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AN EFFICIENT TIME-SPLITTING METHOD
FOR THE EHRENFEST DYNAMICS∗

DI FANG† , SHI JIN† , AND CHRISTOF SPARBER‡

Abstract. The Ehrenfest dynamics, representing a quantum-classical mean-field type cou-
pling, is a widely used approximation in quantum molecular dynamics. In this paper, we propose a
time-splitting method for an Ehrenfest dynamics, in the form of a nonlinearly coupled Schrödinger–
Liouville system. We prove that our splitting scheme is stable uniformly with respect to the semi-
classical parameter and, moreover, that it preserves a discrete semiclassical limit. Thus one can
accurately compute physical observables using time steps induced only by the classical Liouville
equation, i.e., independent of the small semiclassical parameter—in addition to classical mesh sizes
for the Liouville equation. Numerical examples illustrate the validity of our meshing strategy.
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1. Introduction. Ab initio methods have played a fundamental role in the nu-
merical simulation of large quantum systems, in particular in quantum molecular
dynamics. Different from classical approaches based on predefined potentials, the
underlying idea of ab initio molecular dynamics is to compute the forces acting on
the nuclei as a feedback of the electronic structures. This procedure is also known
as the “on-the-fly” calculation in the chemistry literature (for detailed reviews, see,
e.g., [4, 23, 22, 28]). One of the most widely used of these methods is the so-called
Ehrenfest dynamics, a mean-field treatment named in honor of Paul Ehrenfest, who
was among the first to address the problem of how to derive classical dynamics from
the underlying quantum mechanical equations [10]. His idea is to separate the whole
system into two parts: a fast varying, quantum mechanical part (for, say, electrons)
and a slowly varying part (for the much heavier nuclei) in which one can pass to
the (semi-)classical limit. In quantum chemistry, this is usually possible by taking
advantage of the large mass difference between electrons and nuclei.

Typically, the Ehrenfest molecular dynamics refers to a Schrödinger equation,
coupled with a classical Newtonian flow; cf. [6, 9, 24, 26, 3, 28]. The simplest such
model reads

(1.1)


ih∂tψ = −h

2

2
∆xψ + V (x, y(t))ψ, ψ(0, x) = ψin(x),

ẏ(t) = η(t), y(0) = y0,

η̇(t) = −∇yVE(y(t)), η(0) = η0.
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Here, we denote by 0 < h � 1 a dimensionless rescaled Planck’s constant, and by
ψ = ψ (x, t) with x ∈ Rd, t ∈ R+, the wave function of the fast, quantum mechanical
degrees of freedom, which is assumed to be normalized such that ‖ψ(·, t)‖L2 = 1 for
all t ≥ 0. In addition, the slow degrees of freedom are described, for any time t ∈ R+,
by their classical position y(t) ∈ Rn and momentum η(t) ∈ Rn. We thereby allow for
n ∈ N and d ∈ N to be not necessarily equal, depending on the physical application.
Finally, for a given coupling potential V = V (x, y) ∈ R, the force describing the
back-reaction of the quantum part onto the slow degrees of freedom is given by the
gradient in y ∈ Rn of the so-called Ehrenfest potential

VE(y, t) =

∫
Rd

V (x, y) |ψ(x, t)|2 dx.

Clearly, one obtains a version of Newton’s second law for y(t) by eliminating the
momentum variable η(t) and writing

ÿ(t) = −∇yVE(y(t)),

instead of the first order Hamiltonian system above.
Regarding the derivation of Ehrenfest dynamics, the majority of literature avail-

able today invokes WKB asymptotics for the slow degrees of freedom, leading to a
Hamilton–Jacobi equation which suffers from the appearance of caustics; see, e.g.,
[6, 24]. To circumvent this problem and derive a semiclassical limit which is valid
globally in time, a, by now classical, tool is the Wigner transform [29]. The latter
gives rise to a Liouville equation for the associated semiclassical phase-space measure
(or Wigner measure) which “unfolds the caustics”; see [11, 19, 21, 25]. In the context
of Ehrenfest dynamics, such an analysis was carried out in [15]. There, the authors
start from a system of time-dependent, self-consistent field equations, motivated by
[5, 16, 17, 20], and derive (among other things) the following mixed quantum-classical
system:

(1.2)

ih∂tψh = −h
2

2
∆xψ

h + Υh (x, t)ψh, ψh(0, x) = ψhin(x),

∂tµ
h + η · ∇yµh + Fh (y, t) · ∇ηµh = 0, µh(0, x, η) = µin(y, η).

Here, µh(·, ·, t) ∈ M+(Rny × Rnη ) denotes the phase-space probability density for the

slowly varying degrees of freedom at time t, Fh = −∇yVE, i.e., the force obtained
from the Ehrenfest potential, and

Υh (x, t) =

∫∫
R2n

V (x, y)µh (y, η, t) dy dη.(1.3)

We call this system the Schrödinger–Liouville–Ehrenfest (SLE) system and from now
on represent the dependence on the small semiclassical parameter h > 0 by super-
scripts. Note that the dependence of µh on h stems purely from the forcing through
the Ehrenfest potential appearing in the Liouville equation. The latter is an Eule-
rian description of the classical Hamiltonian flow. In particular, one formally obtains
(1.1), from (1.2), in the case where µ corresponds to a single particle distribution
concentrated on the classical trajectories (y(t), η(t)), i.e.,

µ(t, y, η) = δ(y − y(t), η − η(t)).

Such Wigner measures can be obtained as the classical limit of a particular type of
wave functions, called semiclassical wave packets, or coherent states; see [19].
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Given the dispersive nature of Schrödinger’s equation, the main numerical diffi-
culty for h� 1 is that one needs to resolve oscillations of frequency of order O(1/h)
in both time and space, as they are present in the solution ψh; see [14] for a broad
review of this problem. Naively, this requires one to use time steps of order ∆t = o(h)
as well as a spatial grid with ∆x = o(h). However, it was proved in [1], using a Wigner
measure analysis, that for a single linear Schrödinger equation, a time-splitting spec-
tral method can still correctly capture physical observables, i.e., real-valued quadratic
quantities in ψh, even for time steps much larger than h. Thus one only needs to
resolve the high-frequency oscillations spatially, which is a huge numerical advantage.
For nonlinear Schrödinger equations, in general, this is no longer true, as was numer-
ically demonstrated in [2]. The SLE system (1.2) is a nonlinearly coupled system,
and one therefore expects the same type of problem at first glance. Nevertheless, we
shall in the following develop an efficient numerical method for the SLE system which
allows large (compared with h) computational mesh sizes in both y and η and a large
time step for both the Schrödinger and the Liouville equations, while still correctly
capturing physical observables. While large meshes in y and η do not seem so surpris-
ing, the possibility of large time steps for solving the Schrödinger equation is far from
obvious, due to the nonlinear nature of the SLE system.

Our numerical algorithm is inspired by, but different from, the time-splitting
method used in [15]. Based on a spectral method for the Schrödinger equation and
an upwind scheme for the Liouville part of (1.2), we shall first prove stability for our
algorithm, uniformly in h. Furthermore, by utilizing the Wigner analysis developed
in [15] and adopting it to our particular setting, we shall also prove that physical
observables (which can be characterized by the moments of the Wigner distribution),
are captured correctly even if ∆y, ∆η, and ∆t, i.e., the time step for the entire SLE
system, are O(1) and thus independent of h. To this end, we follow the strategy of
[1] and prove that the semidiscretized SLE system, with ∆y, ∆η, ∆t fixed, converges
to the correct semiclassical limiting system, as h → 0. In this analysis we shall, for
simplicity, consider x to be continuous, since, as already stated above, ∆x → 0, as
h→ 0, even for a single linear Schrödinger equation. In summary, our scheme can be
seen to be asymptotic preserving in t, y, and η, which is a well-established numerical
concept for multiscale kinetic equations; cf. [12, 13]. To our knowledge, this is the first
work that proves the existence of a global-in-time h-independent meshing strategy for
physical observables associated to a nonlinear Schrödinger-type system.

In this context, we note that the authors of [7, 8] study a time-splitting scheme
for nonlinear Schrödinger equations with cubic nonlinearity. Using a WKB type rep-
resentation of the solution, they are able to prove a similar asymptotic preserving
property. However, the main drawback of their method is that it is valid only before
the formation of caustics in the Hamilton–Jacobi equation for the WKB phase func-
tion. The system studied in the present paper has a weaker nonlinear structure which
allows the use of Wigner transformation techniques which are valid for all time t.

The rest of this paper is now organized as follows. In section 2 we present the time-
splitting method for the SLE system and briefly discuss some of the inherent numerical
difficulties. The stability, uniformly in h, is then proved in section 2.2 for the fully
discretized system. In section 3, we shall give a brief review of Wigner transformation
methods and the classical limit of the SLE system. The spatial meshing strategy
announced above is then studied in section 4 by deriving the classical limit of a semi-
discrete SLE system. In section 5 we focus on the time-discretization and prove that
our scheme allows for time steps independent of h. Finally, section 6 presents some
numerical examples illustrating our analytical results.
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2. The time-splitting scheme and its basic properties. We shall, from
now on, consider the SLE system (1.2) with the following assumption on the coupling
potential V :

V ∈ C2
0

(
Rdx × Rny

)
and V (x, y) ≥ 0 ∀ (x, y) ∈ Rdx × Rny ,(A1)

where C2
0 denotes the set of twice continuously differentiable functions which vanish

at infinity together with all their derivatives.

Remark 2.1. This is the same assumption as in [15], where it is used to furnish a
rigorous Wigner analysis of the self-consistent field equation. Note that, in particular,
it implies V ∈ W 2,∞ (Rdx × Rny

)
. It is conceivable that the regularity requirement

and the decay at infinity can be lowered at the expense of more technicalities. The
assumption V (x, y) ≥ 0 is in fact not very restrictive for the potentials bounded from
below. It corresponds to a proper choice of the zero point of the potential axis.

We aim for an algorithm which fully utilizes the quantum-classical coupling. Thus,
while it makes sense to use a finer (i.e., smaller than h) spatial discretization in x to
solve the Schrödinger equation, we want to use much larger (than h) meshes in y and
η when solving the Liouville equation. That this is indeed possible is not obvious,
since the potential Υh (x, t) appearing in the Schrödinger equation is time-dependent
and moreover nonlinearly coupled to the Liouville equation (hence it inherits the
computational error obtained from discretizing in y and η).

Remark 2.2. In our discussion, we will only consider compactly supported initial
data ψhin, µin, in order to simulate the SLE system problem based on an infinitely
large spatial domain within a sufficiently large but finite box with periodic boundary
conditions.

2.1. A new time-splitting scheme for the SLE system. In order to describe
our scheme, we henceforth assume that we are given a sufficiently small ∆x ∼ O(h),
used to solve the quantum mechanical part of (1.2), while the larger grid meshes
∆y,∆η ∼ O (1) are applied for the classical part. With this in mind, let

J =
d− c
∆y

, K =
β − α

∆η
, M =

b− a
∆x

, yj = c+ j∆y, ηk = α+ k∆η, xj = a+ j∆x.

The time-splitting spectral scheme can then be described as follows: From time
t = tn = n∆t to t = tn+1 = (n+ 1) ∆t, with ∆t given, the SLE system is solved in
two steps. First, solve

(2.1)

ih∂tψh = −h
2

2
∆xψ

h,

∂tµ
h = −η · ∇yµh − Fh (y, t) · ∇ηµh,

from t = tn to an intermediate time t∗. Then, solve

(2.2)

{
ih∂tψ

h = Υh (x, t)ψh,

∂tµ
h = 0,

with initial data obtained from step 1, to obtain the solution at time t = tn+1.
In (2.1), the Schrödinger equation will be discretized in space by a spectral method

and integrated in time exactly using a fast Fourier transform. The Liouville equation
can be solved either by a spectral method or by a finite difference (e.g., upwind)
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scheme in space, and then marching the corresponding ODE system forward in time.
An advantage of our splitting method is that in the second step, Υh (x, t) defined in
(1.3) is indeed independent of time, since obviously µh is. In view of this, the time
integration in (2.2) can also be solved exactly, which yields

ψh,n+1
j = exp

(
− i
h

Υh (xj , t∗) ∆t

)
ψh,∗j .

For the convenience of our later discussions, we shall now state our numerical
scheme using an upwind spatial discretization of µ in more detail: The problem is
solved in one spatial dimension d = n = 1 from time t = tn to time t = tn+1 using
the following two steps.

In the first step, we solve

(2.3)


ih∂tψ

h = −h
2

2
∂xxψ

h,

d

dt
µhjk = −ηk

(
Dyµ

h
)
jk
− Fhj

(
Dηµ

h
)
jk
,

where both Dyµ
h and Dηµ

h represent the numerical derivatives in our algorithm,
which are treated using a standard conservative (for example, the upwind type) dis-
cretization. To solve the Liouville equation we shall we apply a forward-in-time Euler
scheme for the time-discretization. Explicitly, we thus have

(2.4)


ψh,∗j =

1

M

M/2−1∑
`=−M/2

e−ihω
2
`/2ψ̂h,n` eiω`(xj−a), j = 0, . . . ,M − 1,

µh,∗jk − µ
h,n
jk

∆t
= −ηk

(
Dyµ

h,n
)
jk
− Fh,nj

(
Dηµ

h,n
)
jk
,

where w` = 2π`
b−1 and, for the upwind spatial discretization,

ηk
(
Dyµ

h,n
)
jk

=
1

2
(ηk + |ηk|)

µh,njk − µ
h,n
j−1,k

∆y
+

1

2
(ηk − |ηk|)

µh,nj+1,k − µ
h,n
j,k

∆y
,

Fh,nj

(
Dηµ

h,n
)
jk

=
1

2

(
Fh,nj +

∣∣∣Fh,nj

∣∣∣) µh,njk − µhj,k−1

∆η

+
1

2

(
Fh,nj −

∣∣∣Fh,nj

∣∣∣) µh,nj,k+1 − µ
h,n
jk

∆η
.

The second step is then given by

(2.5)

ih∂tψ
h = Υh

d (x, t)ψh,

d

dt
µhjk = 0,

where Υh
d (x, t) is the quadrature approximation of Υh (x, t). Thus, we explicitly have

ψh,n+1
j = exp

(
−iΥh,∗

d (xj) ∆t/h
)
ψh,∗j , µh,n+1

jk = µh,∗jk ,(2.6)

where

Υh,∗
d (x) =

J−1∑
j=0

K−1∑
k=0

V (x, yj)µ
h,∗
jk ∆y∆η =

J−1∑
j=0

K−1∑
k=0

V (x, yj)µ
h,n+1
jk ∆y∆η,

which can be viewed as a trapezoidal rule for µ with compact support; cf. Remark 2.2.
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Remark 2.3. It is straightforward to obtain an algorithm second order in time
using the Strang splitting, which is omitted here.

2.2. Conservation property and stability of the scheme. We shall now
prove the stability of the scheme given by (2.4) and (2.6). To this end, let ψ =(ψ0, . . . ,
ψM−1)T . Let ‖ · ‖L2 and ‖ · ‖`2 be the usual L2 and `2 norm on the interval (a, b)
respectively, i.e.,

(2.7) ‖φ‖L2 =

(∫ b

a

|φ (x)|2 dx

)1/2

, ‖ψ‖`2 =

b− a
M

M−1∑
j=0

|ψj |2
1/2

.

Notice that, for any periodic function f , the equality

(2.8) ‖fI‖2L2 = ‖f‖2`2 =
b− a
M

M−1∑
j=0

|f (xj)|2

holds, where fI denotes the trigonometric interpolant of f on {x0, x1, . . . , xM}, i.e.,

fI (x) =
1

M

M
2 −1∑

̂=−M
2

f̂̂e
iω̂(x−a), ω̂ =

2π̂

b− a
.

Using this we can prove the following theorem.

Theorem 2.4. The time-splitting spectral scheme conserves the mass. More pre-
cisely, it holds that

‖ψh,n‖`2 = ‖ψh,0‖`2 ‖ψh,nI ‖L2 = ‖ψh,0I ‖L2 for n = 1, 2, . . . ,

where, as before, ψh,nI denotes the trigonometric interpolant of ψh,n. In addition,

J−1∑
j=0

K−1∑
k=0

µh,njk =

J−1∑
j=0

K−1∑
k=0

µh,0jk .

Proof. First note that the last identity for µh,njk is a straightforward consequence
of the fact that the discretized derivatives Dyµ and Dηµ are conservative.

It suffices to prove the first identity stated above due to (2.8). Noting our numer-
ical algorithm (2.4), (2.6) and the definition of the norms (2.7), one computes

1

b− a
∥∥ψh,n+1

∥∥2

`2
=

1

M

M−1∑
j=0

∣∣∣ψh,n+1
j

∣∣∣2 =
1

M

M−1∑
j=0

∣∣∣∣exp

(
− i
h

Υh
d (xj , t∗) ∆t

)
ψh,∗j

∣∣∣∣2

=
1

M

M−1∑
j=0

∣∣∣ψh,∗j ∣∣∣2 =
1

M

M−1∑
j=0

∣∣∣∣∣∣ 1

M

M
2 −1∑

̂=−M
2

e−ih∆tω2
̂ /2ψ̂h,n̂ eiω̂(xj−a)

∣∣∣∣∣∣
2

=
1

M

M−1∑
j=0

 1

M2

M
2 −1∑

p=−M
2

M
2 −1∑

q=−M
2

eih∆t(ω2
p−ω

2
q)/2ψ̂h,np ψ̂h,nq ei(ωq−ωp)(xj−a)

 .
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Changing the order of summation, this is equal to

1

b− a
∥∥ψh,n+1

∥∥2

`2
=

1

M2

M
2 −1∑

p=−M
2

M
2 −1∑

q=−M
2

eih∆t(ω2
p−ω

2
q)/2ψ̂h,np ψ̂h,nq

1

M

M−1∑
j=0

ei(ωq−ωp)(xj−a)


=

1

M2

M
2 −1∑

̂=−M
2

∣∣∣ψ̂h,n̂ ∣∣∣2 =
1

M2

M
2 −1∑

̂=−M
2

∣∣∣∣∣∣
M−1∑
j=0

ψh,nj e−iω̂(xj−a)

∣∣∣∣∣∣
2

=
1

M2

M
2 −1∑

̂=−M
2

(
M−1∑
p=0

M−1∑
q=0

ψh,np ψh,nq eiω̂(xq−xp)

)
,

where the second equality of the above follows from the fact that

1

M

M−1∑
j=0

ei(ωq−ωp)(xj−a) =
1

M

M−1∑
j=0

ei2π(q−p)j/M =

{
0, q − p 6= mM,
1, q − p = mM,

m ∈ Z.

Similarly, by changing the order of summation again, we arrive at

1

b− a
∥∥ψh,n+1

∥∥2

`2
=

1

M

M−1∑
p=0

M−1∑
q=0

ψh,np ψh,nq

 1

M

M
2 −1∑

̂=−M
2

eiω̂(xq−xp)


=

1

M

M−1∑
j=0

∣∣∣ψh,nj ∣∣∣2 =
1

b− a
∥∥ψh,n∥∥2

`2
,

where the following identity has been used:

1

M

M
2 −1∑

̂=−M
2

eiω̂(xq−xp) =
1

M

M
2 −1∑

̂=−M
2

ei2π(q−p)̂/M =

{
0, q − p 6= mM,
1, q − p = mM,

m ∈ Z.

Remark 2.5. Theorem 2.4 implies that the scheme is stable uniformly in h, pro-
vided the positivity of µ under the following CFL condition (cf. [18]):

(2.9) max
k
|ηk|

∆t

∆y
+ ‖∂yV ‖L∞

∆t

∆η
≤ 1.

3. Classical limit of the SLE system. As a preparatory step to the discussion
of section 4, we will now briefly review the results of [15] concerning the classical limit
(via Wigner transforms) of the SLE system as h→ 0.

3.1. Wigner transform and Wigner measure. Let us first recall that h-
scaled Wigner transform associated to any continuously parametrized family fh ≡
{fh}0≤h≤1 ∈ L2

(
Rd
)

is given by (cf. [11, 19, 21, 25])

wh[fh] (x, ξ) =
1

(2π)
d

∫
Rd

fh
(
x− h

2
y

)
fh
(
x+

h

2
y

)
eiξ·y dy.

By Plancherel’s theorem and a change of variables one easily finds∥∥wh[fh]
∥∥
L2(R2d)

=
1

(2π)
d
2 hd

∥∥fh∥∥2

L2(Rd)
.
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The real-valued function wh(x, ξ) acts as a quantum mechanical analogue for classical
phase-space distributions. However, wh(x, ξ) 6≥ 0 in general.

It has been proved in [19] that if the family of functions fh = {fh}0≤h≤1 is
uniformly bounded in L2(Rd) as h→ 0+, i.e., if

sup
0<h≤1

‖fh‖L2
x
≤ C,

then the set of Wigner functions {wh}0<h≤1 is uniformly bounded in A′. The latter
is the dual of the Banach space

A
(
Rdx × Rdξ

)
:=
{
χ ∈ C0

(
Rdx × Rdξ

)
: (Fξχ) (x, z) ∈ L1

(
Rdz ;C0(Rdx)

)}
,

where C0(Rd) denotes the space of continuous functions vanishing at infinity and Fξ
denotes the Fourier transform with respect to the velocity ξ, only. More precisely,
one finds that for any test function χ ∈ A(Rdx × Rdξ),

|〈wh, χ〉| ≤ 1

(2π)d
‖χ‖A‖f

h‖2L2 ≤ const.,

uniformly in h. Thus, up to extraction of subsequences {hn}n∈N, with hn → 0+ as
n→∞, there exists a limiting object w0 ≡ w ∈ A′(Rdx × Rdξ) such that

wh
h→0+−→ w in A′(Rdx × Rdξ)w − ∗.

It turns out that the limit is in fact a nonnegative, bounded Borel measure on phase-
space w ∈M+(Rdx × Rdp), called the Wigner measure of fh.

3.2. The classical limit of the SLE system. Let ψh and µh be the solution
of the SLE system (1.2) and denote the Wigner function of ψh (x, t) by

wh (x, ξ, t) = wh[ψh (·, t)] (x, ξ) .

A straightforward computation shows that the position density associated to ψh ∈
L2(Rd) can be computed via

ρh (x, t) :=
∣∣ψh (x, t)

∣∣2 =

∫
Rd

wh (x, ξ, t) dξ,

where we recall, that due to our normalization,∫
Rd

ρh (x, t) dx =

∫∫
R2d

wh (x, ξ, t) dξ dx = 1.

Moreover, by taking higher order moments in ξ one (formally) finds the current density

jh (x, t) := h Im
(
ψh (x, t)∇ψh (x, t)

)
=

∫
Rd

ξwh (x, ξ, t) dξ

and the kinetic energy density

κh (x, t) :=
h2

2

∣∣∇ψh (x, t)
∣∣2 =

∫
Rd

1

2
|ξ|2 wh (x, ξ, t) dξ.

Remark 3.1. In order to make these computations rigorous, the integrals on the
right-hand side have to be understood in an appropriate sense, since wh 6∈ L1(Rmx ×
Rmξ ) in general; see [19] for more details.

After Wigner transforming the Schrödinger equation, one finds that wh (x, ξ, t)
satisfies the following nonlocal kinetic equation (see, e.g., [19]):
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∂tw
h + ξ · ∇xwh + Θh[Υh]wh = 0, wh(0, x, ξ) = whin (x, ξ) ,

where whin ≡ wh[ψhin] and

(
Θh[Υh]wh

)
(x, ξ, t)=

i

h(2π)d

∫
Rd

(
Υh

(
x+

h

2
z, t

)
−Υh

(
x− h

2
z, t

))
ŵh(x, z, t)eiz·ξdz

(3.1)

with ŵh denoting the Fourier transformation of wh w.r.t. the second variable only.
Now, in order to utilize the weak-∗ compactness properties of the Wigner function,

we shall impose from now on that the initial mass and the initial kinetic energy are
uniformly bounded with respect to h, i.e.,

sup
0<h≤1

(
ρh (x, 0) + κh (x, 0)

)
≤ const.(A2)

Remark 3.2. In other words, we assume that

sup
0<h≤1

(∣∣ψhin(x)
∣∣2 +

h2

2

∣∣∇ψhin(x)
∣∣2) ≤ const.

This assumption is easily satisfied by initial data of WKB type, or by semiclassical
wave packets.

It is proved in [15] that these uniform bounds on the initial mass and kinetic
energy are propagated by the SLE system (1.2), which in turn implies that for all
times t ∈ R+, the wave function ψh(·, t) is

1. uniformly bounded in L2
(
Rd
)

as h→ 0+, i.e.,

sup
0<h≤1

∥∥ψh(·, t)
∥∥
L2

x
≤ C1,

2. h-oscillatory, i.e.,

sup
0<h≤1

∥∥h∇xψh(·, t)
∥∥
L2

x
≤ C2,

where C1 and C2 are some constants independent of 0 < h < 1.
In particular this implies the existence of a limiting Wigner measure ν(·, ·, t) ∈

M+(Rdx × Rdξ), such that for all T > 0

wh
[
ψh
] h→0+−→ ν in L∞([0, T ];A′

(
Rdx × Rdξ)

)
w–∗,

up to the extraction of subsequences. Moreover, on the same time interval, one has∣∣ψh(x, t)
∣∣2 h→0+−→

∫
R
ν (x, ξ, t) dξ in M+

(
Rdx
)

w– ∗ .

Under our assumption (A1) on V , this can be used to prove that (see [15] for more
details)

Fh (y, t)
h→0+−→ −

∫∫
R2d

∇yV (x, y) ν(x, ξ, t) dx dξ =: F 0 (y, t) ,

uniformly on compact intervals in y and t.
Similarly, one can pass to the limit h → 0+ in the equation for µh to find that

there exists a limiting measure µ0 ≡ µ ∈M+(Rny ×Rnη ) which consequently solves (in
the sense of distributions)
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∂tµ+ η · ∇yµ+ F 0 (y, t) · ∇ηµ = 0.(3.2)

Moreover, one can prove that

Υh (x, t)
h→0+−→

∫∫
R2n

V (x, y)µ (y, η, t) dy dη =: Υ0 (x, t) .

In view of the definition (3.1), one also finds that

Θh
[
Υh
]
wh

h→0+−→ −∇xΥ0 (x, t) · ∇ξν

and thus the Wigner measure associated to ψh satisfies the following Liouville equation
(in the sense of distributions):

∂tν + ξ · ∇xν −∇xΥ0 (x, t) · ∇ξν = 0.(3.3)

In summary, one finds a system of two coupled Liouville equations (3.2)–(3.3) in the
classical limit (we refer to [15] for a rigorous proof and further details).

4. The spatial meshing strategy.

4.1. The semidiscretized SLE system and its energy. The analysis in this
section will focus on the spatial meshing strategy. In order to show that it is possible
to use a grid with ∆y,∆η ∼ O(1) and, thus, independent of h, we will consider a
semidiscretized version of the SLE system (1.2) in one spatial dimension d = n = 1
where the Liouville is discretized using an upwind scheme:

(4.1)

ih∂tψh = −h
2

2
∂xxψ

h + Υh
d (x, t)ψh, ψh(0, x) = ψhin(x),

∂tµ
h + ηDyµ

h + Fh (y, t)Dηµ
h = 0, µh(0, y, η) = µhin(y, η).

Here, Υh
d (x, t) stands for the trapezoidal quadrature approximation of Υh (x, t), as

before, whereas Fh (y, t) includes an exact derivative of the known function V (x, y).
We shall refer to (4.1) as the semidiscretized SLE system (s-SLE) and show that it
yields the “correct” classical limit, i.e., the semidiscretized version of (3.2)–(3.3).

Before doing so, we will need to prove an a priori estimate and the energy asso-
ciated to (4.1). To this end, we define the semidiscrete energy as

Ed (t) :=

∫
R

h2

2

∣∣∂xψh(x, t)
∣∣2 dx+

∫
R

Υh
d (x, t)

∣∣ψh∣∣2 dx+

J−1∑
j=0

K−1∑
k=0

η2
k

2
µhjk∆y∆η.

Here, and in the following, because of the periodicity of µ, we shall use a cyclic index
for µjk such that µjk = µj+J,k = µj−J,k = µj,k+K = µj,k−K .

Theorem 4.1. Under the assumptions (A1) and (A2), the energy Ed(t) is bounded
by a constant independent of h for all t ≥ 0.

Proof. We start by showing that the initial energy is bounded. This is easily seen
from

Ed (0) =

∫
R

h2

2

∣∣∂xψhin∣∣2 dx+

∫
R

Υh
d (x, 0)

∣∣ψhin∣∣2 dx+

J−1∑
j=0

K−1∑
k=0

(µin)jk ∆y∆η,
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where the first two integrals are clearly bounded by assumptions (A1) and (A2)
and the last term is just a quadrature approximation of

∫∫
µin dy dη = 1 and hence

bounded.
Next, we compute the time-derivative of Ed as

d

dt
Ed = (I) + (II) + (III) + (IV),

where

(I) :=

∫
R

h2

2

(
∂x∂tψ̄

h · ∂xψh + ∂xψ̄
h · ∂x∂tψh

)
dx,

(II) :=

∫
R

Υh
d (x, t)

(
∂tψ̄

hψh + ψ̄h∂tψ
h
)
dx,

(III) :=

∫
R
∂tΥ

h
d (x, t)

∣∣ψh∣∣2 dx,
(IV) :=

J−1∑
j=0

K−1∑
k=0

η2
k

2

(
∂tµ

h
)
jk

∆y∆η.

First, a straightforward calculation shows (I) + (II) = 0, since

(I) + (II) = −
∫
R

h2

2

(
∂tψ̄

h∂xxψ
h + ∂xxψ̄

h∂tψ
h
)
dx+

∫
R

Υh
d

(
∂tψ̄

hψh + ψ̄h∂tψ
h
)
dx

=

∫
R
∂tψ̄

h

(
−h

2

2
∂xxψ

h + Υh
dψ

h

)
+

(
−h

2

2
∂xxψ̄

h + Υh
d ψ̄

h

)
∂tψ

hdx

=

∫
R
∂tψ̄

h
(
ih∂tψ

h
)

+
(
−ih∂tψ̄h

)
∂tψ

hdx = 0.

For simplicity we will, from now on, denote

Ghj (t) ≡ Gh (t, x, yj) =

∫
R
V (x, yj)

∣∣ψh(t, x)
∣∣2 dx ≥ 0,

as well as

Fhj (t) ≡ Fh (yj , t) = −
∫
R
∂yV (x, yj)

∣∣ψh∣∣2 dx.
A key observation is that Gh is in fact Lipschitz with a Lipschitz constant L > 0
independent of h, since∣∣Ghj+1 −Ghj

∣∣ =

∣∣∣∣∫
R

[V (x, yj+1)− V (x, yj)]
∣∣ψh∣∣2 dx∣∣∣∣

≤
∫
R
|∂yV (x, ξ)| |yj+1 − yj |

∣∣ψh∣∣2 dx
for some ξ ∈ (yj , yj+1). Thus∣∣Ghj+1 −Ghj

∣∣ ≤ ‖∂yV (x, ξ)‖L∞

∥∥ψh∥∥2

L2 |yj+1 − yj | = ‖∂yV (x, ξ)‖L∞ ∆y =: L∆y,

since
∥∥ψh∥∥

L2 =
∥∥ψhin∥∥L2 = 1, in view of mass conservation established in Theorem

2.4. In addition, we have that Fhj is uniformly bounded, i.e.,

(4.2)
∣∣Fhj ∣∣ =

∣∣∣∣∫
R
∂yV (x, yj)

∣∣ψh∣∣2 dx∣∣∣∣ ≤ ‖∂yV (x, ξ)‖L∞

∥∥ψh∥∥2

L2 = L.
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Coming back to (III), we first note

∂tΥ
h
d (x, t) =

J−1∑
j=0

K−1∑
k=0

V (x, yj)
(
∂tµ

h
)
jk

∆y∆η

= −
J−1∑
j=0

K−1∑
k=0

V (x, yj)
[
ηk
(
Dyµ

h
)
jk

+ Fhj
(
Dηµ

h
)
jk

]
∆y∆η

= −
J−1∑
j=0

K−1∑
k=0

V (x, yj) ηk
(
Dyµ

h
)
jk

∆y∆η,

where the last equality follows from the fact that we have a telescoping series in k
with zero boundary conditions. Recalling (2), (III) can be written as

(III) = −
J−1∑
j=0

K−1∑
k=0

Ghj ηk
(
Dyµ

h
)
jk

∆y∆η

= −
J−1∑
j=0

K−1∑
k=0

Ghj
ηk + |ηk|

2

(
µhjk − µhj−1,k

)
∆η

−
J−1∑
j=0

K−1∑
k=0

Ghj
ηk − |ηk|

2

(
µhj+1,k − µhj,k

)
∆η

=

J−1∑
j=0

K−1∑
k=0

ηk + |ηk|
2

µhjk
(
Ghj+1 −Ghj

)
∆η+

J−1∑
j=0

K−1∑
k=0

|ηk| − ηk
2

µhjk
(
Ghj−1 −Ghj

)
∆η,

where summation by parts is used in the last equality. In view of the Lipschitz
property above, it is then straightforward to estimate (III) via

(III) ≤ L
J−1∑
j=0

K−1∑
k=0

|ηk|µhjk∆y∆η.

Similarly, one proves that

(IV) = −
J−1∑
j=0

K−1∑
k=0

η2
k

2
Fhj
(
Dηµ

h
)
jk

∆y∆η

= −
J−1∑
j=0

K−1∑
k=0

η2
k

2

Fhj +
∣∣Fhj ∣∣

2

(
µhjk − µhj,k−1

)
∆y

−
J−1∑
j=0

K−1∑
k=0

η2
k

2

Fhj −
∣∣Fhj ∣∣

2

(
µhj,k+1 − µhjk

)
∆y

=

J−1∑
j=0

K−1∑
k=0

η2
k+1 − η2

k

2

Fhj +
∣∣Fhj ∣∣

2
µhjk∆y +

J−1∑
j=0

K−1∑
k=0

η2
k − η2

k−1

2

Fhj −
∣∣Fhj ∣∣

2
µhjk∆y

=

J−1∑
j=0

K−1∑
k=0

(
ηk +

∆η

2

)
∆η

Fhj +
∣∣Fhj ∣∣

2
µhjk∆y

+

J−1∑
j=0

K−1∑
k=0

(
ηk −

∆η

2

)
∆η

Fhj −
∣∣Fhj ∣∣

2
µhjk∆y,
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where summation by parts is used as before. Combining the coefficients of Fhj and∣∣Fhj ∣∣, respectively, this is equal to

(IV) =

J−1∑
j=0

K−1∑
k=0

ηkF
h
j µ

h
jk∆y∆η +

J−1∑
j=0

K−1∑
k=0

∆η

2

∣∣Fhj ∣∣µhjk∆y∆η

≤ L
J−1∑
j=0

K−1∑
k=0

|ηk|µhjk∆y∆η + L

J−1∑
j=0

K−1∑
k=0

∆η

2
µhjk∆y∆η.

In summary, we thus find

d

dt
Ed ≤ 2L

J−1∑
j=0

K−1∑
k=0

|ηk|µhjk∆y∆η + L

J−1∑
j=0

K−1∑
k=0

∆η

2
µhjk∆y∆η

≤ 2L

J−1∑
j=0

K−1∑
k=0

η2
kµ

h
jk∆y∆η

 1
2

J−1∑
j=0

K−1∑
k=0

µhjk∆y∆η

 1
2 +L

J−1∑
j=0

K−1∑
k=0

∆η

2
µhjk∆y∆η.

Using the fact that
J−1∑
j=0

K−1∑
k=0

µhjk∆y∆η = C

is a conserved quantity with respect to time, we consequently find the following esti-
mate:

d

dt
Ed (t) ≤ 2

3
2LC

1
2

√
Ed (t) +

LC

2
∆η

≤ Ed (t) + 2L2C +
LC

2
∆η ≡ Ed (t) + C1.

By Gronwall’s inequality, this yields

Ed (t) ≤ (C1 + Ed(0)) et − C1,

which gives the desired bound independent of h.

Remark 4.2. It is easy to find a sharper bound of the energy by considering times
t ≤ e and t > e, respectively, but the estimate above is sufficient for our purposes.

4.2. The classical limit of the s-SLE system. In this section, we shall per-
form the limit h → 0+ of the s-SLE system (4.1). By proving that it converges, as
h→ 0+, to the semidiscretized version of the coupled Liouville system (3.2)–(3.3), we
infer that it is possible to choose a spatial meshing strategy such that ∆y,∆η ∼ O(1).

To this end, we first note that the a priori bounds on the mass and energy obtained
in Theorems 2.4 and 4.1, together with our assumptions on V ≥ 0, imply that the
solution ψh of (4.1) is uniformly bounded in L2 (R) and h-oscillatory. Thus, there
exists an associated Wigner measure ν(, ·, ·, t) ∈ M+(Rx × Rξ) and we directly infer
that

Fh (y, t)
h→0+−→ −

∫∫
R2

∂yV (x, y) ν(t, x, ξ) dx dξ =: F 0 (y, t)

by the same arguments as in [15] (recall that x, t are taken to be continuous in (4.1)).
In the following we shall use the shorthand notation Fhj (t) and F 0

j (t), respectively, as
given in (2).
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4.3. Convergence of µh. Next, we turn to the solution µh within (4.1), which
we recall to be discretized via an upwind scheme. We shall prove the following result
about its limiting behavior as h → 0+. In the following, Cb(R) denotes the space of
continuous and bounded functions on R.

Proposition 4.3. Let µhjk (t) ∈ Cb (Rt) be a solution of

d

dt
µhjk (t) = −ηkDyµ

h
jk − Fhj (t)Dηµ

h
jk,

and µjk (t) ∈ Cb (Rt) be a solution of

d

dt
µjk (t) = −ηkDyµjk (t)− F 0

j (t)Dηµjk (t) ,

where j = 0, . . . , J − 1 and k = 0, . . . ,K − 1, such that initially µhjk (0) = µjk (0).
Then for any given T > 0,

µhjk
h→0+−→ µ0

jk ≡ µjk, as h→ 0+ in L∞ [0, T ] ,

up to the extraction of subsequences.

Proof. Denote the difference between µhjk and its limit by

ehjk (t) = µhjk(t)− µjk(t),

which solves the following system of equations:

d

dt
ehjk (t) = −ηkDye

h
jk − Fhj (t)Dηe

h
jk + F 0

j (t)Dηµjk − Fhj (t)Dηµjk

= − 1

2∆y
(ηk + |ηk|)

(
ehjk − ehj−1,k

)
− 1

2∆y
(ηk − |ηk|)

(
ehj+1,k − ehjk

)
− 1

2∆η

(
Fhj (t) +

∣∣Fhj (t)
∣∣) (ehjk − ehj,k−1

)
− 1

2∆η
(Fhj (t)−

∣∣Fhj (t)
∣∣) (ehj,k+1 − ehjk

)
+

1

2∆η
(F 0
j (t) +

∣∣F 0
j (t)

∣∣− Fhj (t)−
∣∣Fhj (t)

∣∣) (µjk − µj,k−1)

+
1

2∆η
(F 0
j (t)−

∣∣F 0
j (t)

∣∣− Fhj (t) +
∣∣Fhj (t)

∣∣) (µj,k+1 − µjk) ,

subject to initial data ehjk (0) = 0, since µhjk(0) = µjk(0). For simplicity we shall write
the system above in vector form, i.e.,

(4.3)
d

dt
Eh(t) = Ah (t)Eh (t) + bh (t) , Eh (0) = 0.

Here Eh (t) and bh (t) are both JK-dimensional vectors, Ah (t) is a continuous JK ×
JK matrix-valued function of t ∈ (0, T ], and

bh(j−1)K+k (t) =
1

2
(F 0
j (t) +

∣∣F 0
j (t)

∣∣− Fhj (t)−
∣∣Fhj (t)

∣∣)µjk − µj,k−1

∆y

+
1

2
(F 0
j (t)−

∣∣F 0
j (t)

∣∣− Fhj (t) +
∣∣Fhj (t)

∣∣)µj,k+1 − µjk
∆η
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for j = 1, . . . , J , and k = 1, . . . ,K. Clearly,
∥∥Ah (t)

∥∥
∞ ≤ C, where C is a constant

independent of h, due to the fact that
∣∣Fhj (t)

∣∣ and
∣∣F 0
j (t)

∣∣ are both bounded by some
constants independent of h; see the proof of Theorem 4.1. Classical ODE theory then
implies (see, e.g., [27]), that there is a matrix-valued function Sh (t, s) such that the
solution of (4.3) is given by Duhamel’s principle:

Eh (t) = Sh (t, 0)Eh (0) +

∫ t

0

Sh (t, s) bh (s) ds

=

∫ t

0

Sh (t, s) bh (s) ds.

Moreover, there exists a bound on the propagator S of the

(4.4)
∥∥Sh (t, s)

∥∥
∞ ≤ C3,

where C3 is a constant independent of h.
Next, we recall that Fhj (t) = Fh (yj , t) is uniformly bounded, by (4.2), and

Fhj (t)
h→0+−→ F 0

j (t) = F 0 (yj , t) , as h→ 0+,

pointwise (up to the extraction of subsequences). In addition, Fhj (t) is easily seen to
be equicontinuous in time, by the same type of argument as in [15]. Namely, by using
Schrödinger’s equation, one finds∣∣∂tFhj (t)

∣∣ =

∣∣∣∣∫
R
∂yV (x, yj)

(
∂tψ̄

hψh + ψ̄h∂tψ
h
)
dx

∣∣∣∣
=

∣∣∣∣∫
R

ih

2
∂yV (x, yj)

(
ψ̄h∂xxψ

h − ∂xxψ̄hψh
)
dx

∣∣∣∣ .
Integrating by parts, it reads∣∣∂tFhj (t)

∣∣ =
h

2

∣∣∣∣∫
R
∂x
(
∂yV (x, yj) ψ̄

h
)
∂xψ

h − ∂xψ̄h∂x
(
∂yV (x, yj)ψ

h
)
dx

∣∣∣∣
=
h

2

∣∣∣∣∫
R
∂xyV (x, yj)

(
ψ̄h∂xψ

h − ∂xψ̄hψ
)
dx

∣∣∣∣
≤ h ‖∂xyV (x, y)‖L∞(R2) ‖ψ

h‖L2(R)‖∂xψh‖L2(R) ≤ C (t) ,

where the last inequality follows from the h-oscillatory nature of ψh.
This consequently implies that

bh (t)
h→0+−→ 0, as h→ 0+,

locally uniformly in t, up to extraction of some subsequence, which in turn yields
convergence of Eh (t) itself, as can be seen by considering its mth component, for
m = 1, . . . , JK:

∣∣Ehm (t)
∣∣ =

∣∣∣∣∣
∫ t

0

JK∑
n=1

Shmn (t, s) bhn (s) ds

∣∣∣∣∣
≤ C3

JK∑
n=1

∫ t

0

∣∣bhn (s)
∣∣ ds→ 0, as h→ 0+,

where we have used (4.4).
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4.4. Equation for ν and the main result. With the convergence theorem of
µh in hand, we can now state the following result, which represents the final step in
our analysis.

Proposition 4.4. Assume (A1) and (A2) and let Θ[Υh
d ] be the pseudodifferen-

tial operator defined in (3.1) applied to the trapezoidal quadrature approximation of
Υh (x, t). Then it holds that

Θ[Υh
d ]wh (x, ξ, t)

h→0+−→ −∂xΥ0
d (x, t) ∂ξν (x, ξ, t) in L∞ ([0, T ];A′ (Rx × Rξ) w–∗) ,

where

Υ0
d (x, t) =

J−1∑
j=0

K−1∑
k=0

V (x, yj)µ
0
jk∆y∆η.

The proof of this proposition follows from the same arguments as given in the
proof of Lemma 4.5 in [15], and we therefore omit it here.

We are now in the position to state the main result of this section.

Theorem 4.5. Let assumptions (A1) and (A2) hold. Then, for any T > 0, the
solution of semidiscretized SLE system (4.1) satisfies, up to extraction of subsequences,

wh[ψh]
h→0+−→ ν in L∞([0, T ];A′ (Rx × Rξ)) w–∗, µhjk

h→0+−→ µ0
jk in L∞ [0, T ] ,

where j = 0, . . . , J − 1 and k = 0, . . . ,K − 1. In addition, ν and µjk solve the
semidiscretized Liouville system

∂tν + ξ∂xν − ∂xΥ0
d (x, t) ∂ξν = 0,

d

dt
µ0
jk + ηkDyµ

0
jk + F 0

j Dηµ
0
jk = 0.

Remark 4.6. Numerical experiments show that the same type of behavior is true
not only for mixed spectral-finite difference schemes but also for purely spectral
schemes; see [15]. Our proof, however, only works for the former case due to the
required positivity of the energy.

5. Time-discretization. We finally turn to the time-discretization of our split-
ting scheme (in one dimension d = n = 1) as given by (2.3), (2.5). In this section we
want to show that it is asymptotic preserving in the sense that in the limit h → 0+,
it yields the corresponding time-splitting scheme of (3.2)–(3.3), i.e.,

(5.1)


∂tν + ξ∂xν = 0,

d

dt
µjk + ηk (Dyµ)jk + F 0

j (Dηµ)jk = 0,

and

(5.2)


∂tν − ∂xΥ0

d (x, t) ∂ξν = 0,

d

dt
µjk = 0.

In turn, this shows that ∆t ∼ O(1) can be chosen independent of the small pa-
rameter h. To this end, it suffices to show that in our time-spitting method ψh is
h-oscillatory, i.e.,

sup
0<h≤1

∥∥h∂xψh∥∥L2
x
≤ C,
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where the constant C depends only on the final time T . Then, following the arguments
given in the previous section, one has convergence of the forcing term Fhj as h → 0.
In turn, this yields convergence of our numerical scheme toward the corresponding
scheme of the limiting equation, as stated in (5.1) and (5.2).

We consequently consider the splitting scheme (2.3), (2.5) and recall that in both
splitting steps, the first equation, i.e., the quantum part is solved exactly in time.

A straightforward calculation then shows that
∥∥h∂xψh∥∥2

L2
x

is conserved in the first

splitting step (2.3), i.e.,

d

dt

∫
h2
∣∣∂xψh∣∣2 dx = h2

∫
∂txψh∂xψ

h + ∂xψh∂txψ
hdx

= −h2

∫
∂tψh∂xxψ

h + ∂xxψh∂tψ
hdx

= −h2

∫
− ih

2
∂xxψh∂xxψ

h + ∂xxψh
ih

2
∂xxψ

hdx = 0.

Next, we shall show that
∥∥h∂xψh∥∥2

L2
x

remains bounded during the second splitting step

(2.5): Recall that Υh
d (x, t) is in fact independent of t, due to the fact that d

dtµ
h
jk = 0

in this step. Since

∂txψ
h = − i

h
∂xΥh

d (x, t)ψh − i

h
Υh
d (x, t) ∂xψ

h,

we find

d

dt

∫
h2
∣∣∂xψh∣∣2 dx = h2

∫
∂txψh∂xψ

h + ∂xψh∂txψ
hdx

= h

∫
i
(
∂xΥh

d (x, t)ψh + Υh
d (x, t) ∂xψh

)
∂xψ

h

− i∂xψh
(
∂xΥh

d (x, t)ψh + Υh
d (x, t) ∂xψ

h
)
dx

= −2h

∫
Im
(
∂xΥh

d (x, t)ψh∂xψ
h
)
dx

≤ 2
∥∥∂xΥh

d (x, t)
∥∥
L∞

x

∥∥ψh∥∥
L2

x

∥∥h∂xψh∥∥L2
x
,

where∥∥∂xΥh
d (x, t)

∥∥
L∞

x
=

∥∥∥∥∥∥
J−1∑
j=0

K−1∑
k=0

∂xV (x, yj)µ
h
jk∆y∆η

∥∥∥∥∥∥
L∞

x

≤ ‖∂xV (x, y)‖L∞ .

Since
∥∥ψh∥∥

L2
x

= 1 is conserved by our scheme, we thus have

d

dt

∥∥h∂xψh∥∥L2
x
≤ C0,

where C0 = ‖∂xV (x, y)‖L∞ is some constant independent of h. Hence, in the second
splitting step (2.5) one has∥∥h∂xψh,n+1

∥∥
L2

x
≤
∥∥h∂xψh,∗∥∥L2

x
+ C0∆t =

∥∥h∂xψh,n∥∥L2
x

+ C0∆t,

where we used the fact that
∥∥h∂xψh∥∥L2

x
is conserved during (2.3). In summary, this

yields ∥∥h∂xψh,n∥∥L2
x
≤
∥∥h∂xψhin∥∥L2

x
+ C0tn ≤

∥∥h∂xψhin∥∥L2
x

+ C0T,
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where the right-hand side is some constant independent of h thanks to the assumption
on initial data (A2). This shows that ψh,n is h-oscillatory for any n ∈ N, with
0 ≤ tn ≤ T , and the result follows from the arguments in the previous section.

Remark 5.1. Note that all estimates above remain valid in the context of a Strang
splitting scheme.

6. Numerical examples. In this final section, we shall report on a few numer-
ical examples, which illustrate the validity of our algorithm and meshing strategy. To
this end, we choose an interaction potential of the form

V (x, y) =
(x+ y)

2

2

and solve the one-dimensional SLE system on the interval x ∈ [−π, π] and y, η ∈
[−2π, 2π] with periodic boundary conditions.

Example 6.1 (∆t independent of h). We choose initial conditions for the SLE
system (1.2) as follows:

ψin (x) = exp
(
−25 (x+ 0.2)

2
)

exp

(
−i ln (2 cosh (5 (x+ 0.2)))

5h

)
and

µin (y, η) =

{
CN exp

(
− 1

1−y2

)
exp

(
− 1

1−η2

)
for |y| < 1, |η| < 1,

0 otherwise.

Here, CN > 0 is the normalization factor such that
∫∫

R2 µindy dη=1. Here we use the
time-splitting method with the spectral-upwind scheme (i.e., with an upwind scheme
for the Liouville’s equation). For h = 1

256 ,
1

1024 ,
1

4096 , we fix the stopping time T = 0.5

and choose ∆x = 2πh
16 , ∆y = ∆η = 4π

128 . For each choice of h, we shall solve the
SLE system first with ∆t independent of h and, second, with ∆t = o (h). To be more
specific, we compare the two cases where ∆t = 0.01 and ∆t = h

10 . It can be observed
from Figure 1 that the macroscopic position and current densities associated to the
solution of Schrödinger’s equation agree well with each other.

In addition, we compare the numerical values of µ computed by ∆t = 0.01 and
∆t = h

10 (denoted as µ1 and µ2, respectively). As shown in Table 1, the error is
insensitive in h, showing a uniform in h convergence in ∆t.

Example 6.2 (numerical error as h decreases). In this example, we choose the
same initial data for µin as before and

ψin (x) = exp
(
−5 (x+ 0.1)

2
)

exp

(
i sinx

h

)
.

Now, we fix ∆t = 0.01, a stopping time T = 0.4, and ∆y = ∆η = 4π
128 . We choose

∆x = 2πh
16 for h = 1

64 ,
1

128 ,
1

256 ,
1

512 ,
1

1024 ,
1

2048 , respectively. The reference solution is

computed with ∆t = h
10 . From the `2-error plotted in Figure 2, one can see that

although the error in the wave function increases as h decreases, the error for the
position density |ψh|2 as well as for the macroscopic quantity µ does not change
noticeably. This shows that h-independent time steps can be taken to accurately
obtain physical observables, but not the wave function ψh itself.



918 DI FANG, SHI JIN, AND CHRISTOF SPARBER

Fig. 1. Numerical solutions at T = 0.5 in Example 6.1 computed by the time-splitting method
using different meshing strategies. First row: h = 1

256
; second row: h = 1

1024
; third row: h = 1

4096
.

Example 6.3 (convergence in time). Finally, to examine the convergence in time
of our scheme, let the initial data be as in the example before. Fix h = 1

8192 , a

stopping time T = 0.4, and a spatial discretization with ∆x = 2πh
16 , ∆y = ∆η = 4π

128 .
Choose ∆t = 0.4

32 ,
0.4
64 ,

0.4
128 ,

0.4
256 ,

0.4
512 ,

0.4
1024 . The reference solution is computed with

∆t = 0.4
81920 . The `2-error is plotted in Figure 3, which shows first order accuracy

in time of our scheme. Again, we see that the wave function exhibits errors several
orders of magnitude larger than the physical observable densities.
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Table 1

The relative `2-difference (defined as
‖µ1−µ2‖`2
‖µ2‖`2

) for various h.

h 1/256 1/1024 1/4096
‖µ1−µ2‖`2
‖µ2‖`2

1.65e-03 1.69e-03 1.70e-03

Fig. 2. Example 6.2: `2-errors of the wave function ψh, position density |ψh|2, and µ for
various h. Fix ∆t = 0.01. For h = 1

64
, 1
128

, 1
256

, 1
512

, 1
1024

, 1
2048

, choose ∆x = 2πh
16

, respectively.

The reference solution is computed with ∆t = h
10

.

Fig. 3. Example 6.3: `2-errors of the numerical solutions for various ∆t and fixed h = 1
8192

,

∆x = πh
16

, ∆y = ∆η = 4π
128

. It shows first order convergence of the scheme in time. The reference

solution is computed with ∆t = 0.4
81920

.
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