Endpoint bounds for a class of spectral multipliers on compact manifolds

Jongchon Kim

University of Wisconsin-Madison

15th New Mexico Analysis Seminar
February 20, 2016
Spectral multipliers on compact manifolds

- M : compact Riemannian manifold of dimension $d \geq 2$ without boundary.
- Δ : Laplace-Beltrami operator on M.
- Spectrum of $-\Delta$ is discrete and can be ordered as $0 \leq \lambda_1^2 \leq \lambda_2^2 \leq \cdots$.
- $\{ e_l \}$: orthonormal basis for $L^2(M)$ such that $-\Delta e_l = \lambda_l^2 e_l$.
- For $f \in L^2(M)$,

$$f = \sum_l \langle f, e_l \rangle e_l = \sum_l E_l f.$$
For a given function m, we may define (with $A = \sqrt{-\Delta}$)

$$m(A)f = \sum_l m(\lambda_l)E_l f.$$

$m(A)$ is bounded on $L^2(M)$ if $m \in L^\infty$;

$$\|m(A)f\|_{L^2(M)}^2 = \sum_l |m(\lambda_l)|^2 \|E_l f\|_{L^2(M)}^2 \leq \|m\|_\infty^2 \sum_l \|E_l f\|_{L^2(M)}^2.$$

For which $m \in L^\infty$ may $m(A)$ be bounded on $L^p(M)$ for some $p < 2$?
Riesz means

- Let \(1 \leq p \leq \frac{2(d+1)}{d+3} \). Stein-Tomas \(L^2 \) Fourier restriction theorem:
 \[
 \left\| \hat{f} \right\|_{L^2(S^{d-1})} \lesssim \left\| f \right\|_{L^p(\mathbb{R}^d)}.
 \]

- Sogge’s discrete restriction theorem:
 \[
 \left\| \chi_{[n,n+1]}(A)f \right\|_{L^2(M)} \lesssim (1 + n)^{\delta(p)} \left\| f \right\|_{L^p(M)}.
 \]

- Sogge obtained sharp estimates for Riesz means in the same \(p \)-range for general compact manifolds \(M \).

- More generally for \(A = \sqrt{P} \), where \(P \) is a positive second-order elliptic differential operator self-adjoint with respect to a smooth positive density \(dx \) on \(M \).
More general setting: Let A be a first order elliptic pseudo-differential operator on M, positive and self-adjoint w.r.t. dx.

In what follows, we shall assume that for each $x \in M$, $\Sigma_x = \{\xi \in T^*_x(M) : a(x, \xi) = 1\}$ has everywhere non-vanishing Gaussian curvature. Here, $a(x, \xi)$ is the principal symbol of A.

Christ-Sogge and Seeger-Sogge: Sogge’s discrete restriction theorem continues to hold for such A.
Motivation

Our Contribution

The Problem That We Studied

Previous Work

Weak-type endpoint bounds for Riesz means

- $m^\delta_t(A)$ fails to be uniformly bounded on L^p if $\delta = \delta(p)$.

Theorem

Let $1 \leq p \leq \frac{2(d+1)}{d+3}$. Then

$$\sup_{t>0} \left\| m^\delta_t(A)f \right\|_{L^p,\infty(M)} \lesssim \|f\|_{L^p(M)}.$$

Due to Christ-Sogge, Seeger, and Tao.

Tao later proved in Euclidean case, strong type bounds at $p = p_0$ implies weak-type bounds for $1 \leq p < p_0$.

A decomposition for the Riesz multipliers ($t = 1$): $(1 - \lambda)^\delta_+ = \sum_j 2^{-j\delta} m^\delta_j(\lambda)$, where m^δ_j have essentially disjoint supports.
An endpoint result by Seeger

- Let $\alpha(p) = \delta(p) + 1/2 = d\left(\frac{1}{p} - \frac{1}{2}\right)$.
- More generally, Seeger obtained an endpoint $L^p \to L^{p,q}$ estimate of $m(A)$ for a function m in localized $R^2_{\alpha(p),q}$ spaces, i.e. $\sup_{t>0} \|m(t\cdot)\psi\|_{R^2_{\alpha(p),q}} < \infty$.
- $R^2_{\alpha,q}$ has properties similar to, but is strictly contained in the Besov space $B^2_{\alpha,q}$ for $q > 1$.
- Orthogonality argument: there is a nice decomposition for a function in $R^2_{\alpha,q}$ which resembles the decomposition for the Riesz multipliers.
- Question: Can we replace $R^2_{\alpha,q}$ by $B^2_{\alpha,q}$?
Endpoint bounds in terms of Besov spaces

Theorem (JK, 16)

Let $1 < p < \frac{2(d+1)}{d+3}$ and $p \leq q \leq \infty$. Then

$$\| m(A)f \|_{L^{p,q}(M)} \lesssim \sup_{t > 0} \| m(t \cdot) \psi \|_{B^2_{\alpha(p),q}(\mathbb{R})} \| f \|_{L^p(M)}.$$

- Previous results: Seeger-Sogge with L^2_α for any $\alpha > \alpha(p)$, Seeger with $R^2_{\alpha(p),q}$.
- Our proof is based on the work of Lee-Rogers-Seeger on radial Fourier multipliers.

We show first that for m compactly supported in $[1/2, 2]$,

$$\sup_{t>0} \| m(A/t)f \|_{L^p,q(M)} \lesssim \| m \|_{B^2_{\alpha(p), q(\mathbb{R})}} \| f \|_{L^p(M)}.$$

For general m, we combine frequency localized pieces by the atomic decomposition using Peetre’s square function.

$m = \sum_{j \geq 0} m_j$ for \hat{m}_j supported in $\{ r : |r| \sim 2^j \}$ for $j \geq 1$.

Then $\| m \|_{B^2_{\alpha,q}}$ is comparable to $\left(\sum_{j \geq 0} [2^{j\alpha} \| m_j \|_2]^q \right)^{1/q}$ and $\| m \|_{L^2_{\alpha}} = \| m \|_{B^2_{\alpha,2}}$.
Strategy

- \(m(A/t)f = \sum_j m_j(A/t)f = \sum_j \int t\hat{m}_j(tr)e^{irA}fdr \), where \(e^{irA}f \) solves \((i\partial_r + A)u = 0\) and \(u(0) = f \).

- For \(2^j < \epsilon t \) (small \(|r| \)), use the parametrix constructed by Lax and Hörmander.

- For \(2^j \geq \epsilon t \) (large \(|r| \)), use the discrete restriction theorem.
Strategy: $2^j \geq \epsilon t$

- (Seeger-Sogge) For $2^j \geq \epsilon t$, we have
 \[\| m_j(A/t)f \|_{L^2(M)} \lesssim 2^{j/2} \| m_j \|_2 t^{\delta(p)} \| f \|_{L^p(M)}. \]

- From the result, we obtain
 \[\left\| \sum_{2^j \geq \epsilon t} m_j(A/t)f \right\|_{L^2(M)} \lesssim \| m \|_{B^2_{\alpha(p),\infty}} \| f \|_{L^p(M)}, \]
 since
 \[\sum_{2^j \geq \epsilon t} 2^{j/2} \| m_j \|_2 = \sum_{2^j \geq \epsilon t} 2^{-j\delta(p)} 2^{j\alpha(p)} \| m_j \|_2 \lesssim \| m \|_{B^2_{\alpha(p),\infty}} t^{-\delta(p)}. \]
Strategy: $2^j < \epsilon t$

- Decompose $m_j = m_j \ast \tilde{\eta}_j = [m_j \eta] \ast \tilde{\eta}_j + [m_j(1 - \eta)] \ast \tilde{\eta}_j$, where η is supported on $[1/2C, 2C]$ and 1 on $[1/C, C]$ for some large $C \geq 4$.

- As m_j is essentially supported on $\{\lambda : |\lambda| \in [1/4, 4]\}$, $m_j = (m_j \eta) \ast \tilde{\eta}_j$ up to a negligible error.

- Assume that b_j are functions satisfying the followings;

 1. $\|b_j\|_2 \leq C$ for all j.
 2. $\text{supp} \hat{b}_j \subset \{r : |r| \in [2^{-3}, 2^{j+3}]\}$.
 3. For $n, N \geq 0$, we have

\[
|b_j^{(n)}(\lambda)| \leq C_{n,N}2^{-jN}(1 + 2^j|\lambda|)^{-N}, \quad \text{if } |\lambda| \notin [1/16, 16].
\]

- Example of b_j: $\|m_j\|_2^{-1}(m_j \eta) \ast \tilde{\eta}_j$
Strategy: \(2^j < \epsilon t\)

- Assume that \(f_j\) are functions supported in a compact subset \(\Omega_0\) of a coordinate patch \(\Omega \subset M\).
- Let \(1 \leq p < \frac{2(d+1)}{(d+3)}\). Then we prove that

\[
\left\| \sum_{1 < 2^j < \epsilon t} 2^{jd/2} b_j(A/t) f_j \right\|_{L^p(M)} \lesssim \left(\sum_j 2^j \| f_j \|_{L^p(\Omega)}^p \right)^{1/p}.
\]

- Applying the result with \(b_j = \| m_j \|_2^{-1} (m_j \eta) * \tilde{\eta}_j\) and \(f_j = 2^{-jd/2} \| m_j \|_2 f\) yields

\[
\left\| \sum_{1 < 2^j < \epsilon t} m_j(A/t) f \right\|_{L^p(M)} \lesssim \| m \|_{B_2^{\alpha(p),p}} \| f \|_{L^p(\Omega)}.
\]

- Interpolation gives \(L^p \to L^{p,q}\) estimates.
Comparison with quasiradial Fourier multipliers

- Let \(x \in \Omega \). \(b_j(A/t)f(x) \) can be written in local coordinates as, up to a negligible error,

\[
\int \int t\hat{m}_j(tr) \int e^{i\varphi(x,y,\xi)+ira(y,\xi)} q(r, x, y, \xi) \eta(\xi/t) d\xi dr f(y) dy,
\]

where \(\varphi(x, y, \xi) \) is a small perturbation of \(\langle x - y, \xi \rangle \) and \(q \) is a symbol of order 0.

- \(m(a(D)) : \mathcal{F}[m(a(D))f](\xi) = m(a(\xi))\mathcal{F}f(\xi) \), where \(a \) is a smooth positive function which is homogeneous of degree 1. Model case: \(a(\xi) = |\xi| \).

- \(m(a(D)/t)f(x) \) can be written as

\[
\int \int t\hat{m}(tr) \int e^{i\langle x-y,\xi \rangle + ira(\xi)} \eta(\xi/t) d\xi dr f(y) dy.
\]
Corollary (JK, 15)

Let $1 < p < \frac{2(d+1)}{d+3}$ and $p \leq q \leq \infty$. Assume that

$\Sigma = \{\xi : a(\xi) = 1\}$ has everywhere non-vanishing Gaussian curvature. Then

$$\|m(a(D))f\|_{L^{p,q}(\mathbb{R}^d)} \lesssim \sup_{t > 0} \|m(t \cdot)\psi\|_{B^{2,\alpha(p),q}_{\alpha(p),q}(\mathbb{R})} \|f\|_{L^p(\mathbb{R}^d)}.$$

- Transference theorem of Mityagin.
- Proof is based on the work of Lee-Roger-Seeger on the radial case $a(\xi) = |\xi|$, where they utilize some ideas from the work by Heo-Nazarov-Seeger.
Ingredients of the proof for compact manifolds

- Proof is based on the work on quasiradial Fourier multipliers, but it requires finer estimates.
- Main difficulty: quasi-orthogonality estimates which control the interaction between operators $b_j(A/t)$ and $b_k(A/t)$.
- Use the second dyadic decomposition (e.g. Christ-Sogge, Seeger-Sogge-Stein, Tao) and adapt a construction of an exceptional set used by Lee-Seeger.
Assume that m is compactly supported in $(0, \infty)$ and consider the maximal operator $M_m f(x) = \sup_{t > 0} |m(a(D)/t)f(x)|$.

Theorem (JK 15)

Let $1 < p < \frac{2(d+1)}{d+3}$ and $p \leq q \leq \infty$. With the same curvature assumption on Σ,

$$\|M_m f\|_{L^{p'}(\mathbb{R}^d)} \lesssim \|m\|_{B^2_{\alpha(p), q}(\mathbb{R})} \|f\|_{L^{p'}, q'}(\mathbb{R}^d).$$

- Yields the maximal, dual version of the weak-type endpoint bounds for (generalized) Bochner-Riesz means.
- For a smaller p-range, a necessary and sufficient condition for $L^{p'}, q' \rightarrow L^{p'}$ boundedness can be obtained.
Maximal operators generated by spectral multipliers

- Let $\mathcal{M}_mf(x) = \sup_{t>0} |m(A/t)f(x)|$ for m compactly supported in $(0, \infty)$. Does the following hold?

$$\|\mathcal{M}_mf\|_{L^p'(M)} \lesssim \|m\|_{B^2_{\alpha(p)},q}(\mathbb{R}) \|f\|_{L^{p',q}(M)}.$$

- Recall the $L^p \rightarrow L^2$ estimate for $2^j \geq \epsilon t$;

$$\|m_j(A/t)f\|_{L^2(M)} \lesssim 2^{j/2} \|m_j\|_2 t^{\delta(p)} \|f\|_{L^p(M)}.$$

- In view of Euclidean argument, it is likely that the maximal estimate would follow once the vector valued version of the above lemma is established;

$$\left\| \int_1^2 m_j(A/st)f_s ds \right\|_{L^2(M)} \lesssim 2^{j/2} \|m_j\|_2 t^{\delta(p)} \left\| \int_1^2 |f_s| ds \right\|_{L^p(M)},$$

whose Euclidean counterpart is not hard to prove.
C. D. Sogge
Fourier integrals in classical analysis

S. Lee, K. M. Rogers, A. Seeger
Square functions and maximal operators associated with radial Fourier multipliers
Advances in Analysis: The Legacy of Elias M. Stein, 2014

J. Kim
Endpoint bounds for quasiradial Fourier multipliers
arXiv:1511.00019v2

J. Kim
Endpoint bounds for a class of spectral multipliers
arXiv:1602.05978