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Abstract. We present a notion of forcing that can be used, in conjunction

with other results, to show that there is a Martin-Löf random set X such that

X 6≥T ∅′ and X computes every K-trivial set.

1. Introduction

In 1975, Solovay [10] constructed a noncomputable set whose initial segments
have minimal prefix-free (Kolmogorov) complexity, in other words, whose initial
segments are no more complex than those of the empty set. We call such sets
K-trivial because K is usually used to denote prefix-free complexity. The class of
K-trivial sets remained an obscure curiosity until the early 2000’s, when a series of
seminal papers established its importance in the study of Martin-Löf randomness,
in part by giving several nontrivial characterizations. For example, A ∈ 2ω is
K-trivial if and only if

• It is low for randomness, i.e., every Martin-Löf random set is Martin-Löf
random relative to A (Nies [8]).
• It is a base for randomness, i.e., there is an X ≥T A that is Martin-Löf

random relative to A (Hirschfeldt, Nies and Stephan [7]).

Both of these properties were introduced and studied years before they were proved
to be equivalent to K-triviality.

The characterizations above isolate the K-trivial sets as being weak when used
to relativize Martin-Löf randomness. Another line of inquiry asks how the K-trivial
sets interact with the (incomplete) Martin-Löf random sets in the Turing degrees.
For example, in [5] the authors of the present paper proved that a set A is not
K-trivial if and only if there is an incomplete Martin-Löf random set X such that
A ⊕ X ≥T ∅′. This answered a question of Kučera. The proof came out of the
study of Lebesgue density for Π0

1 classes, which was started by Bienvenu, Hölzl,
Miller and Nies [3, 4]. The present paper is a continuation of the effective study of
Lebesgue density, with the purpose of answering another question about how the
K-trivial sets interact with Martin-Löf random sets.

Hirschfeldt, Nies and Stephan [7] proved that if A ∈ 2ω is c.e. and there is
a Martin-Löf random X ≥T A that does not computes ∅′, then A is K-trivial.
Stephan asked if this gives a characterization of the c.e. K-trivial sets. Each K-
trivial is computable from a c.e. K-trivial, so this amounts to asking:
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If A is K-trivial, is there a Martin-Löf random X �T ∅′ that com-
putes A?

More of the history of this question, known as the covering problem, is presented in
a summary paper by the authors of this paper and Bienvenu, Greenberg, Kučera,
Nies and Turetsky [1]. The present paper, combined with theorems of Bienvenu,
Greenberg, Kučera, Nies and Turetsky [2], and Bienvenu, Hölzl, Miller and Nies
[3, 4], gives a strong affirmative answer to the covering problem:

(a) There is a Martin-Löf random X �T ∅′ that computes every K-trivial.

Furthermore, we get two interesting refinements:

(b) There is a Martin-Löf random X <T ∅′ that computes every K-trivial.
(c) If 〈An : n ∈ ω〉 is a countable sequence of non-K-trivial sets, then there is

a Martin-Löf random X �T ∅′ that computes every K-trivial but no An.

By (c), for example, there is an incomplete Martin-Löf random set X such that the
∆0

2 sets computed by X are precisely the K-trivial sets. This X and Chaitin’s Ω
are Martin-Löf random sets that form an exact pair for the ideal of K-trivial sets
(i.e., A ≤T X,Ω if and only if A is a K-trivial set).

Our contribution to the solution of the covering problem comes out of a careful
analysis of Lebesgue density for Π0

1 classes. Let µ be the uniform measure on Cantor
space. If τ ∈ 2<ω and P is a measurable set in Cantor space, then we define

µτ (P ) =
µ(P ∩ [τ ])

µ([τ ])
.

Given any measurable set P and X ∈ 2ω, we define ρ(P | X) = lim infi µX � i(P ).
We call X ∈ 2ω a density-one point if for every Π0

1 class P it is the case that

X ∈ P =⇒ ρ(P | X) = 1.

If for every Π0
1 class P we have X ∈ P =⇒ ρ(P | X) > 0, then X is called a

positive density point. In Section 2, we present a notion of forcing that separates
density-one from positive density on the Martin-Löf random sets. In other words,
if X is a sufficiently generic set for this notion of forcing then:

(1) X is Martin-Löf random,
(2) X is not a density-one point,
(3) X is a positive density point.

Properties (1), (2) and (3) of generic sets will be established by Claims 2.1, 2.2
and 2.3, respectively. This forcing notion, in conjunction with the following two
theorems, provides a solution to the covering problem.

Theorem 1.1 (Bienvenu, Hölzl, Miller and Nies [3, 4]). If X ≥T ∅′ and Martin-Löf
random, then there exists a Π0

1 class P such that X ∈ P and ρ(P | X) = 0.

We should note that Bienvenu, et al. prove Theorem 1.1 for density on the unit
interval. However, the Cantor space version follows immediately from the proof
given in [3, Theorem 20].

Theorem 1.2 (Bienvenu, Greenberg, Kučera, Nies and Turetsky [2]). If X ∈ 2ω is
Martin-Löf random and not a density-one point, then X computes every K-trivial
set.
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The original proof of Theorem 1.2, given in [2], involves several steps. A direct proof,
though one relying on more of the theory of K-triviality, is given by Bienvenu, Hölzl,
Miller and Nies [4].

By Theorem 1.1, properties (1) and (3) imply that X does not compute ∅′. By
Theorem 1.2, properties (1) and (2) imply that X computes all K-trivial sets. This
shows (a). In Claim 2.4, we show that if A is not K-trivial and X is sufficiently
generic for our notion of forcing, then X �T A. This gives us (c); in a sense, our
forcing notion is perfectly tuned to constructing incomplete Martin-Löf random sets
that compute all K-trivial sets. To show (b), we effectivize the forcing notion in
Section 3 to show that there is a ∆0

2 set X with properties (1), (2) and (3).

2. The forcing notion

Fix a nonempty Π0
1 class P ⊆ 2ω that contains only Martin-Löf random sets.

Our forcing partial order P consists of conditions of the form 〈σ,Q〉, where

• σ ∈ 2<ω,
• Q ⊆ P is a Π0

1 class,
• [σ] ∩Q 6= ∅,
• There is a δ < 1/2 such that (∀ρ < σ) [ρ]∩Q 6= ∅ =⇒ µρ(Q) + δ ≥ µρ(P ).

We say that 〈τ,R〉 extends 〈σ,Q〉 if τ < σ and R ⊆ Q. Let λ be the empty string.
Note that 〈λ, P 〉 ∈ P, with δ = 0, so P is nonempty.

If G ⊆ P is a filter, let XG =
⋃
〈σ,Q〉∈G σ. In general, XG ∈ 2≤ω. The following

claim is trivial to verify and it establishes that if G is sufficiently generic, then XG

is infinite and, in fact, a Martin-Löf random set.

Claim 2.1.

(1) If 〈σ,Q〉 ∈ P and τ < σ is such that [τ ] ∩Q 6= ∅, then 〈τ,Q〉 ∈ P.
(2) If G ⊆ P is sufficiently generic, then XG ∈ P (hence it is a Martin-Löf

random set).

Claim 2.2. If G ⊆ P is sufficiently generic, then ρ(P | XG) ≤ 1/2, so XG is not a
density-one point.

Proof. Fix n. We will show that the conditions forcing

(2.1) (∃l ≥ n) µXG � l(P ) < 1/2

are dense in P. Let 〈σ,Q〉 be any condition and let δ witness that 〈σ,Q〉 ∈ P. Take
m such that 2−m < 1/2 − δ. Let Z be the left-most path of [σ] ∩ Q. The set Z
is Martin-Löf random and consequently contains arbitrarily long intervals of 1’s.
Take τ < σ such that τ1m ≺ Z and |τ | ≥ n. Because Z is the left-most path in Q
it follows that µτ (Q) ≤ 2−m and so

µτ (P ) ≤ µτ (Q) + δ < 2−m + δ < 1/2.

Hence the condition 〈τ,Q〉 extends 〈σ,Q〉 and forces (2.1). �

Claim 2.3. Let S ⊆ 2ω be a Π0
1 class and let 〈σ,Q〉 ∈ P. There is an ε > 0 and a

condition 〈τ,R〉 extending 〈σ,Q〉 such that either

• [τ ] ∩ S = ∅, or
• If X ∈ R, then ρ(S | X) ≥ ε.

Therefore, if G ⊆ P is sufficiently generic, then XG is a positive density point.
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Proof. If there is a τ < σ such that [τ ] ∩ S = ∅ and [τ ] ∩Q 6= ∅, then let 〈τ,Q〉 be
our condition.

Otherwise, it follows that S ∩ [σ] ⊇ Q ∩ [σ]. In this case let δ witness that
〈σ,Q〉 ∈ P. Take ε to be a rational greater than 0 and less than min{1/2−δ, µσ(Q)}.
(Note that µσ(Q) > 0 because [σ] ∩ Q is a non-empty Π0

1 class containing only
Martin-Löf random sets.) Consider the Π0

1 class

Qεσ = {X ∈ Q ∩ [σ] : (∀n ≥ |σ|) µX �n(Q) ≥ ε}.

We will show that 〈σ,Qεσ〉 is the required condition.
Let M be the set of minimal strings in {ρ < σ : µρ(Q) < ε}. Then M is prefix-

free and Qεσ = Q ∩ [σ] r Q ∩ [M ]. Summing over M gives us µσ(Q ∩ [M ]) < ε.
Hence µσ(Qεσ) > µσ(Q)− ε > 0. This proves that [σ] ∩Qεσ 6= ∅.

If τ < σ and [τ ]∩Qεσ 6= ∅, we can use the same argument to show that µτ (Qεσ) >
µτ (Q)− ε. Because [τ ] ∩Q 6= ∅,

µτ (P ) ≤ µτ (Q) + δ < µτ (Qεσ) + ε+ δ.

Hence ε+ δ < 1/2 witnesses that 〈σ,Qεσ〉 is a condition.
Note that if X ∈ Qεσ, then ρ(Q | X) ≥ ε. This implies that ρ(S | X) ≥ ε because

S ∩ [σ] ⊇ Q ∩ [σ], proving the claim. �

The following observation about the proof of Claim 2.3 will be used in the fol-
lowing section. This proof shows that if 〈σ,Q〉 is a condition witnessed by δ, and
τ < σ is such that [τ ]∩Q 6= ∅, then for any ε > 0 with ε < min{1/2− δ, µτ (Q)} we
have that 〈τ,Qετ 〉 is a condition witnessed by δ + ε.

A difference test is a Π0
1 class R and a uniform sequence of c.e. open sets

〈Un : n ∈ ω〉 such that for all n, µ(Un ∩ R) ≤ 2−n. A set X is captured by such a
difference test if X ∈

⋂
n∈ω Un ∩ R. We call a set X difference random if it is not

captured by any difference test. Difference randomness was introduced by Franklin
and Ng [6]. They showed that X is difference random if and only if X is Martin-Löf
random and X 6≥T ∅′. Hence Claims 2.1 and 2.3 along with Theorem 1.1 establish
that if G ⊆ P is sufficiently generic, then XG is difference random.

Claim 2.4. Assume that A ∈ 2ω is not K-trivial, 〈σ,Q〉 ∈ P, and Φ is a Turing
functional. There is a τ ∈ 2<ω such that 〈τ,Q〉 extends 〈σ,Q〉 and

(∀X ∈ [τ ] ∩Q)[ ΦX = A =⇒ X is not difference random ].

Therefore, if G ⊆ P is sufficiently generic relative to A, then XG does not com-
pute A.

Proof. If there is a ρ < σ and an n such that Φρ(n) ↓6= A(n) and [ρ] ∩Q 6= ∅, then
take τ = ρ.

Assume that no such ρ and n exist. Define Vn = {X ∈ 2ω : X ∈ Un[ΦX ]},
where Un[Z] is the nth level of the universal Martin-Löf test relative to Z. If
X ∈ Vn ∩ [σ] ∩ Q, then because ΦX is not incompatible with A, we have X ∈
Un[ΦX ] ⊆ Un[A]. Hence µ(Vn ∩ [σ] ∩Q) ≤ µUn(A) ≤ 2−n. In other words, Q and
〈Vn ∩ [σ] : n ∈ ω〉 form a difference test.

Now assume that X ∈ [σ] ∩ Q and ΦX = A. Hirschfeldt, Nies and Stephan [7]
showed that because A is not K-trivial, it is not a base for randomness. In other
words, no set that is Martin-Löf random relative to A can compute A, so X is not
random relative to A. Therefore, X ∈ Un[A] = Un[ΦX ] for all n. This shows that
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X ∈
⋂
n∈ω Vn ∩ [σ]∩Q, so X is not difference random. Hence the claim is satisfied

by taking τ = σ. �

3. Effectivizing the forcing

In this section we give a construction of a ∆0
2 set with properties (1), (2) and (3).

This construction is an effectivization of the forcing approach. It is conceptually
similar to Sacks’s construction of a ∆0

2 minimal degree, which can be seen as an
effectivization of Spector’s minimal degree construction [9, 11]. The key problem
is that ∅′ cannot determine which of the two outcomes in Claim 2.3 to force, i.e.,
whether to ensure that X is not a member of some Π0

1 class S, or to ensure that it
is a positive density point of S.

Theorem 3.1. There is a ∆0
2 set with properties (1), (2) and (3).

Proof. Let 〈Se : e ∈ ω〉 enumerate all Π0
1 classes. Using ∅′ as an oracle we will

define a sequence of conditions 〈pi : i ∈ ω〉 in the partial order P. If pi = 〈τ,Q〉 and
pi+1 = 〈σ,R〉 we will ensure that σ < τ . We will construct a Martin-Löf random
X that is the limit of the first coordinates of 〈pi : i ∈ ω〉. The most important
aspect in which this construction differs from the previous section is that we will
not require that R ⊆ Q. Essentially, this means that our oracle construction can
make incorrect guesses as to which Π0

1 classes to use, provided that a correct guess
is made eventually. We will define ps at stage s of the construction. Additionally
at stage s we will define as to be a finite sequence of triples 〈Q, σ, ε〉 where Q is
a Π0

1 class, σ ∈ 2<ω, and ε is a rational. The sequence as will be used to recover
information about previous stages in the construction. We let l(as) be the length
of the sequence as and we define partial functions Q, σ and ε such that if e < l(as)
then 〈Q(s, e), σ(s, e), ε(s, e)〉 is the eth element of as.

The idea behind the construction is as follows. Fix a Π0
1 class Se. First we will

try to ensure that X is an element of Se, and that for some σ 4 X and ε we have
that µX �n(Se) ≥ ε for all n ≥ |σ| (and hence ρ(Se | X) ≥ ε). At stage s, our plan
is to achieve this objective by keeping X inside Q(s, e). Our guess for σ will be
σ(s, e) and our guess for ε will be ε(s, e). It is possible that our guess is incorrect.
However, if this happens, then we will be able to ensure that X is not an element
of Se.

As in the proof of Claim 2.3, given Q a Π0
1 class, σ a finite string and, ε a positive

real number we define

Qεσ = {X ∈ Q ∩ [σ] : (∀n ≥ |σ|) µX �n(Q) ≥ ε}.

We shall maintain the following construction invariants for all stages s:

(i) If i < j < l(as), then Q(s, j) ⊆ Q(s, i)
ε(s,i)
σ(s,i) and σ(s, i) 4 σ(s, j).

(ii) If ps = 〈τ,R〉 and i < l(as) then R ⊆ Q(s, i)
ε(s,i)
σ(s,i) and σ(s, i) 4 τ .

The construction is as follows. At stage 0, let p0 = 〈λ, P 〉 and let a0 be the empty
sequence. Our construction invariants hold trivially.

At stage s+ 1, given ps = 〈τ,Q〉, we use ∅′ to find a condition 〈σ,Q〉 such that
σ is a strict extension of τ , and µσ(P ) < 1/2. Claim 2.2 established that such
a condition exists, and as the value of µσ(P ) is computable in ∅′ we can simply
search for a suitable σ. At this point we ask the following question. Does there
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exist e < l(as) and ν such that

(3.1) (τ 4 ν 4 σ) ∧ ([τ ] ∩ Se 6= ∅) ∧ (µν(Se) < ε(s, e))?

If not, then we define ps+1 = 〈σ,Qεs+1
σ 〉 where εs+1 is chosen to be less than

min{2−s−3, µσ(Q)}. By the observation following the proof of Claim 2.3, this
makes ps+1 a condition witnessed by δ =

∑
i≤s 2−s−3 < 1/2. Define as+1 to

be the sequence obtained by appending 〈Q, σ, εs+1〉 to the end of as. Note that the
construction invariants are maintained.

If (3.1) holds, then we cannot make X extend σ without breaking some attempt
to ensure that ρ(Se | X) ≥ ε(s, e). In this case choose e and ν such that e is minimal

for which (3.1) holds. Our construction invariants ensure that Q ⊆ Q(s, e)
ε(s,e)
σ(s,e) and

ν < τ < σ(s, e). This implies that µν(Q(s, e)) ≥ ε(s, e). Therefore there is some
ξ < ν such that [ξ] ∩ Q(s, e) 6= ∅ and [ξ] ∩ Se = ∅. Define ps+1 = 〈ξ,Q(s, e)〉 and
define as+1 = as � e. Observe that construction invariant (i) is maintained because
as+1 is a subsequence of as, and construction invariant (ii) is maintained because
construction invariant (i) held at stage s. This ends the construction.

Let X =
⋃
{τ : (∃s,Q) ps = 〈τ,Q〉}. To verify that X has the desired properties,

we first show that lims l(as) =∞. Assume that for some s0, for all s ≥ s0, l(as) ≥ e.
Assume at some stage s1 > s0, we have that l(as) = e. This can only occur because
(3.1) held for e, and e was the least such value for which it held. Hence if 〈τ,Q〉 = ps1
then [τ ] ∩ Se = ∅. This implies that (3.1) will never again hold for e and hence for
all s > s1, l(as) ≥ e+ 1.

If l(as+1) > l(as), then condition (3.1) does not hold. Hence as lims l(as) =∞,
for infinitely many stages s, condition (3.1) does not hold. This implies that X has
infinite length, hence is a Martin-Löf random set, and ρ(P | X) ≤ 1/2. Now assume
that for some e, X ∈ Se. Let s0 be a stage such that for all s ≥ s0, l(as) > e.
Let 〈τ,Q〉 = ps0 . It must be that for any finite string ν such that τ 4 ν ≺ X,
µν(Se) > ε(s0, e) because for all s ≥ s0 we know that condition (3.1) does not hold
for e. Hence ρ(Se | X) > 0. �
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Nies, and Dan Turetsky. Computing K-trivial sets by incomplete random sets. Bull. Symb.
Log., 20(1):80–90, 2014.

[2] Laurent Bienvenu, Noam Greenberg, Antońın Kučera, André Nies, and Daniel Turetsky.
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density. J. Math. Log., 14(1):1450004, 35, 2014.

[5] Adam R. Day and Joseph S. Miller. Cupping with random sets. Proc. Amer. Math. Soc.,
142(8):2871–2879, 2014.

[6] Johanna N. Y. Franklin and Keng Meng Ng. Difference randomness. Proc. Amer. Math. Soc.,
139(1):345–360, 2011.
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