1. (a) Find a polynomial \(p(x) \) of degree \(\leq 2 \) that satisfies

\[
p(x_0) = y_0, \quad p'(x_0) = y'_0, \quad p'(x_1) = y'_1
\]

Give a formula in the form

\[
p(x) = y_0 l_0(x) + y'_0 l_1(x) + y'_1 l_2(x).
\]

by finding \(l_0, l_1, l_2 \).

(b) Find a formula for the following polynomial interpolation problem. Let \(x_i = x_0 + ih, i = 0, 1, 2 \). Find a polynomial \(p(x) \) of degree \(\leq 4 \) for which

\[
p(x_i) = y_i \quad i = 0, 1, 2
\]

\[
p'(x_0) = y'_0 \quad p'(x_2) = y'_2
\]

with the \(y \) value given. (Hint: try to construct basis functions).

2. (a) Let \(f(x) \) be three times continuously differentiable on \([-\alpha, \alpha] \) for some \(\alpha > 0 \), and consider approximating it by the rational function

\[
R(x) = \frac{a + bx}{1 + cx}
\]

To generalize the idea of the Taylor series, choose the constant \(a, b \) and \(c \) so that

\[
R^{(j)}(0) = f^{(j)}(0) \quad j = 0, 1, 2
\]

Is it always possible to find such an approximation \(R(x) \)? The function \(R(x) \) is an example of a Pade approximation to \(f(x) \).

(b) Apply the above Pade approximation to the case \(f(x) = e^x \), and give the resulting approximation \(R(x) \). Analyze its error on \([-1, 1]\). Plot \(f(x), R(x) \) and the quadratic Taylor polynomial. Compare the errors of these two different approximations.

3. Solve analytically the following minimization problems and determine whether there is a unique value of \(\alpha \) that gives the minimum. In each case, \(\alpha \) is allowed to range over all real numbers. We are approximating the function \(f(x) = x \) with polynomials of the form \(\alpha x^2 \).

\[
(a) \quad \min_{\alpha} \int_{-1}^{1} [x - \alpha x^2]^2 dx
\]

\[
(b) \quad \min_{\alpha} \int_{-1}^{1} |x - \alpha x^2| dx
\]

\[
(c) \quad \min_{\alpha} \max_{-1 \leq x \leq 1} |x - \alpha x^2|
\]
Plot x and your choices of αx^2 in $[-1, 1]$ for all three cases.

4. Let $f(x) = \cos^{-1}(x)$ for $-1 \leq x \leq 1$ (the principal branch $0 \leq f \leq \pi$). Find the polynomial of degree two $p(x)$ which minimizes

$$\int_{-1}^{1} \frac{[f(x) - p(x)]^2}{\sqrt{1-x^2}} \, dx$$