 , (5.9)

where λ] is a complex-valued constant. Then from (5.7) one gets the following Dirac equa-

tions:

∂tα1 = −λ̄] (∂r1α2 + i∂r2α2)− i

ε
Uα1,

∂tα2 = −λ] (∂r1α1 − i∂r2α1)− i

ε
Uα2.

(5.10)

So now formally one has the Dirac equations (5.10) as a limit of the Schrödinger equation

(1.1). We refer to [17] for the rigorous proof of this limit when U is zero or small, however

in the case of U = O(1) the limit is not clear and formally it violates the asymptotics in

getting (5.7).

5.2 Numerical verification of the Dirac limit

In this subsection, we numerically test the Dirac approximation to the Schrödinger equa-

tion when ε is small in different cases. For the convenience of computation, we use the

x-variable representation, that is x = (x1, x2)T = ATr, and (5.10) is equivalent to the

following Dirac type system

∂tα1(t,x) = −λ̄](1, i) · ∇Axα2(t,x)− i

ε
U(x)α1(t,x),

∂tα2(t,x) = −λ](1,−i) · ∇Axα1(t,x)− i

ε
U(x)α2(t,x).

(5.11)

Then from the solution of (5.11) one can construct

ψεDirac(t,x) = e−iµt/ε
(
α1(t,x)Ψ1

(x
ε

)
+ α2(t,x)Ψ2

(x
ε

))
, (5.12)

as an asymptotic solution of

iε∂tψ
ε(t,x) = −ε

2

2

(
∇A
)2
ψε(t,x) +

(
VΓ

(x
ε

)
+ U(x)

)
ψε(t,x). (5.13)
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To verify the Dirac limit numerically, we choose the periodic potential as (2.6) and the

Dirac point at K∗ = 1
3 (k2 − k1). The first two Bloch bands have a cross at K∗ with same

eigenvalue E1(K∗) = E2(K∗) = −0.6266, and the Dirac-eigenfunctions can be chosen as

shown in Figure 5.1. The constant λ] in the Dirac equations given by these two Dirac-

eigenfunctions is λ] = 0.2081 + 0.1418 i.

(a) Real part of Ψ1 (b) Real part of Ψ2

Figure 5.1: The Dirac-eigenfunctions.

We choose the initial data for (5.11) as (5.4) with

α0
1 = exp

(
− 2(x− π)2

)
, α0

2 = 0, (5.14)

and then compare the solutions from both the Schrödinger equation (5.13) and the Dirac

equations (5.11)-(5.12) for the following choices of the potential U :

U1 ≡ 0; U2 = ε(x− π)2; U3 = (x− π)2. (5.15)

The Schrödinger equation (5.13) is computed by the Bloch decomposition based time split-

ting method [21] and the Dirac equation (5.11) is computed by the Fourier spectrum time

splitting method [5]. We compute the L2 error between the two solutions

Errε =

(∫
|ψε(t,x)− ψεDirac(t,x)|2dx

)1/2

. (5.16)

The errors for different potential U and ε are shown in Table 5.1, where we have used

Errεi to denote the L2 error when U = Ui. We can see that when the external potential is
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small (U ≡ 0 and U = ε(x − π)2) the errors are of O(ε), which indicates that the Dirac

equation is a good approximation to the Schrödinger equation in the semiclassical regime.

However, when choosing U = (x − π)2, the errors are O(1), which means that the Dirac

solution does not converge to the Schrödinger solution as ε deceases. As we have seen from

(5.10), the O(1) external potential U will break down the formal asymptotics and forcing

the momentum away from the Dirac point, which cause the O(1) errors.

Table 5.1: The errors between the Dirac and the Schrödinger solutions at time t = 0.5. Errεi

is computed by choosing U = Ui, i = 1, 2, 3.

Time step ε 2−4 2−5 2−6 2−7

Errε1 1.25E-01 6.19E-02 3.08E-02 1.54E-02

Errε2 1.28E-01 6.33E-02 3.16E-02 1.58E-02

Errε3 5.31E-01 6.64E-01 8.47E-01 1.04E00

6 Conclusion

In order to deal with inter-band transitions in the case of band-crossing, we have built

up a Bloch decomposition-based hybrid method. The Bloch decomposition-based Gaussian

beam method is used away from the crossing point and the Bloch decomposition-based time

splitting method is used locally around the crossing point. We have seen that this method

has a great advantage in saving computational cost while it can capture the inter-band

transition phenomena properly. Moreover, this method can be used in simulating electronic

behavior in a graphene layer as shown in the numerical examples. In addition, we show that

the Schrödinger equation converges to the Dirac equations when the external potential is

zero or small, but does not converge for general external potentials.
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