POLYNOMIAL PARTITIONING AND THE
SZEMERÉDI-TROTTER THEOREM

1. Szemerédi-Trotter Theorem

Last time, Chandan discussed the proof of the polynomial partitioning lemma. We recall the statement.

Theorem 1.1 (Guth-Katz [4]). Let \(X \subset \mathbb{R}^n \) be a finite set and \(D \geq 1 \). Then there is a non-zero polynomial \(P \) of degree \(\leq D \) so that each component of \(\mathbb{R}^n \setminus Z(P) \) contains \(\leq C_n |X|/D^n \) points of \(X \).

We also know, by a classical theorem from geometry, that the number of open connected components of \(\mathbb{R}^n \setminus Z(P) \) is \(O(D^n) \) if the degree of \(P \) is \(\leq D \). Solymosi-Tao gave a direct argument in Appendix of their paper [5] on higher dimensional versions of Szemerédi-Trotter theorem. We sketch their argument as follows. It suffices to show that for any large cube \(Q \) (say, centered at the origin), the number of components intersecting \(Q \) is \(O(D^n) \). The number of components intersecting the \((n-1) \)-dimensional boundary of \(Q \) can be dealt by an induction on dimension. The number of components contained in \(Q \) is bounded by the number of critical points of \(P \), as each of them contains at least one critical point. Then they use Bézout’s theorem to estimate the number of critical points of \(P \), which is \(O(D^n) \).

In this note, we give an application of the polynomial partitioning lemma to Szemerédi-Trotter theorem based on the notes by Guth and a blog posting by Tao. The setting is as follows;

- \(\mathcal{L} \) : a set of \(L \) lines in \(\mathbb{R}^2 \).
- \(P_r(\mathcal{L}) \) : collection of \(r \)-rich points, i.e. points which lies in at least \(r \)-many lines in \(\mathcal{L} \).

The question is, how large can \(|P_r(\mathcal{L})| \) be? Consider the following examples. Take \(p \) points and then draw \(r \)-lines through each of them, then it is possible to get \(P_r(\mathcal{L}) = L/r \). Another example is the grid example; for e.g. 2-rich points, we use \(L/2 \) by \(L/2 \) grid, then we can obtain \(\sim L^2 \) many 2-rich points. Using a variant of this, one may obtain a configuration of lines so that \(|P_r(\mathcal{L})| \sim L^2/r^3 \). A fundamental result in incidence geometry is that these examples are extremal.
Theorem 1.2 (Szemerédi-Trotter).
\[|P_r(\mathcal{L})| \lesssim \max(L/r, L^2/r^3). \]
Let \(S \) be set of \(S \) points in \(\mathbb{R}^2 \). Set
\[I(S, \mathcal{L}) = |\{(p, l) \in S \times \mathcal{L} : p \in l\}|. \]

An equivalent statement of the Szemerédi-Trotter theorem is the following.

Theorem 1.3 (Szemerédi-Trotter).
\[I(S, \mathcal{L}) \lesssim S^{2/3}L^{2/3} + S + L. \]

Theorem 1.3 implies Theorem 1.2 by setting \(S = P_r(\mathcal{L}) \). A proof of Theorem 1.3 using polynomial methods can be found in one of Guth’s course notes [1]. However, for my learning purposes, I wished to write a direct proof of Theorem 1.2 using similar techniques, following an outline from Guth’s Namboodiri lectures [2].

Proof of Theorem 1.2. If \(L \lesssim r^2 / r \), then the bound \(L/r \) is dominant. This case is easier, and follows from a simple counting argument.

Lemma 1.4. Assume that \(L \leq r^2 / 5 \). Then \(|P_r(\mathcal{L})| < 2L/r \).

Proof. Suppose not. Pick a subset \(P \subset P_r(\mathcal{L}) \) with \(2L/r \) points. By assumption, \(P \) contains \(2r/5 \) many \(r \)-rich points. We count the number of lines through points in \(P \). Observe that at least \(3r/5 \) many lines through a point in \(P \) cannot pass any other points in \(P \). This gives the bound \(L \geq |P|3r/5 = 6L/5 \), which is contradiction. \(\square \)

It remains to treat the case \(r^2 \lesssim L \) and show that \(|P_r(\mathcal{L})| \lesssim L^2/r^3 \). We use the polynomial partitioning lemma to decompose \(P_r(\mathcal{L}) = P_Z \cup P_{\text{cell}} \), where \(P_Z = P_r(\mathcal{L}) \cap Z(P) \) for some polynomial \(P \) of degree \(\leq D \) to be chosen and \(P_{\text{cell}} = \cup_{i=1}^N P_{\text{cell},i} \), where \(P_{\text{cell},i} = P_r(\mathcal{L}) \cap O_i, |P_{\text{cell},i}| \lesssim |P_r(\mathcal{L})|/D^2 \) and \(N \lesssim D^2 \).

First consider the “cellular” case, i.e. the case \(|P_{\text{cell}}| \geq |P_r(\mathcal{L})|/2 \). Note that, in this case, the number of cells \(N \) must be comparable to \(D^2 \). Let \(\mathcal{L}_i \) be the lines entering a cell \(O_i \). We claim that there is a cell \(O_i \) such that
\begin{itemize}
 \item \(|P_{\text{cell},i}| \sim |P_r|/D^2 \),
 \item \(|\mathcal{L}_i| \lesssim L/D \).
\end{itemize}

We assume the claim for the moment. Then
\[|P_r(\mathcal{L})| \sim D^2|P_{\text{cell},i}| = D^2|P_r(\mathcal{L}_i)|. \]
Take $D \sim L/r^2$ so that $|\mathcal{L}_i| \leq r^2/5$. Then we may apply Lemma 1.4 to get $|P_r(\mathcal{L}_i)| \lesssim L/(Dr) \sim r$. This gives the L^2/r^3 bound for $|P_r(\mathcal{L})|$.

To verify the claim, observe that there should be $\sim D^2$ many cells O_i such that $|P_{cell,i}| \sim |P_r|/D^2$. Denote by O the collection of such cells. Next, consider incidences between lines and O, i.e.

$$I(\mathcal{L}, O) = |\{(l, O) : l \in \mathcal{L} \text{ enters a cell } O \in O\}|.$$

Let \mathcal{L}_Z be the lines contained in $Z(P)$ and $\mathcal{L}_{cell} = \mathcal{L} \setminus \mathcal{L}_Z$. By Bézout’s theorem, $|l \cap Z(P)| \leq D$ if $l \in \mathcal{L}_{cell}$. Therefore, such line can enter at most $D+1$ cells and thus, $I(\mathcal{L}, O) \lesssim LD$. Let N to be the minimum of $|\mathcal{L}_i|$ associated with cells O_i contained in O. This gives $ND^2 \lesssim I(\mathcal{L}, O)$, and thus $N \lesssim L/D$. This verifies the claim.

Next, consider the “algebraic” case, i.e. $|P_Z| \geq |P_r(\mathcal{L})|/2$. We also decompose P_Z as

- Type 1: x is a singular point; $P(x) = \nabla P(x) = 0$.
- Type 2: x is a non-singular point.

Let $Z_S(P)$ be the collection of singular points in $Z(P)$. We claim that

$$(1) \quad |l \cap \text{Type 1}| \leq |l \cap Z_S(P)| \leq D.$$

Since (1) is clear for $l \in \mathcal{L}_{cell}$, we assume that $l \in \mathcal{L}_Z$. Without loss of generality, we may assume that P does not have any square factor. Then, it is impossible for l to be contained in both $Z(\partial_x P)$ and $Z(\partial_y P)$. Using this, another application of Bézout’s theorem gives (1). By (1) and the fact that each point lies on at least r lines,

$$r|\text{Type 1}| \leq I(\text{Type 1}, \mathcal{L}) \leq DL.$$

This gives the L^2/r^3 bound for Type 1.

On the other hand, each Type 2 point lies in at most one line contained in $Z(P)$. Thus, $I(\text{Type 2}, \mathcal{L}_Z) \leq |\text{Type 2}|$. By a similar argument for Type 1 points, we get

$$r|\text{Type 2}| \leq I(\text{Type 2}, \mathcal{L}) \leq I(\text{Type 2}, \mathcal{L}_{cell}) + I(\text{Type 2}, \mathcal{L}_Z) \leq DL + |\text{Type 2}|.$$

This gives the L^2/r^3 bound for Type 2.

I learned the consideration of singular/non-singular points from [6]. The proof of Theorem 1.3 from [1] is simpler than the proof of Theorem 1.2 given here. In particular, for the “algebraic” case, it does not require the consideration of singular/non-singular points but it uses a clever induction argument, using the fact that $|\mathcal{L}_Z| \leq D$. However, I don’t know how to adapt such an inductive argument for a “direct” proof of Theorem 1.2.
2. Incidence theorems in 3-dimension

What can we say about \(r \)-rich points in 3-dimension? Can we improve the bound \(\max(L/r, L^2/r^3) \)? The answer is no unless we impose some conditions on \(\mathcal{L} \). For instance, when all lines are contained in a plane, one cannot do better. If the configuration of \(\mathcal{L} \) is “truly” 3-dimensional in some sense, then the estimate might be improved. We briefly introduce some results in this direction.

Theorem 2.1. If \(\mathcal{L} \) contains at most \(\lesssim L^{1/2} \) lines in any plane and \(r \geq 3 \), then \(|P_r(\mathcal{L})| \lesssim L^{3/2}/r^2 \).

This result is due to Guth-Katz (Elekes-Kaplan-Sharir for \(r = 3 \)). What is an analogue for 2-rich points? It turns out that there is a barrier to achieve the \(L^{3/2} \) bound. For instance consider the surface \(z = xy \) which contains many lines. Indeed, each point \((a, b, ab)\) on the surface is an intersection of two lines parameterized by \(t \rightarrow (a, t, ta) \) and \(t \rightarrow (t, b, tb) \). Thus, it is possible that we may get \(\sim L^2 \) 2-rich points with \(L \) lines contained in the surface \(z = xy \). However, if one excludes such degenerate cases, then an improvement is still possible.

Theorem 2.2 (Guth-Katz [4]). If \(\mathcal{L} \) contains at most \(\lesssim L^{1/2} \) lines in any algebraic surface of degree \(\leq 2 \), then \(|P_2(\mathcal{L})| \lesssim L^{3/2} \).

A three dimensional version of Theorem 1.3 can be found at [1].

One may use a simpler induction argument if one is willing to allow an \(\epsilon \) loss in the exponents as was done by Solymosi-Tao. In his restriction paper [3], Guth included a proof of the following weaker version of Theorem 2.2 using such an induction argument.

Theorem 2.3. For \(\epsilon > 0 \), there is \(D = D(\epsilon) > 1 \) such that the following holds. Assume that \(\mathcal{L} \) contains at most \(B \) lines in any algebraic surface of degree \(\leq D \). Then there is a constant \(C(\epsilon, B) \) such that

\[
P_2(\mathcal{L}) \leq C(\epsilon, B)L^{3/2+\epsilon}.
\]

In fact, one can take \(C(\epsilon, S) = 2(D(\epsilon) + \sqrt{B}) \).

Proof. The result is true for small \(L \). So we assume that the statement is valid for \(\leq L - 1 \) lines.

Cellular case; By the same argument as in the proof of Theorem 1.2 we have for some \(i \)

\[
|P_2(\mathcal{L})| \sim D^3|P_{\text{cell},i}| = D^3|P_2(\mathcal{L}_i)|,
\]

where \(\mathcal{L}_i \) is the part of \(\mathcal{L} \) contained in the \(i \)-th cell.
where $|\mathcal{L}_i| \lesssim L/D^2$ with degree D to be chosen. By the induction hypothesis,

$$|P_2(\mathcal{L})| \leq CD^3C(\epsilon,B)(L/D^2)^{3/2+\epsilon} = CD^{-2\epsilon}C(\epsilon,B)L^{3/2+\epsilon}.$$

Thus, we chose D so large that $CD^{-2\epsilon} \leq 1$ and then the induction closes.

Algebraic case; We decompose P_Z as

- Type 1: there is $l \in \mathcal{L}_{\text{cell}}$ containing x.
- Type 2: Not type 1.

As each of line in $\mathcal{L}_{\text{cell}}$ intersects $\leq D$ points in $Z(P)$, this gives that there are at most LD Type 1 points. Type 2 points are contained in $P_2(\mathcal{L}_Z)$. We have a trivial estimate $|P_2(\mathcal{L}_Z)| \leq \left(\frac{|\mathcal{L}_Z|}{2} \right) \leq B^2$ by assumption. In sum,

$$|P_2(\mathcal{L})| \leq 2|P_Z| \leq 2(LD + B^2) \leq 2(D + B^{1/2})L^{3/2} \leq C(\epsilon,B)L^{3/2}.$$

\square

References

