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Abstract

The bistable reaction-diffusion-convection equation

(1) ∂tu+ ∇ · f(u) = −
1

ε
g(u) + ε∆u, x ∈ IRn, u ∈ IR

is considered. Stationary traveling waves of above equation are proved to exist when f(u)

is symmetric and g(u) is antisymmetric about u = 0. Solutions of initial value problems

tends to almost piecewise constant functions within O(1)ε time. The almost constant

pieces are separated by sharp interior layers, called fronts. The motion of these fronts are

studied by asymptotic expansion. The equation for the motion of the front is obtained. In

the case of f = bu2 and g(u) = au(1 − u2), where b ∈ IRn and 0 < a ∈ IR are constants,

the front motion equation takes more explicit form, showing that the front’s speed is

ε

(

κ+
∇µ

µ
· T

)

where κ is the mean curvature of the front, µ the width of the planar traveling of (1) in the

normal direction n of the front, T a vector tangential to the front. Both κ and ∇µ/µ · T

are elliptic operators, contributing to the shrinkage of closed curves. An ellipse in IR2 is

found to preserve its shape while shrinking.
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§1. Introduction

Typical reactive flows are governed by Navier-Stokes equations with reaction source

terms. These equations have the form

(1.1) ut + ∇ · f(u) =
1

ε
g(u) + γ∆u, t > 0, x ∈ IRn.

Here ε > 0 is the reaction time, µ the viscosity. We shall consider the scaling γ = ε in this

paper. We restrict our attention to the bistable type of source term g(u). We assume for

convenience that

(1.2) g(±1) = 0, g′(±1) < 0, g(0) = 0, g′(0) > 0

with no more zeroes. Under this assumption, ±1 are the two stable equilibrium points of

(1.1). When ε > 0 is small, we see that the solution of the initial value problem of (1.1)

will quickly become almost ±1 over subdomians separated by sharp fronts across which u

changes from −1 to 1. We shall study the motion of these fronts in this paper.

The one dimensional version of (1.1) and its inviscid version

ut + f(u)x =
1

ε
g(u)

are studied by [FH1, FH2, FJT, FJ, Lyb, Mas, Sin1, Sin2]. They considered the large time

behavior and ε → 0+ limits. No study has been done for multidimensional case of (1.1)

yet.

When f = 0, the equation (1.1) is a typical reaction-diffusion equation

ut + ∇ · f(u) =
1

ε
g(u) + γ∆u, t > 0, x ∈ IRn.

which has been extensively studied. When ε > 0 is small, the solution of the reaction-

diffusion equation tends to a piecewise constant function within O(1)ε time. The constant

pieces are separated by layers called fronts. If the two wells of the potential
∫

g(u)du are

equal, the front will move at the normal speed εκ where κ is the mean curvature of the

front. This phenomenon was conjectured by Allen and Cahn, [AC] and justified formally

by [Fife, Ca, RSK]. Rigorous results were obtained by [BES, BK, Br, Ch, D, DS, ESS,

Il, Son] etc. Among above papers, the one that is closely related to this paper is [RSK].

Many of its techniques are used in this paper. For more information about motion of

fronts in reaction diffusion equations, the reader is refereed to the lecture notes [E, Sou]

and references cited therein.
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The motion by mean curvature when f = 0 is due to the interaction of fast reaction

and slow diffusion in the reaction-diffusion equation. What is the effect of convection term

f on the front motion? To answer this question, in this paper, we shall investigate the

motion of fronts in (1.1) when f 6= 0. From our earlier results, [FJT], we see that in the

ε→ 0+ limit, equation (1.1) has two types of planar waves: The first kind is the ordinary

Lax shock propagating in the direction of the unit vector n, pointing from 1 to −1 side, at

the speed n · (f(1) − f(−1))/2 as determined by Rankin-Hugoniot condition. The second

type of wave, called rarefaction layer, has the speed −n · f ′(0). These wave speeds are

the O(1) order approximation of the front propagation speeds in (1.1). They are speeds

of planar waves. To get the O(ε) order of the wave speeds and to observe the effect of

curvature of the front and variance of thickness of front in different directions on the front

propagation, we set

(1.3) f(1) − f(−1) = f ′(0) = 0.

In this paper, we assume that

(1.4) f(−u) = f(u), g(−u) = −g(u).

Under this assumption, the condition (1.3) is satisfied.

The main results and the organization of this paper is as follows: In section §2, we

shall prove that, under the assumption (1.4), solutions of (1.1) with some initial value

will converge as t → ∞ to a planar stationary wave. As a consequence, the existence of

stationary planar traveling wave in any direction n is established. Across these planar

waves, u changes from ±1 to ∓1. The speed of these planar waves are necessarily 0. In

section §3, we formally derive, via asymptotic expansion, that after t = O(1)ε, the domain

IRn will be divided into subdomains over which u ≈ ±1. These subdomains are separated

by fronts across which u changes from ±1 to ∓1. This leads to the investigation of the

front propagation in the next section §4. Suppose we have a front separating the regions

{x ∈ IRn : u(x, t) > 0} and {x ∈ IRn : u(x, t) < 0}, over which u ≈ ±1. The location of

the front can be denoted as the level curve Φ(x, t, η, ε) = 0, where η = εt. In section §4,

we shall show, through asymptotic expansions, that Φt = 0, i.e., the front does not move

on the O(1) time scale, as expected since the planar waves are stationary. The front will

move in O(ε−1) time scale. We obtained the partial differential equation relating Φη and

partial derivatives of Φ up to second order. This equation contains the planar stationary

waves ψ(n · x/ε,n) of (1.1) in n := ∇Φ/|∇Φ| direction, determined by

(1.5)
n · f(u)ζ = g(u) + uζζ ,

u(±∞) = ±1 or ∓ 1
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To further understand the behavior of this equation for front motion, we want to study

some special cases of f and g for which explicit solutions of (1.5) can be obtained. For this

purpose, we considered in §5 the case where f(u) = bu2 and g(u) = au(1−u2), where b is

a constant vector in IRn and a > 0 is a constant, For such f and g, the planar stationary

waves ψ(n · x/ε,n) of (1.1) in n direction is

(1.6) ψ = tanh(ζ/µ)

with

(1.7) µ−1 = (−n · b ±
√

(n · b)2 + 2a)/2.

The function µ(n) is the width of the traveling wave of (1.1) in n direction. With the help

of (1.6) and (1.7), we obtained the explicit expression for the front equation:

(1.8)
Φη

|∇Φ|
= κ+

∇µ

µ
· T,

where κ is the mean curvature of the level curve Φ(x, t, η, ε) =constant, the vector T :=

(b−(b ·n)n)/(2µ−1+b ·n) is in a tangential direction of the level curve. Both κ and ∇µ
µ

·T

are elliptic operators on Φ. Equation (1.8) states that the front motion of (1.1) is driven

by mean curvature of the front and relative rate of change in a tangential direction of the

thickness of planar traveling waves of (1.1). In two dimensional case, the contributions of

both κ and ∇µ
µ · T are to make a circular front to shrink. An example in IR2 is given to

show that equation (1.8) have an explicit solution representing an elliptic front. This front

maintains its shape while shrinking. The time it takes for this elliptic front to shrink to a

point and then to disappear is given. We guess that simple closed fronts of other shape,

for example a circle will evolve, as η increases, towards the shape of this ellipse before it

shrinks to a point. In section §6. we solve a differential equation to provide its solutions

needed in §4 and §5.

§2. Planar Traveling Waves of (1.1)

In this section, we consider planar traveling waves of (1.1) when γ = Aε. A planar

traveling wave of (1.1) in the direction of the unit vector n is a solution of (1.1) of the

form u(ε−1(x · n − ct)). We see that a planar traveling wave of (1.1) connecting u± = ±1

or ∓1 must satisfy the following connecting orbit problem of ODE:

(2.1)
− cu′ + n · f(u)′ = g(u) + Au′′,

u(±∞) = u±.
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For simplicity, we use the following notation

(2.2) f(u) := n · f(u).

Then the system (2.1) become

(2.3)
− cu′ + f(u)′ = g(u) + Au′′,

u(±∞) = u±.

The traveling wave equation of

(2.4) ut + f(u)x = g(u) + Auxx

is the same as (2.3). To prove the existence of solutions of (2.3), we shall show that the

solution of (2.4) with some initial data u(x, 0) will converge to a stationary solution under

condition (1.4). Some of the lemmas in this section are proved in our earlier paper [FJ].

However, the proof in [FJ] is for the special case g(u) = u(1−u2). Here we present a proof

holds for general g ∈ C1(IR, IR). We shall further prove that the speed of traveling waves

of (2.4) and hence that of (2.1) is 0.

Lemma 2.1. Let u(x, t) be the solution of (1.1) with initial data u(x, 0). If ux(x, 0) < 0

(> 0), then ux(x, t) < 0 (> 0).

Proof. Let v = ux, then v satisfies

(2.5)
vt + f ′(u)vx + f ′′(u)v2 = vxx + g′(u)v,

v(x, 0) = ux(x, 0) > 0 (< 0).

The maximum principle type of argument applies to (2.5) to yield that v(x, t) > 0 (< 0)

if v(x, 0) > 0 (< 0).

In the rest of this section, we assume the initial data satisfies

(2.6) ux(x, 0) < 0, and − 1 ≤ u(x, 0) ≤ 1.

In this case the solution u(x, t) is decreasing. Then the transformation from (x, t) to

(2.7)
w = u(x, t),

s = t

is one-to one. Then for any smooth function h(w, s), the chain rule reads
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(2.8)
ht = hwut + hs,

hx = hwux.

Let v := ux. After changing variables according to (2.7) and (2.8), the equation (2.5) and

(2.6) become

(2.9)
vs = v2

[

vww +

(

g(w)

v

)

w

− f ′′(w)

]

, w ∈ (−1, 1),

v(w, 0) < 0.

From Lemma 2.1, we know that the solution of (2.9) satisfies v(w, s) < 0 for s > 0.

Lemma 2.2. If vs(w, 0) > 0 (< 0), then vs(w, s) > 0 (< 0) for all s > 0.

Proof. Taking ∂/∂s on (2.9), we obtain

(2.10) (vs)s = v2(vs)ww + 2v[vww − f ′′(w)]vs − g(w)(vs)w + g′(w)(vs).

Again, the maximum principle type of argument applies to (2.10) to yield that if vs(w, 0) >

0 (< 0), then vs(w, s) > 0 (< 0) for all s > 0.

Lemma 2.3.

(i) Let

(2.10) u(x, 0) = − tanh(x/δ), (tanh(x/δ))

where δ > 0 is a constant and v(w, 0) be the function ux(x, 0) with variables (w, s)

given in (2.8). Then when δ > 0 is small enough, the solution v of (2.9) satisfies

vs(w, s) > 0 (< 0) for all s > 0.

(ii) Let u(x, 0) be the solution of

(2.11) ux =
1

δ1

g(u)

u
, u(0, 0) = 0.

If δ1 > 0 are large enough, then the solution of (2.9) with initial data v(w, 0) =

ux(x(w, 0), 0) satisfies vs(w, s) > 0 for all s > 0.

(iii) Let u(x, 0) be the solution of

(2.12) ux = −
1

δ2

g(u)

u
, u(0, 0) = 0.
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If δ2 > 0 are large enough, then the solution of (2.9) with initial data v(w, 0) = ux(x(w, 0), 0)

satisfies vs(w, s) < 0 for all s > 0.

Proof. (i) We only prove the case where u(x, 0) = tanh(x/δ). The other case can be

similarly proved by multiply minus sign to v since the equation is linear in v.

From Lemma 2.2, it suffices to prove that the initial data given by (2.10) satisfies

(2.9)2 and vs(w, 0) > 0 for w ∈ (−1, 1). It is easy to see that v(w, 0) = ux(x, 0) > 0 for

u(x, 0) = tanh(x/δ). Also, the limiting process w → ±1 correspond to x→ ∓∞ and hence

v(w → ±1, 0) = 0. We compute straightforwardly to get

vs(w, 0) = vt + vx
∂x

∂s
= vt − vx

ut

ux

= uxxx − u2
xx/ux − f ′′(u)u2

x + g′(u)ux − g(u)uxx/ux

= ux

(

uxx

ux

)

x

− f ′′(u)u2
x + ux

(

g(u)

ux

)

x

= sech4
(x

δ

)

[

2

δ3
−
f ′′(u)

δ2

]

+ δux

(

g(u)

1 − u2

)

x

= sech4
(x

δ

)

[

2

δ3
−
f ′′(u)

δ2

]

+ δu2
x

(

g(u)

1 − u2

)

u

= sech4
(x

δ

)

[

2

δ3
−
f ′′(u)

δ2
+
O(1)

δ

]

Here we used conditions (1.2) and (1.4) and ux = (1− u2)/δ. The conclusion follows from

Lemma 2.2 immediately.

(ii) Now, the initial data u(x, 0) is determined by

ux =
g(u)

δ1u
, u(0, 0) = 0.

By the conditions (1.2) on g(u), we see that range of u(x, 0) is (−1, 1) and ux(x, 0) > 0.

The computation similar to that in the proof of (i) yields that

vs(w, 0) = ux

(

uxx

ux

)

x

− f ′′(u)u2
x + ux

(

g(u)

ux

)

x

=

(

O(1)

δ1
+O(1) + δ1

)

u2
x.

When δ1 > 0 is sufficiently large, vs(w, 0) > 0 and hence vs(w, s) > 0.

(iii) The proof is almost the same as that of (ii).
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Corollary 2.4. Let v(w, s) be the solution of (2.9) with initial data − tanh(x/δ) ( or

tanh(x/δ) ) where δ > 0 sufficiently small. Then v(w, s) → θ(w) < 0 ( > 0 ) for w ∈ (−1, 1)

as s→ ∞. Furthermore, the function θ(w) satisfies

(2.13) −∞ =

∫ 1

0

1

θ(w)
dw <

∫ w

0

1

v(w, 0)
dw <

∫ w

0

1

v(w, 0)
dw <

∫ −1

0

1

θ(w)
= ∞

(2.13′)

(

∞ =

∫ 1

0

1

θ(w)
dw >

∫ w

0

1

v(w, 0)
dw >

∫ w

0

1

v(w, 0)
dw >

∫ −1

0

1

θ(w)
= −∞

)

.

Proof. we only prove for the case where v(w, 0) = − tanh(x/δ). The other case can

be prove in the same way. Lemma 2.3 states that the solution of (2.9) with initial data

(2.10) with δ > 0 sufficiently small satisfies vs(w, s) > 0 and hence v(w, s) is increasing as

s increases. On the other hand, v is also bounded from above by 0. Therefore, the limit

lims→∞ v(w, s) =: θ(w) exists for all w ∈ (−1, 1). To prove that θ(w) < 0 for w ∈ (−1, 1),

we consider the solution v2 of (2.9) given in Lemma 2.3(iii) with δ2 > 0 large enough. This

solution satisfies 0 > v2(w, 0) > v2(w, s) for all s > 0 and w ∈ (−1, 1). We note that the

comparison principle holds for equation (2.9). To compare the initial datum v(w, 0) and

v2(w, 0), we consider the equation defining v2(w, 0):

(2.14)

u2x = −
g(u2)

δ2u2
= −(1 − u2

2)
g(u2)

δ2u2(1 − u2
2)
,

u2(0) = 0,

u2(x(w)) = w,

v2(w, 0) = u2x(x(w)).

By condition (1.2), the factor
∣

∣

∣

∣

g(u)

δ2u(1 − u2)

∣

∣

∣

∣

≤ C

for u ∈ [−1, 1]. Comparing to the equation that the initial data v(w, 0) satisfies:

ux = −
1 − u2

δ
,

u(0) = 0,

u(x(w)) = w,

v(w, 0) = ux(x(w)).

Choosing δ2 > 0 large enough, we see that when w = u(x) = u(x2), 0 > v2(w, 0) > v(w, 0).

Thus, we have

(2.15) 0 > v2(w, 0) > v2(w, s) > v(w, s) > v(w, 0)
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and hence 0 > v2(w, 0) ≥ θ(w). Furthermore, the equality

∂x

∂w
=

1

ux

and inequalities (2.14) and the property of (2.10) and hence that of v(w, 0) implies that

∫ 1

0

1

θ(w)
dw <

∫ w

0

1

v(w, 0)
dw = −∞.

The other half of (2.13) can be proved similarly. .

Theorem 2.5. If f(u) = f(−u), then the solution u(x, t) of (2.4) with initial data

(2.16) u(x, 0) = − tanh(x/δ) ( or tanh(x/δ))

with constant δ > 0 small enough, converges to a stationary solution of (2.4).

Proof. again, we present the proof got the case where the initial data is

u(x, 0) = − tanh(x/δ).

The other case can be proved similarly.

From the definition (2.7) of the transformation (x, t) 7→ (u, s), we see that

∂x

∂u
=

1

ux
.

For the solution given in Corollary 3.2.4, we have

(2.17)
∂x

∂u
=

1

θ(u)

or equivalently

(2.18) lim
s→∞

x(u, s) = lim
s→∞

(x(u, s)− x(0, s)) =

∫ u

0

1

θ(u)
du.

The integral in (2.18) is regular for all w ∈ (−1, 1) in view of Corollary 2.4. When

f(u) = f(−u), the solution of (2.4) with initial data (2.16) is antisymmetric about the

point x = 0 and hence x(0, s) ≡ 0. Then (2.18) yields

(2.19) x = lim
s→∞

x(u, s) = G(u).
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Estimate (2.13) and θ(u) < 0 guarantee that for each x ∈ IR, there is a u(x) ∈ (−1, 1)

satisfies (2.19). By definition (2.7), we have

u(x) = u(x(u(x), s), s) = u(x, s) + ux(η, s)(x(u(x), s)− x)

for some η between x and x(u(x), s). Since ux is bounded as indicated by (2.14), we can

take s→ ∞ to obtain

lim
s→∞

u(x, s) = u(x)

for all x ∈ IR. It is easy to see that this limit u(x) must be a stationary solution of (2.4).

Above theorem states that there is a stationary traveling wave of (2.4) if f(u) is

symmetric and g is antisymmetric about u = 0. Next, we shall prove that all traveling

waves of (2.4) are stationary under this condition.

By straightforward calculation, we obtain the eigenvalues of the linearized equation

of (2.4) at u = ±1: At u = 1, we have

(2.20) λ±(1) =
1

2A
[f ′(1) − c±

√

(f ′(1) − c)2 + 8A],

while at u = −1,

(2.21) λ±(−1) =
1

2A
[f ′(−1) − c±

√

(f ′(−1) − c)2 + 8A].

We rewrite (2.3) as

(2.22)

u′ = p,

Ap
dp

du
+ g(u) = (−c+ f ′(u))p,

p(u = 1) = p(u = −1) = 0.

We can compute the value of dp/du at u = ±1 to obtain

(2.23)
dp

du

∣

∣

u=1
= λ±(1)

and

(2.24).
dp

du

∣

∣

u=−1
= λ±(−1)

Theorem 2.6. If f(u) = f(−u) for u ∈ IR, then the speed of traveling waves of (2.4) is

necessarily 0.

Proof. For definiteness, we consider the case where u− = 1 and u+ = −1 in (2.3).

The other case can be handled similarly.

10



For a solution of (2.3) to exist, it is necessary and sufficient that an unstable manifold

of (2.3) issued from u− = 1 intersect a stable manifold of (2.3) entering u+ = −1. The

slopes of these manifolds at u = ±1 are

(2.25)
dp

du

∣

∣

u=1
= λ+(1) =

1

2A
[f ′(1) − c+

√

(f ′(1) − c)2 + 8A],

(2.26)
dp

du

∣

∣

u=−1
= λ−(−1) =

1

2A
[f ′(−1) − c−

√

(f ′(−1) − c)2 + 8A],

respectively.

When c = 0, we know from Theorem 2.5 that an unstable manifold of issued from

u− = 1 intersects and hence coincides with a stable manifold entering u+ = −1. Since the

traveling wave given in Theorem 2.5 is monotone, the manifold is in the p < 0 half plane.

We denote this manifold in (u, p)−plane as Γ(0).

We see from (2.25) that the slope of unstable manifold from (u = 1, u′ = 0), denoted

as Γ+(1, c), decreases as c increases. The slope of stable manifold, denoted as Γ−(−1, c),

at (u = −1, u′ = 0) is also decreasing as c increases. If c > 0, then the stable manifold at

u = −1 is below Γ(0) near u = −1, while the unstable manifold at u = 1 is above Γ(0)

near u = 1. The opposite occurs when c < 0. Thus, for a connection between u = −1 and

u = 1 with c 6= 0 to be possible, it is necessary that one of the following four cases holds,

see Figure 2.1:

Figure2.1

Case 1. Γ+(1, c) intersects Γ(0).

Case 2. Γ+(1, c) crosses u′ = 0 from above at u > 1.

Case 2 is impossible since at (u > 1, u′ = 0),

Au′′ = −g(u) > 0

which prevents Γ+(1, c) to go below u′ = 0.

Now, to prove this theorem, we only have to prove that Case 1 cannot happen. To

this end, we assume the contrary, i.e. Γ(0) and Γ+(1, c) intersect at some point (u∗, p∗).

We denote Γ(0) by p0(u) and Γ+(1, c) by p1(u). Then, we have the following equations

from (2.22):

(2.27) Ap0
dp0

du
+ g(p0) = (−0 + f(u))p0,
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(2.28) Ap1
dp1

du
+ g(p1) = (−c+ f(u))p1,

we further use (u∗, p∗) to denote the point of intersection with the maximum u∗. Then at

the point (u∗, p∗) and when c > 0, we have

(2.29) p0(u
∗) = p1(u

∗) = p∗ < 0

and

(2.30)
dp0

du

∣

∣

u=u∗
≤
dp1

du

∣

∣

u=u∗
.

The difference of (2.27) and (2.28) reads

(2.31) 0 ≤ Ap∗
[

dp0

du

∣

∣

u=u∗
−
dp1

du

∣

∣

u=u∗

]

= cp1 < 0

which is a contradiction. Similarly, we will also get a contradiction when c < 0. These

contradictions completes the proof.

Corollary 2.7. If f(u) = f(−u) and g(u) = −g(−u), then solutions of (2.3) are anti-

symmetric about a point ξ = ξ0, i.e. u(ξ − ξ0) = −u(−(ξ − ξ0)).

Proof. Assume the contrary, that is, there is a solution of (2.3) that is not anti-

symmetric, and hence u′ is not symmetric about any point ξ. Then there is a non-

symmetric solution of (2.22), that is

(2.32) p(u0) 6= p(−u0)

for some point u0 ∈ (−1, 1). We recall from last theorem that c = 0 in (2.22). Then we see

that p(−u) is also a solution of (2.22) under the assumptions on f and g. If (2.32) held,

then p(u) and p(−u) would intersect at some point u1 ∈ (−1, 1). However, in our proof of

last theorem, we see that any two manifolds of (2.22) of (u = ±1, p = 0) either coincide or

do not intersect on (−1, 1) at all. This contradiction completes our proof.

§3. Asymptotic Behavior of u

Here we consider the behavior of u away from a front when ε > 0 is small through

asymptotic expansion. To do this, we have to assume functions f(u) and g(u) are smooth

enough. We observe that in the region where u(x, t, ε) > δ > 0, the estimate u(x, t, ε) =
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1 − O(1) exp(O(1)t/ε) holds. This hints us to use the “fast variable” τ := t/ε and start

with the ansatz

(3.1) u(x, t, ε) = v0(x, τ) + εv1(x, τ) + ε2v2(x, τ) +O(ε3).

Plugging (3.1) into (1.1) and equating the coefficients of ε−1, 1 and ε to zero, we obtain

(3.2a) ∂τv0 = g(v0),

(3.3a) ∂τv1 + ∇ · f(v0) = g′(v0)v1,

(3.4a) ∂τv2 + ∇ · (f ′(v0)v1) = g′(v0)v2 +
1

2
g′′(v0)v

2
1 + ∆v0.

The corresponding initial datum for above equations are

(3.2b) v0(x, 0) = u(x, 0),

(3.3b) v1(x, 0) = 0,

(3.4b) v2(x, 0) = 0,

respectively. It is clear that (3.2), (3.3) and (3.4) are ordinary differential equations of v0,

v1 and v2 respectively and x acts only as a parameter.

Now, we study the behavior of u(x, t) as τ → ∞ for x away from fronts. If we divide

IRn into connected components of {u(x, 0) > 0} and {u(x, 0) ≤ 0}, then inside each such

components, v0(x, τ) → 1 or −1, due to the assumption on g(u), (1.2). Similarly, we can

prove that v1 and v2 converge to zero exponentially as τ → ∞. From this analysis, we can

imagine the picture of u(x, t, ε) when ε > 0 is small and t > 0: At any time t > 0, IRn is

divided into subdomains inside which u(x, t, ε) is close to 1 or −1. Near the boundaries of

these subdomains, there are sharp layers, call them fronts, across which u changes from 1

to −1. Then, the characterization of the behavior of u(x, t, ε) is reduced to that of these

sharp layers.

In next section, we shall investigate the behavior of these fronts.

§4. Derivation of the Equation for the Front Motion

13



In this section, we shall formally derive the motion equation for fronts of (1.1) through

asymptotic expansions.

It is clear that the ansatz (3.1) is no longer useful near the fronts since it requires

some smoothness uniform in ε > 0 to be valid. Thus, we shall introduce new ansatz near

a front.

We consider the front Γ0 in IRn that separates the subdomains {u(x, 0) > 0} and

{u(x, 0) < 0}. The equation of this front is φ0(x) = 0. The front at time t evolved from Γ0

is denoted as Γ(t). Suppose that the front Γ(t) can be represented by a function φ(x, t, η)

with

(4.1) η = εt

and

(4.2) φ(x, 0, η) = φ0(x).

The layer around Γ(t) is expected to be of width ε. Thus we introduce the stretched spatial

variable

(4.3) y := ε−1φ(x, t, η).

We introduce the following ansatz for u(x, t, ε) around the front Γ(t):

(4.4) u(x, t, ε) = u0(y,x, τ, t, η, ε) + εu1(y,x, τ, t, η, ε) +O(ε2).

Here τ = t/ε is defined in §3. Putting (4.4) into (1.1) and equating the coefficients of ε−1

and ε0, we obtain

(4.5) ∂τu0 + φt∂yu0 + (∇φ · f ′(u0))∂yu0 = g(u0) + (∇φ)2∂2
yu0,

(4.6)

∂τu1 + (φt + ∇φ · f ′(u0))∂yu1

+ (∇φ · f ′′(u0)∂yu0 − g′(u0))u1 − (∇φ)2∂2
yu1

= −∂tu0 −∇ · f(u0) + 2∇(∂yu0) · ∇φ+ ∇2φ∂yu0 − φη∂yu0.

Equation (4.5) is a parabolic partial differential equations with variables τ > 0 and y ∈

IRn with parameters x, t, η. To uniquely determine u0, we need the initial data u0(y,x, τ =

14



0, t, η, ε). Consider the coordinate system x = (ξ, z) where ξ is the signed distance from

the point x to the n− 1 dimensional surface Γ0 and z is the n− 1 dimensional coordinate

system on Γ0. According to the definition of y, (4.3), we have

(4.7) εy = φ0(x) = φ0(ξ, z) = φ(0, z) + ξ∂ξφ0(0, z) +O(ξ2) = ξ∂ξφ0(0, z) +O(ξ2)

where in the last step, we used that along Γ0, φ0(x) = φ0(0, z) = 0. Let initial data of

(1.1) be u(x, 0, ε) = a(x). Then from (4.4) and (4.7) we have the initial data for u0:

(4.8) u0(y, 0, z, τ = 0, t, η, ε) = a(0, z) + εy
∂ξa(0, z)

∂ξφ0(0, z)
.

Similar statements hold for u1.

When τ → ∞, it is expected that the solution u0 of (4.5) approach to a traveling

wave. So, we assume that

(4.9) u0(y,x, τ, t, η, ε) ∼ ψ(y − cτ,x, t, η)

where ψ is a traveling wave of (4.5) with speed c. The function ψ satisfies the traveling

wave equation of (4.5):

(4.10)
(φt − c+ ∇φ · f ′(ψ))ψ′ = g(ψ) + (∇φ)2ψ′′,

ψ(±∞) = u±

where u± are the two stable equilibria of (1.1).

In Section 2, we proved that the traveling wave equation

(4.11)
(−s + F ′(ψ))ψ′ = g(ψ) + Aψ′′,

ψ(±∞) = u±

has a solution when F (u) is symmetric and g(u) is anti-symmetric about u = 0. The speed

s must be zero and the solution is anti-symmetric around a point ξ = ξ0. Apply this result

to (4.10), we see that

(4.12) c− φt = 0

and hence

(4.13)
(∇φ · f ′(ψ))ψ′ = g(ψ) + (∇φ)2ψ′′,

ψ(±∞) = u±.
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From the definition of y, (4.3), we can see that a fixed point in x-coordinate system

travels at a speed φt/ε relative to the y-coordinate system. The traveling wave of (4.5)

travels at a speed c/ε relative to the y-coordinate system. Then the speed of this traveling

wave relative to the x-coordinate system is (c − φt)/ε which is 0 according to (4.12). In

other words, the front Γ(t) is the level curve

Φ := φ(x, t, ε) − ct = 0,

which does not move on the t time scale. Furthermore, (4.12) shows that ∇φ is independent

of t and therefore the traveling wave equation (4.10) and hence (4.13) are independent of

t: ψ = ψ(ξ,x).

Now, we shall find the motion of the front on the η time scale: To this end, we consider

the equation (4.6) for the next order of approximation u1. We assume that as τ → ∞, u1

approaches a traveling wave of (4.6):

(4.14) u1 → ω(y − cτ,x, t, η).

The traveling wave equation of (4.6) is

(4.15)
(−c+ φt + ∇φ · f ′(ψ) − g′(ψ))ω′ + (∇φ · f ′′(ψ))ψ′ω − (∇φ)2ω′′

= −∇ · f(ψ) + 2∇ψ′ · ∇φ+ ψ′∇2φ− ψ′φη.

Now, we use φt − c = 0 and (4.10) to obtain

(4.16)
[(∇φ · f ′)ω]′ − g′(ψ)ω − (∇φ)2ω′′

= −∇ · f(ψ) + 2∇ψ′ · ∇φ+ ψ′∇2φ− ψ′φη.

We consider the adjoint equation for the left hand side of (4.16):

(4.17) (∇φ)2ψ′′

1 + (∇φ · f ′(ψ)ψ′

1 + g′(ψ)ψ1 = 0.

It is closely related to the equation for ψ, (4.13). Taking derivative on (4.13), we get

(4.18) (∇φ)2(ψ2)
′′ − ((∇φ · f ′(ψ)ψ2)

′ + g′(ψ)ψ2 = 0

with ψ2 = ψ′. It is the adjoint equation of (4.17). Since ψ is monotone, the solution

ψ2 = ψ′ of (4.18) satisfies ψ2 6= 0. We shall see from Theorem 6.1 in §6 later that the

general solution of (4.17) is

ψ1 = ψ′

[

C2 exp

(

∫ ξ

0

−∇φ · f ′(ψ)

|∇φ|2
dθ

)

+

∫ ξ

0

C1

|∇φ|2ψ′2
exp

(

∫ ξ

θ1

−∇φ · f ′(ψ)

|∇φ|2
dθ2

)

dθ1

]
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where C1 and C2 are any constants. We choose

(4.19) ψ1 = ψ′ exp

(

∫ ξ

0

−∇φ · f ′(ψ)

|∇φ|2
dθ

)

=: ψ′(ξ)W (ξ).

A straightforward calculation on the decay rate of ψ, the solution of (4.13), and that of

(4.19) at ξ = ±∞ shows that ψ′ψ1 decays at ξ = ±∞ exponentially. We multiply (4.16)

by ψ1 given in (4.19) and integrate by parts on the left hand side, we obtain

(4.20)

φη = ∇2φ+

∫∞

−∞
[−∇ · f(ψ) + 2∇φ · ∇ψ′]ψ1dξ

∫∞

−∞
ψ′ψ1dξ

= ∇2φ+

∫∞

−∞
[−∇ · f(ψ)ψ′W −∇φ · ψ′2∇W ]dξ

∫∞

−∞
ψ′2Wdξ

+ ∇φ ·
∇
∫∞

−∞
ψ′2Wdξ

∫∞

−∞
ψ′2Wdξ

.

To further clarify the dependence of ψ and ψ1 on x, we perform the transformation

(4.21) ζ :=
ξ

|∇φ|

in (4.13) to yield

(4.22) n · f(ψ)ζ = g(ψ) + ψζζ

where

(4.23) n :=
∇φ

|∇φ|
.

is the unit normal vector of level curves of φ. We do the same on (4.17) to get

(4.24) n · f ′(ψ))ψ1ζ + g′(ψ)ψ1 + ψ1ζζ = 0.

From (4.22-24), we can see that ψ and ψ1 only depend on ζ and n(x). In fact, the function

ψ(ζ,n(x)) is the traveling wave of (1.1) in the direction n. In this new variable, ψ1 in

(4.19) has the form

(4.25a) ψ1 =
1

|∇φ|
ψζ(ζ,n)W (ζ,n)

where

(4.25b) W = exp

(

−n ·

∫ ζ

0

f ′(ψ(θ,n))dθ

)

.
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We note that the gradient ∇ in (4.18) is ∇x with ξ fixed, denoted more precisely by

∇
∣

∣

ξ
. If we want to use the new variable (ζ,x) = (ξ/|∇φ|,x) in (4.18), we have to use the

chain rule

(4.26)

∇
∣

∣

ξ
v = ∇

∣

∣

ζ
v + ∇

∣

∣

ξ
(ζ)∂ζv

= ∇
∣

∣

ζ
v + ζ|∇φ|∇x

(

1

|∇φ|

)

∂ζv

in (4.20). This leads us to

(4.27)

φη = ∇2φ−∇φ ·
∇|∇φ|

|∇φ|
+ ∇φ ·

∇
∫∞

−∞
ψ2

ζWdζ
∫∞

−∞
ψ2

ζWdζ

−
∇φ

∫∞

−∞
ψ2

ζWdζ
·

∫ ∞

−∞

ψ2
ζ

[

∇W + |∇φ|∇

(

1

|∇φ|

)

Wζζ

]

dζ

−
|∇φ|

∫∞

−∞
ψ2

ζWdζ

∫ ∞

−∞

ψζW

[

∇ · f + |∇φ|∇

(

1

|∇φ|

)

· f(ψ)ζζ

]

dζ.

We note that the first two terms on the right hand side of (4.27) is

|∇φ|∇ ·
∇φ

|∇φ|
= |∇φ|κφ

where κφ is the mean curvature of the level curve of φ. Therefore, the equation of motion

for φ, (4.27), takes the form

(4.28)

φη = |∇φ|κ+ ∇φ ·

∫∞

−∞
(∇ψ2

ζ )Wdζ
∫∞

−∞
ψ2

ζWdζ
+ n · ∇(|∇φ|)

∫∞

−∞
ψ2

ζWζζdζ
∫∞

−∞
ψ2

ζWdζ

−
|∇φ|

∫∞

−∞
ψ2

ζWdζ

∫ ∞

−∞

ψζW

[

∇ · f + |∇φ|∇

(

1

|∇φ|

)

· f(ψ)ζζ

]

dζ.

When f = 0, the function ψ determined by (4.22) is independent of x, and W = 1. Then

the equation (4.28) reduces to the well known motion by mean curvature equation

(4.29) φη = |∇φ|κφ

when f = 0.

§5. Some Special Cases Where (4.22) and (4.24) Have Exact Solutions
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To investigate the behavior of the front propagation equation (4.28) further, it is

better that we have exact solutions of (4.22) and (4.24) for some special f(u) and g(u).

Here, we assume

(5.1) g(u) = au(1 − u2)

and

(5.2) f(u) = bu2

where a is a constant and b ∈ IRn is a constant vector. For definiteness, we shall assume

(5.3) a ≥ 0.

Then, equations (4.22) takes the form

(5.4a)
2bψψ′ = aψ(1 − ψ2) + ψ′′,

ψ(±∞) = ±1. ( or ∓ 1)

where

(5.4b) b := n · b.

It is easy to check that

(5.5a) ψ(ζ) = tanh(δζ)

with

(5.5b) δ :=
1

2
(−b±

√

b2 + 2a)

are solutions of (5.4).

Under the choice of (5.1) and (5.2) for f and g, equation (4.24) becomes

(5.6) ψ′′

1 + 2bψψ1 + g′(ψ)ψ1 = 0.

The solution of (5.6) chosen for deriving (4.28) is

(5.7) ψ1 = ψ′W
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with

(5.8) W (ζ) = exp

(

−2b

∫ ζ

0

ψ(θ)dζ

)

.

From (5.5), we find that

(5.9) W (ζ) = sech2b/δ(δζ).

Now, we plugging the expressions (5.9) and (5.5) into (4.28) to see what (4.28) becomes

under assumptions (5.1) and (5.2). We write (4.28) as

(5.10) φη = |∇φ|κ+ II + III + IV.

We compute the term II

(5.11) II := ∇φ ·

∫∞

−∞
(∇ψ2

ζ )Wdζ
∫∞

−∞
ψ2

ζWdζ

as follows:

(5.12)

∫ ∞

−∞

ψ2
ζWdζ = δ2

∫ ∞

−∞

sech4+2b/δ(δζ)dζ

= δ

∫ ∞

−∞

sech4+2b/δ(θ)dθ,

where θ = δζ,

(5.13)

∫ ∞

−∞

(∇ψ2
ζ )Wdζ

= 2∇δ

∫ ∞

−∞

(sech4+2b/δθ − 2θsech4+2b/δθ tanh θ)dθ

= 2∇δ

∫ ∞

−∞

sech4+2b/δθdθ + 4∇δ

∫ ∞

−∞

θsech3+2b/δθd(sechθ)

=
2δ + 2b

2δ + b

∫ ∞

−∞

sech4+2b/δθdθ.

Hence we have

(5.14) II =
2δ + 2b

2δ + b
∇φ ·

∇δ

δ
.
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Similarly, we can obtain

(5.15) III :=
∇φ

|∇φ|
· ∇(|∇φ|)

∫∞

−∞
ψ2

ζWζζdζ
∫∞

−∞
ψ2

ζWdζ
= −

b

2δ + b

∇φ

|∇φ|
· ∇(|∇φ|),

and

(5.16)

IV := −
|∇φ|

∫∞

−∞
ψ2

ζWdζ

∫ ∞

−∞

ψζW

[

∇ · f + |∇φ|∇

(

1

|∇φ|

)

· f(ψ)ζζ

]

dζ

= −
|∇φ|

∫∞

−∞
ψ2

ζWdζ

∫ ∞

−∞

ζψ2
ζWf ′(ψ) ·

(

∇δ

δ
−

∇|∇φ|

|∇φ|

)

dζ

= −
|∇φ|

2δ + b

(

∇δ

δ
−

∇|∇φ|

|∇φ|

)

· b.

Plugging (5.14-16) into (5.10), we obtain

(5.17)
φη

|∇φ|
= κ+

∇δ

δ
·

(

(2δ + 2b)n− b

2δ + b

)

−
∇|∇φ|

|∇φ|
·

(

bn − b

2δ + b

)

With the notation

(5.18) T :=
b − bn

2δ + b

equation (5.17) becomes

(5.19)
φη

|∇φ|
= κ+

∇δ

δ
· (n− T) +

∇|∇φ|

|∇φ|
· T

Recalling that b = n ·b and ||n|| = 1, we see that n ·T = 0 We recall that n = ∇φ/|∇φ| is

the unit normal of the level curve φ = C, Thus, T is in the tangent direction of the level

curve. We claim that

(5.20)
∇δ

δ
· n +

∇|∇φ|

|∇φ|
· T = 0

Indeed, we further compute ∇δ defined in (5.5b) to get

−1

2δ + b
∇b.

In the rest of this section, we use the convention that summation is taken for repeated

indeces. Using (4.23), (5.4b) and (5.18) in (5.20) we obtain

(5.21)

=
−1

2δ + b
∇b · n −

∇|∇φ|

|∇φ|
·
b − bn

2δ + b

=
−|∇φ|−1

2δ + b
[nkbj(φxjxk

− njnlφxkxl
) + njφxjxk

(blnlnk − bk)]

=
−|∇φ|−1

2δ + b
[nkbjφxjxk

− bknjφxjxk
− nkbjnjnlφxkxl

+ njblnlnkφxjxk
]

= 0
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as desired. Thus, we can further simplify the equation (5.19) as

(5.22)
φη

|∇φ|
= κ+

∇δ−1

δ−1
· T

Recalling (5.5), we see that δ−1 is the width of the traveling wave of (1.1) in the n direction.

Then the laster term in the equation (5.22) represents the relative rate of change of the

thickness of the front in the tangential direction T of the level curve φ =constant.

Since the original equation (1.1) is of parabolic type, we expect the equation (5.19)

for its front is also of parabolic type. We prove this in the following theorem:

Theorem 5.1.

(i) The operator

κ = ∇ ·
∇φ

|∇φ|

in (5.22) is elliptic.

(ii) The operator
∇δ−1

δ−1
· T

in (5.22) is elliptic.

Proof. (i) Although κ is well known to be an elliptic operator, we still present the

proof since we will use it later. We compute κ to get

κ =
|∇φ|∇2φ−∇φ · ∇|∇φ|

|∇φ|2

=
|∇φ|∇2φ− φxj

φxk
φxkxj

/|∇φ|

|∇φ|2
.

We replace φxjxk
in the above by λjλk, use n = ∇φ/|∇φ| and apply Schwaltz inequality,

then the operator κ becomes

(5.23)
λjλj − njnkλjλk

|∇φ|
= |∇φ|−1((Λ,Λ) − (Λ,n)2) ≥ 0

where Λ is the vector (λ1, λ2, ..., λn). The equality in (5.23) holds if and only if Λ = ||Λ||n.

This shows that κ is an elliptic operator.

(ii) We further compute ∇δ defined in (5.5b) to get

(5.24)

∇δ

δ
· T =

−1

2δ + b
∇b · T

=
−1

2δ + b
Tkbj∂xk

nj

=
−1

2δ + b
Tkbj(φxjxk

− njnlφxlxk
)|∇φ|−1.
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Replacing φxjxk
by λjλk and using (5.18) in (5.24), we see that (5.24) becomes

(5.25)

(

−1

2δ + b

)2

|∇φ|−1bj(bk − binink)((λjλk − njnlλlλk)

=

(

−1

2δ + b

)2

|∇φ|−1(bkλk − bininkλk)((λjbj − njbjnlλl)

=

(

−1

2δ + b

)2

|∇φ|−1((b · Λ) − (b · n)(n · Λ))2 ≥ 0

with equality holds if and only if parts of b and Λ perpendicular to n are perpendicular to

each other: (b− (b ·n)n) · (Λ− (Λ ·n)n) = 0. The inequality (5.25) completes the proof.

Remark: Equation (5.22) is degenerate since when n = Λ/||Λ||, both (5.25) and (5.23)

are 0. xxx

Remark: From above theorem, we see that the convection term of (1.1), ∇ · f(u), also

contributes to the parabolicity of the front motion equation.

Now, we consider the evolution of a front that is a circle in IR2 at initial time under

the equation (5.22). Take φ(x, y, 0) = x2/2 + y2/2 − r2 as the initial data where r > 0 is

a constant. We can calculate to get that

(5.26) κ =
1

|∇φ|
> 0,

and

(5.27) −
∇δ

δ
· T =

1

(2δ + b)2
|∇φ|−1(b · b − (b · n)2) ≥ 0.

We see from (5.22) that φη(x, y, 0) > 0. We then expect that the front represented by

φ = 0 shrinks as η increases. We also see that the circular front shrinks fastest when the

normal direction of the front n is perpendicular to the vector b in the function f , (5.2),

and slowest when n is paralell to b. This suggests that some elliptic front may preserve

its shape as it shrinks. The following example shows that it is indeed the case.

Example: Assume b = (b1, 0). Let the initial data for (5.22) be

(5.28) φ(x, y, 0) =
x2

a2
1

+
y2

a2
2

− r20.

If

(5.29) a1 = a2

√

2a+ b21
2a

,
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then the solution of (5.22) is

(5.30) φ(x, y, η) =
x2

a2
1

+
y2

a2
2

− (r(η))2,

where

(5.31) r(η) =

√

−a2
1a

−2
2 η + r20.

Thus, the front which is at φ = 0 will maintain the shape of the ellipse of (5.30) while

shrinking as indicated by (5.31). At the rescaled time η = r20a
−2
1 a2

2, the ellips will shrink

to a point and then disappear.

Proof. By straightforward calculation, using the ansatz (5.30), we see that

(5.32) κ =
1

a2
1a

2
2|∇φ|

3

(

x2

a2
1

+
y2

a2
2

)

,

(5.33)

−
∇δ

δ
· T =

1

(2δ + b)2|∇φ|
(bk − (b · n)nk)bj(φxjxk

− njnlφxlxk)

=
1

(2δ + b)2|∇φ|
(bk − (b · n)nk)bj(δjka

−2
j − njnlδlka

−2
k )

=
1

(2δ + b)2|∇φ|
a−2

k (bk − (b · n)nk)2

=
b21y

2

(2δ + b)2a2
1a

6
2|∇φ|

5

(

x2

a2
1

+
y2

a2
2

)

,

To determine r(η), we plug (5.33), (5.32) into (5.22) and use (5.5b) to obtain

(5.34)

φη =
1

a2
1a

2
2|∇φ|

2

[

1 +
b21y

2

|∇φ|2(b2n1 + 2a)a4
2

](

x2

a2
1

+
y2

a2
2

)

=
b2 + 2a

a2
1a

2
2

1
(2a+b2)x2

a4

1

+ 2ay2

a4

2

(

x2

a2
1

+
y2

a2
2

)

.

When (5.29) holds, above equality yields that

φη = −(r2)η = a2
1a

−2
2 ,

and hence

r(η) =

√

−a2
1a

−2
2 η + r20
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as desired.

§6. Solutions of (4.24)

In this section, we shall find solutions of (4.24). This can be described in a broader

context of the relation between solutions of the boundary value problem

(6.1) (p0(ξ)v
′)′ + (p1(ξ)v)

′ + p2(ξ)v = 0,

and that of

(6.2) (p0(ξ)w
′)′ − p1(ξ)w

′ + p2(ξ)w = 0.

We see that the equation (4.17) and (4.18), (4.24) and derivative of (4.22) are special cases

of (6.2) and (6.1).

Suppose we already know a special solution of (6.1), denoted as v0(ξ). Assume this

solution satisfies

(6.3) v0(ξ) 6= 0.

We let

(6.4) w(ξ) = v0(ξ)W (ξ).

This way, we can eliminate p2 in (6.2):

(6.5)

0 = (p0(ξ)w
′)′ − p1(ξ)w

′ + p2(ξ)w

= [(p0v
′

0)
′ + p2v0 − p1v

′

0]W + [2p0v
′

0 + p′0v0 − p1v0]W
′ + p0v0W

′′

= [−(p1v0)
′ − p1v

′

0]W + [2p0v
′

0 + p′0v0 − p1v0]W
′ + p0v0W

′′

= v0(p0W
′ − p1W )′ + 2v′0(p0W

′ − p1W )

or simply

(6.6) v0(p0W
′ − p1W )′ + 2v′0(p0W

′ − p1W ) = 0.

Integrating the equation (6.6) once to get

p0W
′ − p1W = C1v

−2
0

and hence

(6.7) W (ξ) = C2 exp

(

∫ ξ

0

p1

p0
dη

)

+ C1

∫ ξ

0

p−1
0 (η)v−2

0 (η) exp

(

∫ ξ

η

p1

p0
dζ

)

.

We summarize above result in the following theorem:
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Theorem 6.1. Assume that (6.1) has a solution v0 satisfying v′0 6= 0. Then the general

solution of (6.2) is

(6.8) w(ξ) = v0W (ξ)

where W (ξ) is given by (6.7).

Proof. We already see that the function given by (6.7) are solutions of (6.2) for any

constants C1 and C2. It remains to prove that any solution of (6.2) can be expressed by

(6.7) with suitable constants C1 and C2. Since solutions of (6.2) are uniquely determined

by initial data w(0) and w′(0), it suffices to prove that for any given initial data w(0) and

w′(0), there are constants C1 and C2 such that the w(ξ) given by (6.8) satisfies the initial

data. It is clear from (6.7) and (6.8) that w(0) = v0(0)C2 or C2 = w(0)/v0(0). Similarly,

we see that C1 can also be determined by w(0) and w′(0). This completes the proof.
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