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HYPOCOERCIVITY BASED SENSITIVITY ANALYSIS AND
SPECTRAL CONVERGENCE OF THE STOCHASTIC GALERKIN
APPROXIMATION TO COLLISIONAL KINETIC EQUATIONS

WITH MULTIPLE SCALES AND RANDOM INPUTS∗

LIU LIU† AND SHI JIN‡

Abstract. In this paper we provide a general framework to study a general class of linear
and nonlinear kinetic equations with random uncertainties from the initial data or collision kernels,
and their stochastic Galerkin (SG) approximations, in both incompressible Navier–Stokes and Euler
(acoustic) regimes. First, we show that the general framework put forth in [C. Mouhot and L.
Neumann, Nonlinearity, 19 (2006), pp. 969–998; M. Briant, J. Differential Equations, 259 (2005),
pp. 6072–6141] based on hypocoercivity for the deterministic kinetic equations can be easily adopted
for sensitivity analysis for random kinetic equations, which gives rise to an exponential convergence
of the random solution toward the (deterministic) global equilibrium, under suitable conditions on
the collision kernel. Then we use such theory to study the SG methods for the equations, establish
hypocoercivity of the SG system and regularity of its solution, and study spectral accuracy and
exponential decay in time of the numerical error of the method in a weighted Sobolev norm.
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1. Introduction. Consider the initial value problem for kinetic equations of the
form  ∂tf +

1

εα
v · ∇xf =

1

ε1+α
Q(f),

f(0, x, v, z) = fin(x, v, z), x ∈ Ω ⊂ Td, v ∈ Rd, z ∈ Iz ⊂ R,
(1.1)

where f(t, x, v, z) is the distribution of particles in the phase space depending on
time t, particle position x, velocity v, and random variable z, and d ≥ 1 denotes
the dimension of the spatial and velocity spaces. z is a random variable that lies
in domain Iz ⊂ R. The operator Q models the collisional interactions of particles,
which is either binary or between particles against a surrounding medium. ε is the
Knudsen number, the dimensionless ratio of particle mean free path over the domain
size. α = 1 is referred to as the incompressible Navier–Stokes scaling, while α = 0
corresponds to the Euler (or acoustic in this article) scaling. The periodic boundary
condition for the spatial domain Ω = Td is assumed here.
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The main goal of this paper is to study the above kinetic equation and its numeri-
cal approximation under the influence of random uncertainty. Since kinetic equations
are not first-principle physical equations, there are inevitably modeling errors, in-
complete knowledge of the interaction mechanism, and imprecise measurement of the
initial and boundary data, which contribute uncertainties to the equations. Under-
standing the impact of these uncertainties is crucial to the simulation and validation
of the models, in order to provide more reliable predictions, calibrations, and improve-
ments of the models. In this paper we consider the uncertainty coming from initial
data and collision kernels. The uncertainty is described by the random variable z,
which lies in the random space Iz with a probability measure π(z)dz, then the solution
f = f(t, x, v, z) depends on z. The sensitivity analysis aims to study how randomness
of the initial data and collision kernel (the “input”) propagates in time and how it
affects the solution in the long time (the “output”) [40]. It is an essential part of the
so-called uncertainty quantification for kinetic equations.

For a general class of linear collisional kinetic models in the torus without uncer-
tainty variable z, including the linearized Boltzmann equation for hard spheres, the
linearized Landau equation with hard and moderately soft potentials, and the semi-
classical linearized fermionic and bosonic relaxation models, based on the hypocoer-
civity theory established by Mouhot and Neumann [38], Briant [6] proved explicit coer-
civity estimates for some modified Sobolev norms on the associated integro-differential
operator. For the full nonlinear models including the Boltzmann, Landau, and semi-
classical relaxation model of quantum Boltzmann equation, [6] deduced the existence
of classical solutions near the global equilibrium and obtained explicit estimates on
the exponential convergence rate toward equilibrium. We first show that this general
hypocoecivity theory can be easily adopted for the uncertain kinetic equation (1.1)
to obtain a similar theory of convergence to the (deterministic) global equilibrium,
in a weighted Sobolev norm including the random space. For the case of random
initial data, the analysis is basically the same as those in [6] except one has to check
that the estimate constants are independent of z and the estimates need to be ex-
tended for the high-order derivatives in z. When the collision kernel is random with
bounded z-derivatives, for the Boltzmann equation, while the nonlinear portion of
the collision operator needs a slight generation to include the high-order derivative
of the collision kernel in z, we adopt the ideas in [26, 34] with some new estimates
for the linearized collision operator. The results show that the impact of the ran-
dom uncertainty will diminish in time, namely, the long time solution is insensitive
to the random perturbation of the initial data and the collision kernel, for both the
incompressible Navier–Stokes and acoustic scalings.

To numerically solve such equations with uncertainties, one of the standard and ef-
ficient numerical methods is the generalized polynomial chaos approach in the stochas-
tic Galerkin (referred as gPC-SG) framework [15, 17, 42, 30, 22, 23]. Compared with
the classical Monte Carlo method, the gPC-SG approach enjoys a spectral accuracy
in the random space—if the solution is sufficiently smooth—while the Monte Carlo
method converges with only half-order accuracy. In the second part of this paper,
by extending the hypocoercivity analysis to the gPC-SG system, using a weighted
norm first introduced by Shu and Jin [39], we prove the exponential decay in time to-
ward the global equilibrium and the spectral accuracy of the gPC-SG approximation
in both incompressible Navier–Stokes and acoustic scalings, under the assumption
of small O(ε) random perturbation to the collision kernel and boundedness of the
random domain Iz, with some additional assumption for the orthogonal polynomials
used in the gPC approximation.
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While uncertainty quantification has been a hot topic in scientific and engineering
computing in the last two decades, research on uncertainty quantification for kinetic
equations has been relatively recent. We refer to recent review articles [23, 11] and
some recent works [30, 22, 10, 27, 26, 8, 33, 34, 28, 31, 29, 39, 1] in this direction. The
first sensitivity analysis similar to this paper for the linear transport equation, with
uniform (in the Knudsen number) spectral convergence of the gPC-SG approximation,
was given by Jin, Liu, and Ma in [26]. For similar theory for linear transport equation
with anisotropic collision kernel, see [27, 34]. Uniform regularity for general linear
transport equations conserving mass, based on hypocoercivity established in [13], was
obtained by Li and Wang in [33]. The first regularity for a nonlinear kinetic equation,
the Vlasov–Poisson–Fokker–Planck system with random initial data in both high-field
and parabolic regimes, was established by Jin and Zhu [31]. Shu and Jin obtained
uniform regularity and spectral convergence of the gPC-SG system to a nonlinear
Fokker–Planck–incompressible Navier–Stokes system with uncertain initial data in
[39]. In this paper, not only are our results new on the Boltzmann equation with
uncertainties in both the continuous and the discrete gPC-SG equations, we also give
a unified approach, for both incompressible Navier–Stokes (diffusive) and acoustic
(Euler) scalings, which applies to a wide class of both linear and nonlinear kinetic
(such as Boltzmann, Landau, the relaxation model of quantum Boltzmann) equations
with uncertainties in initial data and collision kernels.

As we finished this manuscript, Zhu announced similar convergence results for the
Boltzmann equation with random initial data and the Euler scaling, and the stability
and regularity of its stochastic Galerkin approximation [43], using techniques specific
to the Boltzmann equation in the whole-space case [18, 14].

This paper is organized as follows. Section 2 provides the theoretical framework
and hypocoercivity assumptions for general kinetic models and gives the results on
exponential decay to the global equilibrium. The proof of some of the convergence
results is given in section 3. In section 4, we prove that the theoretical results of section
2 are valid for the Boltzmann equation with both random initial data and random
collision kernel. Section 5 proves the hypocoercivity, and exponential time decay of
the solution of the gPC-SG approximation to the uncertain Boltzmann equation, with
numerical error shown to be spectrally accurate and exponentially decaying in time.
The paper is concluded in section 6.

2. General framework and convergence to the global equilibrium. In
this section, we describe the abstract framework and assumptions of the hypocoerciv-
ity theory, introduced in [38, 6], extend them to include the random dependence, and
then give the results about convergence toward global equilibrium for the nonlinear
kinetic equations with uncertainty. The results are stated for the case of random ini-
tial data. The case of random collision kernel can be included in the same framework.
See subsection 4.3 for the Boltzmann equation.

2.1. Theoretical framework: Perturbative setting and small scalings.
In what follows L is used for both the linear models and the linearized models for
nonlinear equations such as Boltzmann, Landau, or semiclassical relaxation models,
etc. Suppose g ∈ L2(Ω× Rd) solves the linear kinetic equation

(2.1) ∂tg +
1

εα
v · ∇xg =

1

ε1+α
L(g) ,

where L is a linearized collision operator depending on the precise form of the collision
operator Q. As summarized in [9], the idea is to employ the hypocoercivity of the
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linearized operator

G =
1

ε1+α
L − 1

εα
T ,

where T = v · ∇x is the streaming operator, using the dissipative properties of L
and the conservative properties of T . The aim is to find a functional η[g] which is
equivalent to the square of the norm of a Banach space, for example,

H1
x,v =

g |
∫

Ω×Rd

∑
|i|+|j|≤1

||∂xi∂vjg||2L2
x,v
dxdv <∞

 ,

in which L2
x,v = {g |

∫
Ω×Rd g

2 dxdv <∞}, such that

κ1||g||H1
x,v
≤ η[g] ≤ κ2||g||H1

x,v
for g ∈ H1

x,v,

which leads to
d

dt
η[g(t)] ≤ −κ||g(t)||H1

x,v
, t > 0,

with constants κ1, κ2, κ > 0. Then one concludes the exponential convergence of g in
H1
x,v. The obvious choice of η[g] = c1 ||g||2L2

x,v
+ c2 ||∇xg||2L2

x,v
+ c3 ||∇vg||L2

x,v
does not

work. The key idea, first seen in [41] and implemented in [38], is to add the “mixing
term” c〈∇xg, ∇vg〉L2

x,v
to the definition of η[g], that is,

d

dt
〈∇xg, ∇vg〉L2

x,v
= −||∇xg||2L2

x,v
+ 2〈∇xL(g), ∇vg〉L2

x,v
.

It was proved in [38] that if the linear operator L satisfies some assumptions, then
L − v · ∇x generates a strongly continuous evolution semigroup etG on Hs

x,v, which
satisfies

(2.2) ||etG(I−ΠG)||Hsx,v ≤ C exp[−τt],

for some explicit constants C, τ > 0 depending only on the constants determined by
the equation itself. This result shows that apart from 0, the spectrum of G is included
in

{ξ ∈ C : Re(ξ) ≤ −τ}.
The perturbative setting. Equations defined in (1.1) admit a unique global

equilibrium in the torus, denoted by M which is independent of t, x. Now consider
the linearization around this equilibrium and perturbations of the solution of the form

(2.3) f =M+ εMh ,

with

M =
1

(2π)
d
2

e−
|v|2

2 ,

and M =
√
M. The linear (or linearized) operator L is acting on L2

v = {f |
∫
Rd f

2 dv <
∞}, with the kernel denoted by N(L) = Span{ϕ1, . . . , ϕn}. {ϕi}1≤i≤n is an orthonor-
mal family of polynomials in v corresponding to the manifold of local equilibria for
the linearized kinetic models. The orthogonal projection on N(L) in L2

v is defined by

(2.4) ΠL(h) =

n∑
i=1

(∫
Rd
hϕi dv

)
ϕi,
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where ΠL is the projection on the “fluid part” and I − ΠL is the projection on the
kinetic part, with I the identity operator. The global equilibrium is then

(2.5) ΠG(h) =

n∑
i=1

(∫
Td×Rd

hϕi dxdv

)
ϕi,

which is independent of x and t and is the orthogonal projection on L2
x,v.

Small scalings and main idea for the full equation. With the small scaling
ε, the problem becomes more interesting and challenging. The project was initiated
by Bardos, Golse, and Levermore [3, 4] to derive the fluid limits which include in-
compressible Navier–Stokes, compressible Euler equations, and the acoustic system
from the DiPerna–Lions renormalized solutions [12]. See, for example, [16, 32]. Here
we will study the solution in the perturbative setting (2.3), which guarantees that
the solution will be classical, thus allowing one to conduct estimates in the Sobolev
space [19]. Briant [6] considers the kinetic equation (1.1) with the incompressible
Navier–Stokes scaling (α = 1). With (2.3), h satisfies

(2.6) ∂th+
1

ε
v · ∇xh =

1

ε2
L(h) +

1

ε
F(h, h) .

Due to the small scaling, if one directly applies the estimates in [38], typically
the v-derivatives contribute to the energy norm by a factor of 1/ε. This prevents one
from having a uniform exponential decay for the v-derivatives. As initiated by Guo
[19], one needs to study the v derivatives of the microscopic part of the solution h.
This allows [6] to construct a new energy norm to capture the structure of L on its
orthogonal part, which, when combined with the previous strategy, leads to a uniform
exponential decay for solutions close to the global equilibrium. The result is uniform
in ε, thus giving a strong convergence in time to the incompressible Navier–Stokes
equations as ε goes to zero, under some assumptions on the initial conditions. Briant
[6] also gives the proof of existence of solutions close to the global equilibrium.

Another important scaling is the compressible Euler (or acoustic) scaling (α = 0),
in which h solves

(2.7) ∂th+ v · ∇xh =
1

ε
L(h) + F(h, h) .

The authors in [24, 32, 25, 21, 2] studied the acoustic limit of the Boltzmann equation
in the framework of classical solutions of the form (2.3). They established the global-
in-time, uniform-in-ε energy estimates for the perturbated solution h and proved its
strong convergence to the distribution function whose dynamics is governed by the
acoustic system, which is the linearization of the homogeneous state of the com-
pressible Euler system. Furthermore, [20] studied the compressible Euler limit of the
Boltzmann equation by using the local Hilbert expansion around the local equilibrium
for smooth solutions, which was first done by Caflisch in [7].

In this paper, we will focus on the incompressible Navier–Stokes and the acoustic
scaling for solutions of the form (2.3).

2.2. Hypocoercivity assumptions. We first discuss the following assump-
tions.

Assumptions on the linear operator L in H1
x,v.

H1. L : L2 = L2(Td × Rd) is closed, self-adjoint on L2
v, and local in t, x. L has

the form L = K − Λ. There is a norm || · ||Λv on Rd, such that ∀h ∈ L2
v, Λ satisfies

the coercivity condition
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(2.8) νΛ
0 ||h||2L2

v
≤ νΛ

1 ||h||2Λv ≤ 〈Λ(h), h〉L2
v
≤ νΛ

2 ||h||2Λv ,

and ∀h ∈ H1
v ,

(2.9) 〈∇vΛ(h), ∇vh〉L2
v
≥ νΛ

3 ||∇vh||2Λv − ν
Λ
4 ||h||2L2

v
,

where (νΛ
s )1≤s≤4 > 0 are constants depending on the operators and the velocity space.

One further assumes that ∀h, g ∈ L2
v,

(2.10) 〈L(h), g〉L2
v
≤ CL ||h||Λv ||g||Λv .

H2. K has a regularizing effect. For all δ > 0, there exists some explicit constant
C(δ) > 0 such that ∀h ∈ H1

v ,

(2.11) 〈∇vK(h), ∇vh〉L2
v
≤ C(δ) ||h||2L2

v
+ δ ||∇vh||2L2

v
.

H3. L has a finite dimensional kernel

N(L) = Span{ϕ1, . . . , ϕn}.

ΠL(h) given in (2.4) is the orthogonal projection in L2
v on N(L). L has the local

coercivity property: There exists λ > 0 such that ∀h ∈ L2
v,

(2.12) 〈L(h), h〉L2
v
≤ −λ ||h⊥||2Λv ,

where

h⊥ = h−ΠL(h)

stands for the microscopic part of h, which satisfies h⊥ ∈ N(L)⊥ in L2
v.

To extend to higher-order Sobolev spaces, let us first introduce some notation of
multi-indices and Sobolev norms. For two multi-indices j and l in Nd, define

∂jl = ∂/∂vj ∂/∂xl.

For i ∈ {1, . . . , d}, denote by ci(j) the value of the ith coordinate of j and by |j| the

l1 norm of the multi-index, that is, |j| =
∑d
i=1 ci(j). Define the multi-index δi0 by

ci(δi0) = 1 if i = i0 and 0 otherwise. We use the notation

∂αz h = ∂αh.

Denote || · ||Λ := || || · ||Λv ||L2
x
. The Sobolev norms on Hs

x,v and Hs
Λ are defined by

||h||2Hsx,v =
∑

|j|+|l|≤s

||∂jl h||
2
L2
x,v
, ||h||2HsΛ =

∑
|j|+|l|≤s

||∂jl h||
2
Λ .

Define the sum of Sobolev norms of the z derivatives by

||h||2Hs,rx,v =
∑
|m|≤r

||∂mh||2Hsx,v , ||h||2Hs,rΛ
=
∑
|m|≤r

||∂mh||2HsΛ ,

||h||2Hs,rx L2
v

=
∑
|m|≤r

||∂mh||2HsxL2
v
.
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Note that these norms are all functions of z. Define the norms in the (x, v, z) space

||h||2Hsx,vHrz =

∫
Iz

||h||2Hs,rx,v π(z) dz ,

in addition to the sup norm in z variable,

(2.13) ||h||Hs,rx,vL∞z = sup
z∈Iz

||h||Hs,rx,v , ||h||Hsx,vL∞z = sup
z∈Iz

||h||Hsx,v .

Assumptions on the linear operator L in Hs
x,v, s > 1.

H1′. For all s ≥ 1, |j|+ |l| = s such that |j| ≥ 1,

∀h ∈ Hs, 〈∂jl Λ(h), ∂jl h〉L2
x,v
≥ νΛ

5 ||∂
j
l h||

2
Λ − νΛ

6 ||h||2Hs−1
x,v

.

H2′. For all s ≥ 1, ∀ |j|+ |l| = s such that |j| ≥ 1, and for any δ > 0, there exists
an explicit C(δ) such that ∀h ∈ Hs

x,v,

〈∂jlK(h), ∂jl h〉L2
x,v
≤ C(δ) ||h||2

Hs−1
x,v

+ δ||∂jl h||
2
L2
x,v
.

H4. Orthogonality to N(L):

∀h, g ∈ Dom(F) ∩ L2
v, F(g, h) ∈ N(L)⊥,

where Dom(F) stands for the domain of the operator F .
Due to the uncertainties introduced to the system, we also make the following

assumption on the nonlinear term, which is slightly different from [6].

Assumptions on the nonlinear term F .
H5. F : L2

v × L2
v → L2

v is a bilinear symmetric operator such that for all multi-
indexes j and l such that |j|+ |l| ≤ s, s ≥ 0, m ≥ 0,

∣∣∣〈∂m∂jl F(h, h), f〉L2
x,v

∣∣∣ ≤ { Gs,mx,v,z(h, h) ||f ||Λ if j 6= 0,

Gs,mx,z (h, h) ||f ||Λ if j = 0.

Sum up m = 0, . . . , r, then ∃ s0 ∈ N, ∀s ≥ s0, there exists a z-independent CF > 0
such that ∀z, ∑

|m|≤r

(Gs,mx,v,z(h, h))2 ≤ CF ||h||2Hs,rx,v ||h||
2
Hs,rΛ

,

∑
|m|≤r

(Gs,mx,z (h, h))2 ≤ CF ||h||2Hs,rx L2
v
||h||2Hs,rΛ

.

2.3. Convergence to the global equilibrium. Define a positive functional
on Hs

x,v, with a dependence on ε,

|| · ||2Hsε =
∑

|j|+|l|≤s,|j|≥1

ε2 b
(s)
j,l ||∂

j
l · ||

2
L2
x,v

+
∑
|l|≤s

α
(s)
l ||∂

0
l · ||2L2

x,v
+

∑
|l|≤s, i,ci(l)>0

ε a
(s)
i,l 〈∂

δi
l−δi ·, ∂

0
l ·〉L2

x,v
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and the Sobolev norms

||h||2Hs,rε =
∑
|m|≤r

||∂mh||2Hsε , ||h||Hs,rε L∞z
= sup
z∈Iz
||h||Hs,rε .

The proof of the theorems in this section is similar to [6], except that we need to
estimate the (higher-order) derivatives in z. We consider the perturbed form of the
solution (2.3), with initial condition

(2.14) h(0, x, v, z) = hin(x, v, z),

under the incompressible Navier–Stokes scaling (2.6). For results on the acoustic
scaling, see Remark 2.2.

Theorem 2.1. If g is the solution to the linear equation

(2.15) ∂tg +
1

ε
v · ∇xg =

1

ε2
L(g),

then the following hold:
(1) ∀ 0 < ε ≤ εd, for some 0 < εd ≤ 1, the operator Gε defined by

(2.16) Gε(g) =
1

ε2
L(g)− 1

ε
v · ∇xg

generates a C0-semigroup on Hs
x,v.

(2) ∃C(s)
G , (b

(s)
j,l ), (α

(s)
l ), (a

(s)
j,l ) > 0 such that ∀ 0 < ε ≤ εd,

|| · ||2Hsε ∼

|| · ||2L2
x,v

+
∑
|l|≤s

||∂0
l · ||2L2

x,v
+ ε2

∑
|l|+|j|≤s,|j|≥1

||∂jl · ||
2
Lx,v

 ,

and ∀ g in Hs
x,v and ∀z,

〈Gε(g), g〉Hsε ≤ −C
(s)
G ||g −ΠGε(g)||2HsΛ .

(3) For solution to the nonlinear equation (2.6), ∀hin ∈ Hs,r
x,v ∩ N(Gε)⊥, h ∈

Dom(Γ) ∩ Hs
x,v, ∀m ≤ r and s ∈ N, then

(2.17)
d

dt
||∂mh||2Hsε ≤ −K

(s)
0 ||∂mh||2HsΛ +K

(s)
1

(
Gs,mx,z (h, h)

)2
+ε2K

(s)
2

(
Gs,mx,v,z(h, h)

)2
.

Moreover, ∃ s0 ∈ N, such that ∀s ≥ s0, (2.17) leads to
(2.18)
d

dt
||h||2Hs,rε ≤ −K

(s)
0 ||h||2Hs,rΛ

+K
(s)
1 ||h||2Hs,rx L2

v
||h||2Hs,rΛ

+ ε2K
(s)
2 ||h||2Hs,rx,v ||h||

2
Hs,rΛ

.

(4) For all 0 < ε ≤ εd, for some 0 < εd < 1 and ∀ s ≥ s0, ∃ δs, Cs, τs > 0, such
that for any distribution 0 ≤ fin ∈ L1(Td × Rd × Iz) with fin = M + εMhin and
hin ∈ N(Gε)

⊥, if ||hin||Hs,rε L∞z
≤ δs, then there exists a unique global smooth (in Hs,r

x,v,
continuous in time) solution f = f(t, x, v, z) satisfying f ≥ 0 with f = M + εMh,
and

(2.19) ||h||Hs,rε L∞z
≤ δs e−τst .

Furthermore,

(2.20) ||h||HsεHrz ≤ δs e
−τst .

In this theorem, all constants are independent of z.
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Remark 2.2. This theorem gives an exponential decay for the semigroup gener-
ated by Gε defined in (2.16). Items (3) and (4) of Theorem 2.1 give

||h||Hs,rx,vL∞z ≤
δs
ε
e−τst ,

under the incompressible Navier–Stokes scaling. This shows that the v-derivatives
grow at a rate of 1/ε. Combining with the work by Guo [19] who studies the fluid
part and the microscopic part of the solution h⊥ independently, the author in [6]
constructs a new norm defined by (2.21), builds up a functional that is equivalent to
the standard Sobolev norm, and obtains an exponential decay in Hs

x,v .

With uncertainty in the equation, following a similar framework, we have Propo-
sition 2.3 and Theorem 2.5. Define || · ||Hsε⊥ by

|| · ||2Hsε⊥ =
∑

|j|+|l|≤s, |j|≥1

b
(s)
j,l ||∂

j
l (I−ΠL) · ||2L2

x,v
+
∑
|l|≤s

α
(s)
l ||∂

0
l · ||2L2

x,v

+
∑

|l|≤s, i,ci(l)>0

ε a
(s)
i,l 〈∂

δi
l−δi ·, ∂

0
l · 〉L2

x,v
,(2.21)

and the corresponding Sobolev norms

||h||2Hs,rε⊥ =
∑
|m|≤r

||∂mh||2Hsε⊥ , ||h||Hs,rε⊥L∞z = sup
z∈Iz
||h||Hs,rε⊥ .

Proposition 2.3. Let L be a linear operator satisfying assumptions H1′, H2′,
and H3 and F be a bilinear operator satisfying assumption H5. If h ∈ Hs,r

x,v is a

solution of (2.6), with hin ∈ Hs,r
x,v ∩N(Gε)

⊥, then ∀ 0 < ε ≤ εd, for some 0 < εd ≤ 1,

∀ s ∈ N and m ≤ r, ∃K(s)
0 , K

(s)
1 , (b

(s)
j,l ), (α

(s)
l ), (a

(s)
i,l ) > 0 such that ∀z, we have

(2.22)

d

dt
||∂mh||2Hsε⊥ ≤ −K

(s)
0

 1

ε2
||∂mh⊥||2HsΛ +

∑
1≤|l|≤s

||∂0
l ∂

mh||2L2
x,v

+K
(s)
1

(
Gs,mx,v,z(h, h)

)2
.

Furthermore, ∃ s0 ∈ N, ∀s ≥ s0, this implies

d

dt
||h||2Hs,rε⊥ ≤ −K

(s)
0

 1

ε2
||h⊥||2Hs,rΛ

+
∑
|m|≤r

∑
1≤|l|≤s

||∂0
l ∂

mh||2L2
x,v

(2.23)

+K
(s)
1 CF ||h||2Hs,rx,v ||h||

2
Hs,rΛ

.

Here all constants are independent of z.

Remark 2.4. In Proposition 2.3, there is a negative constant order −1/ε2 as the
coefficient of the microscopic part h⊥ (the first term inside the parentheses of the
right-hand side of (2.23)), which is the same order as that derived by Guo in [19] for
the dissipation rate.

Theorem 2.5. For all s ≥ s0, ∃ (b
(s)
j,l ), (α

(s)
l ), (a

(s)
i,l ) > 0, and 0 ≤ εd ≤ 1, such

that ∀0 ≤ ε ≤ εd ,
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(1) || · ||Hsε⊥ ∼ || · ||Hsx,v ;

(2) assume ||hin||Hs,rx,vL∞z ≤ CI ; then if h is a solution of (2.6) in Hs,r
x,v ∀z, we have

(2.24) ||h||Hs,rx,vL∞z ≤ CI e
−τst ,

where CI , τs are positive constants independent of ε. Furthermore,

(2.25) ||h||Hsx,vHrz ≤ CI e
−τst .

Remark 2.6. (i) For the acoustic scaling (2.7), one can get similar results as in
Theorem 2.1 and Proposition 2.3. One only needs to multiply by ε to the right-hand
side of the estimates (2.17), (2.18), (2.22), and (2.23). The corresponding results for
Theorem 2.1 become

||h||Hs,rε L∞z
≤ δs e−ετst , ||h||HsεHrz ≤ δs e

−ετst .

Item (2) of Theorem 2.5 accordingly changes to

||h||Hs,rx,vL∞z ≤ CI e
−ετst , ||h||Hsx,vHrz ≤ CI e

−ετst .

(ii) Theorem 2.5 shows that the uncertainties from the initial datum will eventu-
ally diminish and the solution will exponentially decay in time to the deterministic
global equilibrium, with a decay rate of O(e−t) under the incompressible Navier–
Stokes scaling and O(e−εt) under the acoustic scaling.

3. Proof of Proposition 2.3 and Theorem 2.5. The proof follows the frame-
work in [6] for deterministic equations under the incompressible Navier–Stokes scaling,
since our analysis in the random space depends on z pointwise. The main difference
lies in the following: (1) one needs to check that all constants are independent of z,
which is the case here by going through the proofs in [6]; (2) taking ∂m of F will have
crossing terms like F(∂ih, ∂m−ih) (0 ≤ i ≤ m); thus one needs to verify assumption
H5, which is done in section 4.2 for the Boltzmann equation with uncertainties.

Proof of Proposition 2.3. For all z, one can observe (2.22) by taking ∂m on both
sides of all the estimates derived in [6] for deterministic problems. Summing up
m = 0, . . . , r in (2.22) and using assumption H5, we get (2.23).

Proof of Theorem 2.5(2). The proof of (1) for each z is the same as in [6]. To
prove (2), ∀z, one can easily observe the following lemma by taking ∂m on both
sides of (2.6) and then following all the estimates derived in [6] for deterministic
problems.

Lemma 3.1.

d

dt
||∂mh||2Hsε⊥ ≤ −K

(s)
0

 ∑
|j|+|l|≤s,|j|≥1

||∂jl ∂
mh⊥||2Λ +

∑
0≤|l|≤s

||∂0
l ∂

mh||2Λ

(3.1)

+K
(s)
1

(
Gs,mx,v,z(h, h)

)2
≤ −K(s∗)

0 ||∂mh||2HsΛ +K
(s)
1

(
Gs,mx,v,z(h, h)

)2
.

Then we sum up m = 0, . . . , r of (3.1) and apply assumption H5, ∃ s0 ∈ N,
∀ s ≥ s0, such that

(3.2)
d

dt
||h||2Hs,rε⊥ ≤

(
K

(s)
1 CF ||h||2Hs,rx,v −K

(s∗)
0

)
||h||2Hs,rΛ

.
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Since ||h||Hs,rε⊥ and ||h||Hs,rx,v are equivalent, so ||h||2
Hs,rx,v

≤ C ||h||2Hs,rε⊥ with C indepen-

dent of ε, then

d

dt
||h||2Hs,rε⊥ ≤

(
K

(s)
1 CF C ||h||2Hs,rε⊥ −K

(s∗)
0

)
||h||2Hs,rΛ

.

Therefore if the initial data satisfy

||hin||2Hs,rε⊥ ≤
K

(s∗)
0

2K
(s)
1 CF C

,

one implies that ||h||2Hs,rε⊥ is always decreasing, so ∀t > 0,

d

dt
||h||2Hs,rε⊥ ≤ −

K
(s∗)
0

2K
(s)
1 CF C

||h||2Hs,rΛ
≤ −C∗||h||2Hs,rε⊥ ,

where C∗ is a constant independent of z. The last inequality is because Hs
Λ controls

the Hs
x,v-norm that is equivalent to the Hsε⊥ -norm. Applying Gronwall’s inequality

gives the exponential decay of ||h||Hs,rε⊥ ∼ ||h||Hs,rx,v , and thereafter the exponential

decay of ||h||Hs,rx,vL∞z , so (2.24) is proved. Furthermore, one has

(3.3) ||h||2Hsx,vHrz =

∫
Iz

||h||2Hs,rx,v π(z)dz ≤ ||h||2Hs,rx,vL∞z

∫
Iz

π(z)dz ≤ C2
I e
−2τst ,

thus (2.25) is obtained.

4. The Boltzmann equation with random inputs.

4.1. The basic setup. Let us consider the Boltzmann equation with uncertain
initial data and both scalings. For discussion of the case with random collision kernels,
refer to subsection 4.3. The problem reads ∂tf +

1

εα
v · ∇xf =

1

ε1+α
Q(f, f),

f(0, x, v, z) = f0(x, v, z), x ∈ Ω ⊂ Td, v ∈ Rd, z ∈ Iz.
(4.1)

The collision operator (local in t, x) is

Q(f, f) =

∫
Rd×Sd−1

B(|v − v∗|, cos θ) (f ′f ′∗ − ff∗) dv∗ dσ.

We adopt the notation f ′ = f(v′), f∗ = f(v∗), and f ′∗ = f(v′∗), where

v′ = (v + v∗)/2 + (|v − v∗|/2)σ, v′∗ = (v + v∗)/2− (|v − v∗|/2)σ

are the postcollisional velocities of particles with precollisional velocities v and v∗.
θ ∈ [0, π] is the deviation angle between v′ − v′∗ and v − v∗.

Boltzmann’s collision operator conserves mass, momentum, and energy. The so-
lution formally satisfies the celebrated Boltzmann’s H theorem,

(4.2) − d

dt

∫
Rd

f log f dv = −
∫
Rd
Q(f, f) log(f) dv ≥ 0.
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The global equilibrium distribution is given by the Maxwellian distribution

(4.3) M(ρ∞, u∞, T∞) =
ρ∞

(2πT∞)N/2
exp

(
−|u∞ − v|

2

2T∞

)
,

where ρ∞, u∞, T∞ are the density, mean velocity, and temperature of the gas,

ρ∞ =

∫
Ω×Rd

f(v) dxdv, u∞ =
1

ρ∞

∫
Ω×Rd

vf(v) dxdv,

T∞ =
1

Nρ∞

∫
Ω×Rd

|u∞ − v|2 f(v) dxdv,

which are all determined by the initial datum due to the conservation properties. We
will consider hard potentials with B satisfying Grad’s angular cutoff, as follows.

Assumptions on the collision kernel.

B(|v − v∗|, cos θ) = φ(|v − v∗|) b(cos θ), φ(ξ) = Cφ ξ
γ , with γ ∈ [0, 1],

∀η ∈ [−1, 1], |b(η)| ≤ Cb, |b′(η)| ≤ Cb ,(4.4)

where b is nonnegative and not identically equal to 0. Introduce the collision frequency

ν(v) =

∫
Rd×Sd−1

φ(|v − v∗|)b(cos θ)M(v∗) dv∗dσ = (φ ∗M)(v).

Recall that h solves (2.6), with the linearized collision operator given by

L(h) = M−1 [Q(Mh,M) +Q(M,Mh)] = K(h)− Λ(h),

= M

∫
Rd×Sd−1

φ(|v − v∗|)b(cos θ)M(v∗)

[
h′∗
M ′∗

+
h′

M ′
− h∗
M∗
− h

M

]
dv∗dσ ,(4.5)

where

Λ(h) = ν(v)h, K(h) = L+(h)− L∗(h), L∗(h) = M [(hM) ∗ φ],

L+(h) =

∫
Rd×Sd−1

φ(|v − v∗|)b(cos θ) [h′M ′∗ + h′∗M
′]M∗ dv∗dσ .

The bilinear part is given by

F(h, h) = M−1 [Q(Mh,Mh) +Q(Mh,Mh)]

=

∫
Rd×Sd−1

φ(|v − v∗|)b(cos θ)M∗(h
′
∗h
′ − h∗h) dv∗dσ .(4.6)

The spectrum of L in L2
v is included in R−. Moreover the null space of L is

(4.7) N(L) = Span{M, v1M, . . . , vdM, |v|2M} := Span{ϕ1, . . . , ϕn}, n = d+2 ,

thus

(4.8)

∫
Rd
L(h)ϕi dv = 0 , i = 1, . . . , n .
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Define the coercivity norm

||h||Λ = ||h(1 + |v|)γ/2||L2 .

The coercivity argument of L is proved in [36]:

(4.9) 〈h, L(h)〉L2
v
≤ −λ ||h⊥||Λ2

v
.

Explicit spectral gap estimates for the linearized Boltzmann and Landau operators
with hard potentials have been obtained in [37] and extended to estimates given in
[36]. Thus LB satisfies assumption H3 with an explicit bound. Proofs of assumptions
H1′, H2′, and H5 are given in [38] and [6]. We will show in the following subsection
that with the restriction on the collision kernel (4.4), assumption H5 is satisfied.

4.2. Proof of assumption H5. The bilinear part F is given in (4.6). Let
F(h, h) = F+(h, h) + F−(h, h), with

F+(h, h) =

∫
Rd×Sd−1

φ(|v − v∗|) b(cos θ)M∗ h
′
∗ h
′ dv∗dσ ,

F−(h, h) = −
∫
Rd×Sd−1

φ(|v − v∗|) b(cos θ)M∗ h∗ h dv∗dσ .

Denote
∑
|j0|+|j1|+|j2|=j, |l1|+|l2|=l =

∑
j, l . Differentiating operator F−, one obtains

(see [6])

∂jl F
−(h, h) = −1

2

∑
j, l

∫
Rd×Sd−1

b(cos θ) |u|γ ∂j00

(
M(v − u)1/2

)
× (∂j1l1 h∗)(∂

j2
l2
h) dudσ .

Denote
∑m
i=0 =

∑
i and

∑r
m=0 =

∑
m. For |m| ≤ r, take ∂m,

∂m∂jl F
−(h, h) = −1

2

∑
j, l

∑
i

(
m

i

) ∫
Rd×Sd−1

b(cos θ) |u|γ ∂j00

(
M(v − u)1/2

)
× (∂i∂j2l2 h)(∂m−i∂j1l1 h∗) dudσ .

Following [6] and the cutoff assumption |b| ≤ Cb, by the Cauchy–Schwarz inequality,
one has

|〈∂m∂jiF
−, f〉| ≤ C

∑
j, l

∑
i

(
m

i

)∫
Ω×Rd

(1 + |v|)γ |∂i∂j2l2 h| |f |

×
(∫

Rd
M1/8
∗ |∂m−i∂j1l1 h∗| dv∗

)
dvdx

≤ C Gs,mx,v,z(h, h) ||f ||Λ ,(4.10)

where

Gs,mx,v,z(h, h)(4.11)

=
∑
i

(
m

i

) ∑
|j1|+|l1|+|j2|+|l2|≤s

(∫
Td
||∂i∂j2l2 h||

2
Λv ||∂

m−i∂j1l1 h||
2
L2
v
dx

)1/2

≤
∑
i

(
m

i

)
Cs ||∂m−ih||Hsx,v ||∂

ih||HsΛ

≤ Cs,r ||h||Hs,m ||h||Hs,mΛ
≤ Cs,r ||h||Hs,r ||h||Hs,rΛ

,
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where the constant Cs,r depends on s and r, and Hölder’s inequality was used in the
second inequality. To get the first inequality, note that the Sobolev embedding stating

that ∃ s0 ∈ N, such that if s ≥ s0, we have H
s/2
x ↪→ L∞x . We divide the sum into two

cases, |j1| + |l1| ≤ s/2 and |j2| + |l2| ≤ s/2 . If |j1| + |l1| ≤ s/2, then for each z, one
has

||∂j1l1 ∂
m−ih||2L2

v
≤ sup
x∈Td

||∂j1l1 ∂
m−ih||2L2

v
≤ C̃s

∣∣∣∣∣∣ ||∂j1l1 ∂m−ih||2L2
v

∣∣∣∣∣∣
H
s/2
x

= Cs
∑
|p|≤s/2

∑
p1+p2=p

∫
Td×Rd

∣∣∣(∂j1l1+p1
∂m−ih) (∂j1l1+p2

∂m−ih)
∣∣∣ dvdx ≤ Cs ||∂m−ih||2Hsx,v ,

after using the Cauchy–Schwarz inequality in the last step. In the other case, if |j2|+
|l2| ≤ s/2 and by the same calculations, ||∂j2l2 ∂

ih||2Λv ≤ Cs ||∂
ih||2HsΛ . Taking the square

and summing up |m| = 0, . . . , r on both sides of (4.11), we obtain assumption H5.
The second term F+

B is dealt with in the same way.

Remark 4.1. Assumptions H1–H5 and H1′–H2′ introduced in section 2.2 for the
hypocoercivity theory also hold for several different kinetic models, in addition to
the Boltzmann equation. Mouhot and Neumann [38] validate the assumptions for
linear relaxation, linear Fokker–Planck, nonlinear semiclassical quantum relaxation
kinetic, and the Landau equation with hard and moderately soft potential. The
results established in section 2.3 for the Boltzmann equation can be done for these
other models in a similar fashion. We omit the details.

4.3. Uncertainties from random collision kernels. The above estimate can
also be applied to the case of random collision kernels, in which b depends on z, under
the restriction that all the z-derivatives of b are assumed to be bounded, i.e.,

B(|v − v∗|, cos θ, z) = φ(|v − v∗|) b(cos θ, z), φ(ξ) = Cφ ξ
γ , with γ ∈ [0, 1],

∀η ∈ [−1, 1], |b(η, z)| ≤ Cb, |∂ηb(η, z)| ≤ Cb, and |∂kz b(η, z)| ≤ C∗b , ∀ 0 ≤ k ≤ r .
(4.12)

Under the above assumptions for B, all the assumptions H1–H5 and H1′–H2′

introduced in section 2.2 still hold when uncertainties are from collision kernels, which
is obvious to see. The main goal of this section is to show that Theorem 2.5 is still
valid when collision kernels are random. The difference in the proof compared to
the random initial data case will be discussed. The impact of z dependence of b on
the linear (or linearized) collision operator L needs to be estimated differently, which
is shown in Lemma 4.2. With Lemma 4.2, we then show how to embed it and get
the same result as Theorem 2.5—with rest of the proof following the case of random
initial data. This section will be concluded with Theorem 4.4.

Below we use the linearized Boltzmann operator with random collision kernel
(4.12) as an example, although the same analysis can also be done for the linearized
Landau, semiclassical relaxation model of the quantum Boltzmann equation and the
linear Fokker–Planck equation. Our analysis follows those of [26, 34] for linear trans-
port equations, with some new estimates by using the Λ-norm.

Suppose g is a solution to

(4.13) ∂tg +
1

ε
v · ∇xg =

1

ε2
L(g),

where L is given in (4.5), with b given by (4.12).
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Recall (2.4) that ΠL(g) =
∑n
i=1(

∫
Rd gϕi dv)ϕi. Then by (4.8), one knows∫

Ω×Rd
L(h) ΠL(g) dvdx =

∫
Ω×Rd

L(h)

n∑
i=1

(∫
Rd
gϕi dv

)
ϕi dvdx

=

∫
Ω

n∑
i=1

∫
Rd
L(h)ϕi dv︸ ︷︷ ︸

=0

(∫
Rd

gϕi dv

)
dx = 0 .

Since L(h) = L(h−ΠL(h)) = L(h⊥) because ΠL(h) ∈ N(L), thus

(4.14) 〈L(h), g〉L2
x,v

= 〈L(h), g−ΠL(g)〉L2
x,v

= 〈L(h⊥), g⊥〉L2
x,v
≤ CL||h⊥||Λ ||g⊥||Λ ,

where we used (2.10) in assumption H1.
The arguments below follow the idea in [26, 34]; nevertheless, with the help of

(4.14), a more general framework (especially for the linear Fokker–Planck and the
linearized Boltzmann, Landau, etc.) is constructed here. Denote

||g||2
L2,r
x,v

=
∑
|m|≤r

||∂mg||2L2
x,v
, ||g||2Λr =

∑
|m|≤r

||∂mg||2Λ .

Our goal is to show that

(4.15) ε2∂t

(
r∑

m=0

C̃m,r+1 ||∂mg||2L2
x,v

)
≤ −λ ||g⊥||2Λr ,

where λ > 0 is a z-independent constant that depends on Cb in (4.12), C̃m,r+1 > 0
are constants.

Taking ∂l on (4.13), one gets

(4.16) ε2∂t∂
lg + εv · ∇x(∂lg) = ∂lL(g) .

Multiplying (4.16) by ∂lg and integrating on x and v, then

(4.17)
ε2

2
∂t||∂lg||2L2

x,v
= 〈∂lL(g), ∂lg〉L2

x,v
,

where integration by parts and the periodic boundary condition in x are used, thus
〈v · ∇x(∂lg), ∂lg〉L2

x,v
= 0. We first prove the following lemma.

Lemma 4.2. For any m ≥ 0, there exist m constants Cjm > 0, j = 0, . . . ,m− 1,
such that

ε2∂t

||∂mg||2L2
x,v

+

m−1∑
j=0

Cjm ||∂jg||2L2
x,v

 ≤ {−2λ ||g⊥||2Λ , m = 0,

−λ ||∂mg⊥||2Λ , m ≥ 1.
(4.18)

Proof. We will prove this lemma by using mathematical induction.
When m = 0, by (4.17), (4.18) holds because of assumption H3. Assume that

(4.18) holds for any m ≤ p, where p ∈ N. Adding all these inequalities, we get

ε2∂t

1

2
||g||2L2

x,v
+

p∑
m=1

||∂mg||2L2
x,v

+

p∑
m=1

m−1∑
j=0

Cjm ||∂jg||2L2
x,v

 ≤ −λ ||g⊥||Λp ,
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which is equivalent to

(4.19) ε2∂t

 p∑
j=0

C ′j,p+1 ||∂jg||2L2
x,v

 ≤ −λ ||g⊥||2Λp ,
where

C ′j,p+1 =


1
2 +

∑p
m=1 C0m, j = 0,

1 +
∑p
m=1 Cjm, 1 ≤ j ≤ p− 1,

1, j = p.

Denote
(4.20)

Li(g) = M

∫
Rd×Sd−1

φ(|v − v∗|)∂p+1−ibM(v∗)

[
∂ig′∗
M ′∗

+
∂ig′

M ′
− ∂ig∗

M∗
− ∂ig

M

]
dv∗dσ ,

where |∂p+1−ib| ≤ C∗b as shown in (4.12).
When m = p+ 1, let l = p+ 1 in (4.17), and the right-hand side of (4.17) has the

following estimate:

〈∂p+1L(g), ∂p+1g〉L2
x,v

= 〈L(∂p+1g), ∂p+1g〉L2
x,v

+

p∑
i=0

(
p+ 1

i

)
〈Li(g), ∂p+1g〉L2

x,v

(4.21)

≤ −λ ||∂p+1g⊥||2Λ + CL,∗

∥∥∥∥∥
p∑
i=0

(
p+ 1

i

)
∂ig⊥

∥∥∥∥∥
Λ

||∂p+1g⊥||Λ

≤ −λ ||∂p+1g⊥||2Λ +
(CL,∗)2

2λ

∥∥∥∥∥
p∑
i=0

(
p+ 1

i

)
∂ig⊥

∥∥∥∥∥
2

Λ

+
λ

2
||∂p+1g⊥||2Λ

≤ −λ
2
||∂p+1g⊥||2Λ + 4p+1 (CL,∗)2

2λ

p∑
i=0

||∂ig⊥||2Λ

= −λ
2
||∂p+1g⊥||2Λ + 4p+1 (CL,∗)2

2λ
||g⊥||Λp ,

where we used (4.14) with CL substituted by CL,∗ that depends on C∗b , since Li, as
defined by (4.20), has z-derivatives of b involved. Young’s inequality is used in the
second inequality, and the Cauchy–Schwarz inequality, namely,∥∥∥∥∥

p∑
i=0

(
p+ 1

i

)
∂ig⊥

∥∥∥∥∥
2

Λ

≤
p∑
i=0

(
p+ 1

i

)2 p∑
i=0

||∂ig⊥||2Λ ≤ 4p+1

p∑
i=0

||∂ig⊥||2Λ,

is used in the third inequality. Therefore,

(4.22) ε2∂t||∂p+1g||2L2
x,v
≤ −λ ||∂p+1g⊥||2Λ + 4p+1 (CL,∗)2

λ
||g⊥||Λp .

Multiplying (4.19) by 4p+1(CL,∗)2

λ2 and adding to (4.22), one has

ε2∂t

||∂p+1g||2L2
x,v

+

p∑
j=0

Cj,p+1 ||∂jg||2L2
x,v

 ≤ −λ ||∂p+1g⊥||2Λ ,
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where Cj,p+1 = 4p+1(CL,∗)2

λ2 C ′j,p+1. This shows that (4.18) holds when m = p+ 1. By
mathematical induction, (4.18) is true ∀m ∈ N, thus Lemma 4.2 is proved.

As a consequence, adding up (4.18) for m ≤ r, with C ′m,r+1 = C̃m,r+1 > 0 in
(4.15) and (4.19), one obtains the goal estimate (4.15). Define

(4.23) ||g||L2,r∗
x,v

:=

r∑
m=0

C̃m,r+1 ||∂mg||L2
x,v
,

then

(4.24) ε2∂t||g||L2,r∗
x,v
≤ −λ ||g⊥||2Λr ≤ −λ c ||g⊥||2Λr∗ ,

where the second inequality is because (4.23)—defined as some weighted Sobolev norm
|| · ||Hr∗z —is equivalent to the standard Sobolev norm || · ||Hrz in the random space.

The above analysis also holds for ||∇xg||L2,r
x,v

, etc., in the definition of ||g||H1,r
ε⊥

.

For example,
ε2∂t||∇xg||L2,r∗

x,v
≤ −λ c ||∇xg⊥||2Λr∗ .

One can extend to higher Sobolev space Hs,rε⊥ and get the conclusions in Theorem 2.5.
The impact of z in b(cos θ, z) on the nonlinear term can be estimated similarly to

(4.10), namely, one has |〈∂m∂jiF−, f〉| ≤ C Gs,mx,v,z(h, h) ||f ||Λ, where

Gs,mx,v,z(h, h) =

∣∣∣∣∣
m∑
i=0

(
m

i

)
∂m−ib

i∑
n=0

(
i

n

)
(4.25)

×
∑

|j1|+|l1|+|j2|+|l2|≤s

(∫
Td
||∂n∂j2l2 h||

2
Λv ||∂

i−n∂j1l1 h||
2
L2
v
dx

)1/2
∣∣∣∣∣∣

≤ C∗b
m∑
i=0

i∑
n=0

(
m

i

)(
i

n

)
Cs ||∂nh||Hsx,v ||∂

i−nh||HsΛ

≤ C∗b C̃s,r ||h||Hs,rx,v ||h||Hs,rΛ
≤ C∗b C̃s,r c′ ||h||Hs,r∗x,v

||h||Hs,r∗Λ
,

with the constant C̃s,r depending on s and r, and the last inequality is because
|| · ||Hrz ∼ || · ||Hr∗z . One can also assume φ depending on z and easily obtain a similar
estimate upon a suitable assumption on Cφ in (4.12). We omit the details. With
the estimates (4.24) and (4.25) and an extension to the higher-order Sobolev space in
(x, v), one gets

||h||Hsx,vHr∗z ≤ CI e
−τ̃st.

Since || · ||Hsx,vHr∗z is equivalent to the standard Sobolev norm || · ||Hsx,vHrz in (x, v, z)-
space,

||h||Hsx,vHrz ≤ CI e
−τ̃st,

where τ̃s > 0 is a constant independent of z and ε. Therefore, Theorem 2.5 holds true
if the uncertainty comes from a random collision kernel.

Remark 4.3. For the linear Fokker–Planck equation with small scalings,

(4.26) ∂tf +
1

εα
v · ∇xf =

σ(z)

ε1+α
∇v · (∇vf + fv) ,
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where α = 0 or 1, the coercivity norm Λ is given in [6] for the deterministic problem,

||h||2Λ = ||vh||2L2
x,v

+ ||∇vh||2L2
x,v
.

The analysis in this section can be applied to (4.26) with random diffusion coefficient
σ, under the assumption |∂kzσ| ≤ Cσ for k = 0, . . . , r with Cσ a positive constant
independent of z.

To conclude, we summarize our results in the following theorem.

Theorem 4.4. If the uncertainties come from both initial data and/or the colli-
sion kernel, under our assumptions for the collision kernel (4.12), and for the initial
data ||hin||Hs,rx,vL∞z ≤ CI , then we have the following:

(i) Under the incompressible Navier–Stokes scaling,

||h||Hs,rx,vL∞z ≤ CI e
−τst , ||h||Hsx,vHrz ≤ CI e

−τst .

(ii) Under the acoustic scaling,

||h||Hs,rx,vL∞z ≤ CI e
−ετst , ||h||Hsx,vHrz ≤ CI e

−ετst ,

where CI , τs are positive constants independent of ε.

5. Spectral accuracy of the gPC-SG method.

5.1. A gPC based stochastic Galerkin method. In this subsection, we re-
view the gPC-SG method for solving kinetic equations with uncertainties. Take the
Boltzmann equation as an example [22]. One seeks a solution in the following form:

f(t, x, v, z) ≈
K∑
|k|=1

fk(t, x, v)ψk(z) := fK(t, x, v, z),

h(t, x, v, z) ≈
K∑
|k|=1

hk(t, x, v)ψk(z) := hK(t, x, v, z).(5.1)

Here k = (k1, . . . , kn) is a multi-index with |k| = k1 + · · · kn. π(z) is the probabil-
ity distribution function of z, which is given a priori in our problem. {ψk(z)} are
orthonormal gPC basis functions satisfying∫

Iz

ψk(z)ψj(z)π(z)dz = δkj, 1 ≤ |k|, |j| ≤ K.

One can expand f by

f(t, x, v, z) =

∞∑
|k|=1

f̂k(t, x, v)ψk(z), f̂k(t, x, v) =

∫
Iz

f(t, x, v, z)ψk(z)π(z)dz.

Define the projection operator PK as

(5.2) PKf(t, x, v, z) =

K∑
|k|=1

f̂k(t, x, v)ψk(z).

Assume the random collision kernel has the assumptions given by (4.12)

fk =M+ εMhk .
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Inserting ansatz (5.1) into (2.6) and conducting a standard Galerkin projection, one
obtains the gPC-SG system for hk:{

∂thk +
1

ε
v · ∇xhk =

1

ε2
Lk(hK) +

1

ε
Fk(hK , hK),

hk(0, x, v) = h0
k(x, v), x ∈ Ω ⊂ Td, v ∈ Rd,

(5.3)

for each 1 ≤ |k| ≤ K, with a periodic boundary condition and the initial data given
by

h0
k :=

∫
Iz

h0(x, v, z)ψk(z)π(z)dz.

The collision parts are given by

Lk(hK) = Kk(hK)−Λk(hK), Kk(hK) = L+
k (hK)−L∗k(hK), Λk(hK) =

K∑
|i|=1

νki hi,

L+
k (hK) =

K∑
|i|=1

∫
Rd×Sd−1

S̃ki φ(|v − v∗|) (hi(v
′)M(v′∗) + hi(v

′
∗)M(v′))M(v∗) dv∗dσ,

L∗k(hK) = M(v)

K∑
|i|=1

∫
Rd×Sd−1

S̃ki φ(|v − v∗|)hi(v∗)M(v∗) dv∗dσ,

Fk(hK , hK)(t, x, v) =

K∑
|i|,|j|=1

∫
Rd×Sd−1

Skij φ(|v − v∗|)M(v∗) (hi(v
′)hj(v

′
∗)

− hi(v)hj(v∗)) dv∗dσ,

with

S̃ki :=

∫
Iz

b(cos θ, z)ψk(z)ψi(z)π(z)dz, νki :=

∫
Rd×Sd−1

S̃ki φ(|v−v∗|)M(v∗) dv∗dσ,

and Skij :=

∫
Iz

b(cos θ, z)ψk(z)ψi(z)ψj(z)π(z)dz.

5.2. Hypocoercivity estimate of the gPC solution. In this and the next
sections, we assume z ∈ Iz is one-dimensional and Iz has finite support |z| ≤ Cz
(which is the case, for example, for the uniform and Beta distributions). Let us first
introduce the main result of this section on the estimate of the gPC solution.

Theorem 5.1. Assume the collision kernel B satisfies (4.12) and is linear in z,
with the form of

(5.4) b(cos θ, z) = b0(cos θ) + b1(cos θ)z ,

with |∂zb| ≤ O(ε). We also assume the technical condition

(5.5) ||ψk||L∞ ≤ Ckp ∀ k,

with a parameter p ≥ 0. Let q > p+ 2, and define the energy EK by

(5.6) EK(t) = EKs,q(t) =

K∑
k=1

||kqhk||2Hsx,v ,
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with the initial data satisfying EK(0) ≤ η. Then ∀s ≥ s0, 0 ≤ εd ≤ 1, such that for
0 ≤ ε ≤ εd, if hK is a gPC solution of (5.3) in Hs

x,v, we then have the following:
(i) Under the incompressible Navier–Stokes scaling,

EK(t) ≤ η e−τt .

(ii) Under the acoustic scaling,

EK(t) ≤ η e−ετt ,

where η, τ are all positive constants that only depend on s and q, independent of K
and z.

Remark 5.2. The choice of energy EK in (5.6) enables one to obtain the desired
energy estimates with initial data independent of K [39].

To prove Theorem 5.1 on the estimate of the gPC solution, a modification of
assumption H5 is necessary.

Assumption H6. There exist constants δ, C(δ) > 0 that are independent of K,
such that ∣∣∣∣∣

K∑
k=1

k2q 〈∂jl Fk(hK , hK), fk〉L2
x,v

∣∣∣∣∣(5.7)

≤ C(δ)

K∑
m=1

||mqhm||2HsΛ

K∑
n=1

||nqhn||2Hsx,v + δ

K∑
k=1

||kqfk||2Λ .

In order to obtain the estimate for the gPC coefficients hk, we make the assumption
(5.5) on the basis functions. Since |b| ≤ Cb, |b1| ≤ ξ, and |z| ≤ Cz, then

|Smnk| ≤ (Cb + ξCz) ||ψn||L∞ 〈|ψm|, |ψk|〉L2
z

(5.8)

≤ (Cb + ξCz) ||ψn||L∞ ||ψm||L2
z
||ψk||L2

z
= C̃ np ,

where C̃ = C(Cb+ ξ Cz) with C given in (5.5). We mention that this assumption was
introduced in [39], and some examples where (5.8) holds are given there. For the case
Iz = [−1, 1] with uniform distribution, ψk is the normalized Legendre polynomials,
and (5.8) holds with p = 1/2. For the case Iz = [−1, 1] with the distribution π(z) =

2√
π
√

1−z2
and ψk are the normalized Chebyshev polynomials, (5.8) holds with p = 0.

Now since we assume that B is linear in z and ψk is a (k−1)th degree polynomial,
orthogonal to all lower-order polynomials, Smnk = 0 if (m− 1) + (n− 1) + 1 < k− 1.
Then Smnk may be nonzero only when the inequality

(5.9) m+ n ≥ k

holds. Note that (5.8) and (5.9) also hold if m,n, k are permuted, that is, when the
inequalities

(5.10) m+ n ≤ k, or n+ k ≤ m, or k +m ≤ n,

are satisfied, Smnk may be nonzero. To validate assumption H6, we follow a similar
proof as for assumption H5 in section 4.2, combining the idea used in [39]. First

consider m ≥ n, by (5.8) and (5.9), then C̃ mq nq ≥ (k2 )q |Smnk|nq−p; thus

(5.11)
k2q

mq nq
|Smnk| ≤ C̃ kq np−q.
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Now let χmnk be the indicator function of the set of indexes (m,n, k) for which
Smnk 6= 0, namely,

χmnk =

{
0, Smnk = 0,

1, Smnk 6= 0,
(5.12)

then ∣∣∣∣∣
K∑
k=1

k2q 〈∂jl Fk(hK , hK), fk〉L2
x,v

∣∣∣∣∣
≤

K∑
k=1

k2q
K∑

m,n=1

χmnk |Smnk|Cs

×
∑

|j1|+|l1|+|j2|+|l2|≤s

(∫
Td
||∂j2l2 hm||

2
Λv ||∂

j1
l1
hn||2L2 dx

)1/2

||fk||Λ

≤
K∑

k,m,n=1

k2q

mq nq
|Smnk|χmnk Cs ||mqhm||HsΛ ||n

qhn||Hsx,v ||fk||Λ

≤
K∑

k,m,n=1

Cs C̃ n
p−q ||mqhm||HsΛ ||n

qhn||Hsx,v ||k
qfk||Λ χmnk

≤ Cs C̃ C(δ′)

K∑
k,m,n=1

np−q ||mqhm||2HsΛ ||n
qhn||2Hsx,v χmnk︸ ︷︷ ︸

I

+ Cs C̃ δ
′

K∑
k,m,n=1

np−q ||kqfk||2Λ χmnk︸ ︷︷ ︸
II

≤ C(δ)

K∑
m=1

||mqhm||2HsΛ

K∑
n=1

||nqhn||2Hsx,v + δ
K∑
k=1

||kqfk||2Λ .

We used (4.10) and (4.11) in the first and second inequalities and used (5.11) and
Young’s inequality in the third and fourth inequalities, respectively. Cs, δ

′, δ, C(δ′),
C(δ) are all positive constants independent of K. In the last inequality, we used the
following arguments that were first shown in [39]:

(5.13) I ≤ 2

K∑
m=1

||mqhm||2HsΛ ·
K∑
n=1

||nqhn||2Hsx,v , II ≤ c
K∑
k=1

||kqfk||2Λ ,

with c a constant independent of K. To get (5.13), one writes

I =

K∑
m=1

||mqhm||2HsΛ Im, Im =

K∑
n,k=1

np−q ||nqhn||2Hsx,v χmnk .
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By definition (5.12) and (5.10), χmnk = 1 indicates that m−n ≤ k ≤ m+n by (5.9),
so Im has at most 2n choices for a fixed n. That is,

Im ≤ 2

K∑
n=1

np−q+1 ||nqhn||2Hsx,v ≤ 2

K∑
n=1

||nqhn||2Hsx,v

if q > p+ 1. Similarly,

II ≤ 2

K∑
m=1

np−q+1
K∑
k=1

||kqfk||2Λ ≤ c
K∑
k=1

||kqfk||2Λ ,

since for each fixed pair (n, k), there are at most 2n choices for m. If q > p + 2,
c = 2

∑∞
n=1 n

p−q+1 ≤ 2(1+(p−q+2)−1). For the terms with m ≤ n, one exchanges
the indexes m and n and can get the same conclusion. Thus we have validated
assumption H6 for the Boltzmann equation.

To get Theorem 5.1, we also need to take care of the linearized operator L, which
is an analogue to the proof of Theorem 2.5. For simplicity, we show the case s = 1
with the energy estimate on ||hk||H1

ε⊥
, defined by

||hk||2H1
ε⊥

= A ||hk||2L2
x,v

+ α ||∇xhk||2L2
x,v

+ b ||∇vh⊥k ||2L2
x,v

+ a ε〈∇xhk, ∇vhk〉L2
x,v
.

For a higher-order Sobolev norm, one can refer to [6] and easily extend the conclusion.
When estimating ||hk||2L2

x,v
for k = 1, . . . ,K, multiplying k2q hk to both sides of

(5.3) and integrating on x, v, the term involving L is

(5.14)
1

ε2

K∑
k=1

k2q

〈
L

(
K∑
i=1

S̃kihi

)
, hk

〉
L2
x,v

.

Since the collision kernel is assumed to be linear in z, similar to the argument in (5.9),

S̃ki may be nonzero only when i has three choices:

i = k − 1, k, k + 1,

or k = i− 1, i, i+ 1, then

(5.15)
k

2
≤ i+ 1

2
≤ i.

Under the assumptions given in Theorem 5.1, one can see that |S̃kk| ≤ Cb and

(5.16) |S̃ki| ≤ ξ ||z||L∞〈|ψk|, |ψi|〉L2
z
≤ ξ Cz ||ψk||L2

z
||ψi||L2

z
= C2(ξ) if k 6= i,

where the constant C2(ξ) = ξ Cz = O(ε).

If i = k, since S̃kk = b and by using the coercivity property (2.12) and integrating
on x, one has

1

ε2

K∑
k=1

k2q 〈L(hk), hk〉L2
x,v
≤ − λ

ε2

K∑
k=1

||kq h⊥k ||2Λ ,
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If i 6= k, then i = k − 1 or i = k + 1. Define

χki =

{
0, S̃ki = 0,

1, S̃ki 6= 0,
(5.17)

and use (2.10) to bound (5.14) by some positive terms,

1

ε2

K∑
k=1

k2q

〈
L

(
K∑
i=1

S̃kihi

)
, hk

〉
L2
x,v

≤ CL

ε2

K∑
k,i=1

k2q ||S̃ki hi||Λ ||hk||Λ

(5.18)

≤ CLC2(ξ)

ε2

K∑
k,i=1

k2q

iq
||iqhi||Λ ||hk||Λ ≤

CLC2(ξ)

ε2
2q

K∑
k,i=1

||iqhi||Λ ||kqhk||Λ χki

≤ CLC2(ξ)C3(q)

ε2

K∑
k,i=1

||iqhi||Λ χki +
CLC2(ξ)C3(q)

ε2

K∑
k,i=1

||kqhk||2Λ χki

≤ 2C1

ε2

K∑
i=1

||iqhi||2Λ +
2C1

ε2

K∑
k=1

||kqhk||2Λ =
4C1

ε2

K∑
i=1

||iqhi||2Λ ,

where we use k2q

iq ≤ 2qkq by (5.15) and Young’s inequality in the third and fourth
inequalities, respectively. The fifth inequality is because i, k have only two choices
for a fixed k, i, respectively. C3(q) is a constant depending on q and we denote the
constant C1 = CL C(ξ)C3(q) = O(ε).

One observes that C1 in the nominator can be canceled with an ε in the denomi-
nator on the right-hand side of (5.18); then the whole term is of O(1/ε). Note from
(5.3) that the nonlinear term Γ has coefficient 1/ε. We combine (5.18) with 1/ε mul-
tiplied to the second term on the right-hand side of (5.7), wherein fk = hk in (5.7)

since
∑K
k=1 ||kqhk||2Λ is estimated; then the rest of the proof is the same as that in

Theorem 2.5. The same estimate holds if substituting hk by ∇xhk in (5.18).
Let C4 = max(Cb, C2(ξ)). To get an estimate of ||∇vh⊥k ||2L2

x,v
, by using (2.8),

(2.9), and (2.11) in assumption H1 and H2, one gets the following term involving L:

1

ε2

K∑
k=1

k2q

〈
∇vL

(
K∑
i=1

S̃ki h
⊥
i

)
,∇vh⊥k

〉
L2
x,v

=
1

ε2

K∑
k,i=1

k2q 〈∇vL(S̃ki h
⊥
i ), ∇vh⊥k 〉L2

x,v

(5.19)

≤ C4

ε2

K∑
k,i=1

k2q

((
C(δ)

νΛ
1

νΛ
0

+ νΛ
4

)
||h⊥i ||2Λ +

(
δ
νΛ

1

νΛ
0

− νΛ
3

)
||∇vh⊥k ||2Λ

)

=
C4

ε2

K∑
k,i=1

k2q

i2q

(
C(δ)

νΛ
1

νΛ
0

+ νΛ
4

)
||iq h⊥i ||2Λ +

C4

ε2

K∑
k,i=1

(
δ
νΛ

1

νΛ
0

− νΛ
3

)
||kq∇vh⊥k ||2Λ

≤ 3× 4q C4

ε2

(
C(δ)

νΛ
1

νΛ
0

+ νΛ
4

) K∑
i=1

||iq h⊥i ||2Λ +
3C4

ε2

(
δ
νΛ

1

νΛ
0

− νΛ
3

) K∑
k=1

||kq∇vh⊥k ||2Λ ,

where we use (5.15) in the second equality, and the fact that both k, i have only
three choices for a fixed i, k, respectively. Equation (5.19) is similar to the estimate
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||∇vh⊥||L2
x,v

used in the proof of Theorem 2.5, in the sense that h is substituted

by kq hk and summing up k = 1, . . . ,K. The estimate for 〈∇xhk,∇vhk〉L2
x,v

is also

similar in the above way to the estimate 〈∇xh,∇vh〉L2
x,v

when proving Theorem 2.5

in [6].
Analogous to the proof of Theorem 2.5, we multiply by k2q on both sides of all

the estimates and sum up k = 1, . . . ,K, then achieve the same result as Theorem
2.5, that is, the exponential decay of

∑K
k=1 ||kqhk||2Hsx,v . Therefore, Theorem 5.1 is

proved.
As a corollary, with the assumption (5.5) on the basis, using the Cauchy–Schwarz

inequality and the norm definition (2.13), one gets the estimate for the gPC solution
hK ,

||hK ||2Hsx,vL∞z =

∥∥∥∥∥
K∑
k=1

hk ψk(z)

∥∥∥∥∥
2

Hsx,vL
∞
z

≤ C
K∑
k=1

k2p ||hk||2Hsx,v(5.20)

≤ C

(
K∑
k=1

kq ||hk||2Hsx,v

)(
K∑
k=1

k2(p−q)

)
≤ C ′

K∑
k=1

||kqhk||2Hsx,v ,

since q > p+2, C is shown in (5.5) and C ′ is a constant independent of K. Therefore,
||hK ||Hsx,vL∞z also decays exponentially in time with the same rate as EK(t), namely,

(5.21) ||hK ||Hsx,vL∞z ≤ η̃ e
−τt

in the incompressible Navier–Stokes scaling, and

(5.22) ||hK ||Hsx,vL∞z ≤ η̃ e
−ετt

in the acoustic scaling. Here η̃ = C ′η. Define the norm for general function g,

(5.23) ||g||2Hsx,vL2
z

:=

∫
Iz

||g||2Hsx,vπ(z) dz.

Then (5.21) and (5.22) further implies as follows.

Corollary 5.3. Suppose all the assumptions in Theorem 5.1 are satisfied; we
have the following estimates for the gPC solution hK :

(i) Under the incompressible Navier–Stokes scaling,

||hK ||Hsx,vL∞z ≤ η̃ e
−τt, ||hK ||Hsx,vL2

z
≤ η̃ e−τt .

(ii) Under the acoustic scaling,

||hK ||Hsx,vL∞z ≤ η̃ e
−ετt, ||hK ||Hsx,vL2

z
≤ η̃ e−ετt ,

where η̃, τ are positive constants independent of K and z.

For other kinetic models like the Landau equation, the proof is similar and we
omit it here.

5.3. Estimate of the gPC error. We first give the main result of this section
on the estimate of the gPC error.
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Theorem 5.4. Suppose the assumptions on the collision kernel and basis func-
tions in Theorem 5.1 and the assumption for initial data ||hin||Hs,rx,vL∞z ≤ CI are
satisfied; we then have the following:

(i) Under the incompressible Navier–Stokes scaling,

(5.24) ||he||Hsx,vL2
z
≤ Ce

e−λt

Kr
.

(ii) Under the acoustic scaling,

(5.25) ||he||Hsx,vL2
z
≤ Ce

e−ελt

Kr
,

where the constants Ce, λ > 0 are independent of K and ε.

Recall the reconstructed gPC solution defined in (5.1) and the projection operator
in (5.2). The total gPC error is given by

(5.26) he = h− hK := h− PKh︸ ︷︷ ︸
RK

+PKh− hK︸ ︷︷ ︸
eK

,

where RK is the projection error and eK is the numerical error.
By Theorem 2.5 and the standard estimate on the projection error,

(5.27) ||RK ||Hsx,vL2
z
≤ ||RK ||Hsx,vL∞z ≤ CP

||h||Hsx,vHr+1
z

Kr
≤ CP CI

e−τst

Kr
,

where CP , CI are constants. Define

(5.28) eK := PKh−hK =

K∑
k=1

(ĥk(t, x, v)−hk(t, x, v))ψk(z) :=

K∑
k=1

ek(t, x, v)ψk(z) ,

where one defines the coefficients of eK by

ek = ĥk − hk, 1 ≤ k ≤ K, e = (e1, . . . , eK)T .

We discuss the incompressible Navier–Stokes scaling below. In order to get the
hypocoercivity estimate for he, one needs to write down the gPC system for the
numerical error ek ∂tek +

1

ε
v · ∇xek =

1

ε2
(
Lk(h)− Lk(hK)

)
+

1

ε
(Fk(h, h)−Fk(hK , hK)) ,

ek(0, x, v) = 0, x ∈ Ω ⊂ Td, v ∈ Rd.
(5.29)

Since

Lk(h)− Lk(hK) = Lk(h− PKh+ PKh− hK) = Lk(eK) + Lk(RK).

By the estimate (5.27), the expression for Lk given in (5.4), we observe that the term
involving Skk in Lk(RK) equals to zero because of the assumption that leading order
of random collision kernel being constant and definition of RK ; and the term involving
Ski for i = k− 1 or i = k+ 1 contributes to an order ε coefficient thanks to the small
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random perturbation assumption (5.5) of the collision kernel, thus the estimate for
Lk(RK) is given by

(5.30) ||Lk(RK)||Hsx,vL2
z
≤ C ε e

−τst

Kr
,

where C is a constant independent of K and z.
Based on Corollary 1 and Theorem 3 shown in [35] (see also [5]), if B satisfies the

assumption (4.12) on the uniform boundness of z-derivatives of the collision kernel,
then for any f, g ∈ L1

v ∩ L2
v ,

||Q(f, g)||Hsx,v ≤ Cker ||f ||L2
x,v
||g||L2

x,v
,

where Cker > 0 depending only on the collision kernel and is independent of z. Using
(4.6), one gets

(5.31) ||F(f, g)||Hsx,v ≤ Cker ||f ||L2
x,v
||g||L2

x,v
≤ Cker ||f ||Hsx,v ||g||Hsx,v .

Notice that ek satisfies a similar estimate as (3.2) in section 3, except for the
nonlinear terms involving the operator F , whose estimate is given by (A.6) in the
appendix. Repeating a similar procedure as the proof for Theorem 2.5 and using
||eK ||2Hsε⊥L2

z
=
∑K
k=1 ||ek||2Hsε⊥ , one now gets

(5.32)
1

2

d

dt
||eK ||2Hsε⊥L2

z
≤
(
−A1||eK ||Hsx,vL2

z
+A2 e

−τ1t ||eK ||Hsx,vL2
z

+A3
e−τ2t

Kr

)
||eK ||Hsx,vL2

z
,

where τ2 = τ1 +τs, and Ai > 0 (i = 1, 2, 3) coming from CI , CP , Cker are all constants
independent of K and ε. Choose the initial data hin with ||hin||Hs,rx,vL∞z ≤ CI such
that A2 < A1. Since || · ||Hsε⊥ is equivalent to the || · ||Hsx,v norm,

(5.33)
d

dt
||eK ||Hsx,vL2

z
≤ −A4 ||eK ||Hsx,vL2

z
+ Ã3

e−τ2t

Kr
.

One usually chooses initial data such that e = 0; then a simple Gronwall’s in-
equality argument gives

(5.34) ||eK ||Hsx,vL2
z
≤ A5

e−κt

Kr
,

where Ã3, A4, A5, κ > 0 are all constants, independent of K and ε. Combining (5.27)
and (5.34), since he = RK + eK , one then has

||he||Hsx,vL2
z
≤ Ce

e−λt

Kr
,

where Ce, λ > 0 are constants independent of K and ε. For the acoustic scaling, we
multiply by ε on the right-hand side of (5.32) and (5.33), then obtain (5.25). Thus
Theorem 5.4 is proved.

We would like to point out that the above proof is different from [22]. Our analysis
gives sharper constants which are independent ofK and ε. Theorem 5.4 shows that the
gPC-SG method for the Boltzmann equation with random inputs and both scalings
is of spectral accuracy. In addition, the total gPC error he decays exponentially in
time.

Remark 5.5. As all of our estimates were established in weighted L2
z or corre-

sponding Sobolev norms, our time-decay results (for both analytic and numerical
solutions) will hold for both expected value and variance for h.
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6. Conclusion. In this paper, we first give an exponential decay to the global
equilibrium for both linear and nonlinear kinetic models with random uncertainties in
the initial data and collision kernel and with small scales corresponding to both the
incompressible Navier–Stokes and the Euler (acoustic) scalings, using the theoretical
framework developed in [38, 6] for deterministic problems. As an example we obtain
the results for the Boltzmann equation, while similar results can also be obtained for
other (random) linear and nonlinear kinetic equations whose deterministic counter-
parts are covered in [6]. Furthermore, for small random perturbation of the collision
kernel, we prove the exponential time decay of the gPC-SG solution, the spectral ac-
curacy of the gPC-SG method, as well as the exponential time decay of the numerical
error, under some mild conditions on the orthogonal polynomials.

There remain many interesting questions that need further research—for example,
whether one can establish a similar analysis for more general orthogonal polynomi-
als not satisfying condition (5.5), the random variable z in unbounded domain, the
Cauchy problem in Rd, and uncertainties arising from boundary conditions for bound-
ary value problems.

Appendix A. Proof of the estimate used in Theorem 5.4. Take ∂jl deriva-

tives (with |j|+ |l| ≤ s) on (5.29), multiply by ∂jl ek, and sum up all the k = 1, . . . ,K,
then integrate on x and v. Denoting dz1 = π(z)dz and dµ = dxdv, the nonlinear term
on the right-hand side is given by

RHS =

K∑
k=1

∫
∂jl
(
Fk(h, h)−Fk(hK , hK)

)
∂jl ek dµ

(A.1)

=

K∑
k=1

∫ ∫
∂jl
(
F(h, h)−F(hK , hK)

)
ψk(z)dz1 ∂

j
l ek dµ

=

∫ ∫
∂jl
(
F(h, h)−F(hK , hK)

)
∂jl e

K dµdz1

≤
(∫ ∫

(∂jl
(
F(h, h)−F(hK , hK)

)
)2 dµdz1

) 1
2

︸ ︷︷ ︸
a©

·
(∫ ∫

(∂jl e
K)2 dµdz1

) 1
2

︸ ︷︷ ︸
b©

,

where we used the definition of Fk in the first equality, (5.28) in the second equality,
and the Cauchy–Schwarz inequality in the last inequality. It is obvious that b© ≤
||eK ||Hsx,vL2

z
. Now we estimate term a©.

Using the relation

(A.2) F(h, h)−F(hK , hK) = F(h− hK , h) + F(hK , h− hK),

then

a©2 ≤ ||F(h, h)−F(hK , hK)||2Hsx,vL2
z

≤ 2
(
||F(h− hK , h)||2Hsx,vL2

z
+ ||F(hK , h− hK)||2Hsx,vL2

z

)
≤ 2C2

ker ||h− hK ||2Hsx,vL2
z

(
||h||2Hsx,vL2

z
+ ||hK ||2Hsx,vL2

z

)
.(A.3)
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By Theorem 4.4 and Corollary 5.3, we know

(A.4) ||hK ||Hsx,vL2
z
≤ η̃ e−τt, ||h||Hsx,vL2

z
≤ CI e−τst.

Using (5.26) and the estimate of RK in (5.27), one has

||h− hK ||2Hsx,vL2
z
≤ 2

(
||RK ||2Hsx,vL2

z
+ ||eK ||2Hsx,vL2

z

)
(A.5)

≤ 2

(
(CPCI)

2 e
−2τst

K2r
+ ||eK ||2Hsx,vL2

z

)
.

Plug (A.4) and (A.5) into (A.3), then

a©2 ≤ (C∗)2 e−2τ1t

(
(CPCI)

2 e
−2τst

K2r
+ ||eK ||2Hsx,vL2

z

)
,

which gives

a© ≤ C∗ e−τ1t
(
CPCI

e−τst

Kr
+ ||eK ||Hsx,vL2

z

)
,

where C∗ = 2
√

2Cker max{η̃, CI}. With the estimate of term a©, b© in (A.1), we
conclude that

(A.6) RHS ≤ C∗ e−τ1t
(
CPCI

e−τst

Kr
+ ||eK ||Hsx,vL2

z

)
||eK ||Hsx,vL2

z
.
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