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Let α and β be (Martin-Löf) random left-c.e. reals with left-c.e. approximations
tαsusPω and tβsusPω. To compare the rates of convergence, consider1

Bα

Bβ
“ lim
sÑ8

α´ αs
β ´ βs

.(1)

Barmpalias and Lewis-Pye [2] recently proved that this limit exists and is independent
of the choice of approximations to α and β. Furthermore, they showed that α´ β
is random if and only if Bα{Bβ ‰ 1, and that

Bα

Bβ
“ suptc P Q : α´ c β is a left-c.e. realu

“ inftc P Q : α´ c β is a right-c.e. realu
(2)

These are beautiful results that clarify the behavior of random left-c.e. reals. It has
long been understood that all random left-c.e. reals are “essentially interchangeable”.
One of the key arguments for this heuristic was given by Kučera and Slaman [8], who
showed that, up to multiplicative constants, we cannot approximate one random left-
c.e. real faster than another (see Lemma 1.1). The convergence of (1) shows more:
all approximations to random left-c.e. reals converge in essentially the same way.
This not only solidifies our belief that that random left-c.e. reals are interchangeable,
but ironically, it gives us a useful way to contrast them. For example, it follows that
Bα{Bβ ą 1 if and only if α´ β is a random left-c.e. real and Bα{Bβ ă 1 if and only
if α´ β is a random right-c.e. real.

This note has three main purposes. The first two go hand in hand: to give
relatively short, self-contained proofs of the results of Barmpalias and Lewis-Pye,
and to extend them to the d.c.e. reals. This extension is easy; the main technical
breakthrough is the convergence of (1). However, extending to the d.c.e. reals gives
us a clearer picture.

Fix a random left-c.e. real Ω with left-c.e. approximation tΩsusPω. We will use
this as the benchmark against which we measure the convergence of other d.c.e.
reals. If α is a d.c.e. real with d.c.e. approximation tαsusPω, let

Bα “
Bα

BΩ
“ lim
sÑ8

α´ αs
Ω´ Ωs

.
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1For reasons that will become clear, we use different notation than Barmpalias and Lewis-Pye [2].
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We show that Bα “ 0 if and only if α is nonrandom, Bα ą 0 if and only if α is a
random left-c.e. real, and Bα ă 0 if and only if α is a random right-c.e. real. Note
that implicit in this case breakdown is the fact, due to Rettinger and Zheng [12],
that random d.c.e. reals must either be left-c.e. or right-c.e. (see Remark 1.4).

As we have telegraphed by our choice of notation (and the title of the paper),
B acts somewhat like differentiation. This should not be surprising; Bα is, after
all, defined as the limit of a difference quotient and is meant to capture the rate of
convergence of tαsusPω to α. In fact, B is a derivation on the field of d.c.e. reals.2

In other words, B preserves addition and satisfies the Leibniz law:

Bpαβq “ α Bβ ` β Bα.

Furthermore, if f : RÑ R is a computable function that is differentiable at α, then
Bfpαq “ f 1pαq Bα. This allows us to apply basic identities from calculus, so for
example, Bαn “ nαn´1 Bα and Beα “ eα Bα. Since BΩ “ 1, we have BeΩ “ eΩ.

The third purpose of this note is to investigate the nonrandom d.c.e. reals. Given
a derivation on a field, the elements that it maps to zero also form a field: the field
of constants. In our case, these are the nonrandom d.c.e. reals. We show that, in
fact, the nonrandom d.c.e. reals form a real closed field. It was not even previously
known that the nonrandom d.c.e. reals are closed under addition, and indeed, in
Remark 3.2, we note that it is easy to prove the convergence of (1) from this fact. In
contrast, it has long been known that the nonrandom left-c.e. reals are closed under
addition (Demuth [5] and Downey, Hirschfeldt, and Nies [7]). While also nontrivial,
this fact seems to be easier to prove. Towards understanding this difference, we
show that the real closure of the nonrandom left-c.e. reals is strictly smaller than
the field of nonrandom d.c.e. reals. In particular, there are nonrandom d.c.e. reals
that cannot be written as the difference of nonrandom left-c.e. reals; despite being
nonrandom, they carry some kind of intrinsic randomness.

We should compare the results above to the work on the Solovay degrees of
left-c.e. reals. Solovay [13] introduced Solovay reducibility in his study of the halting
probability of a universal prefix-free machine, the standard example of a random
left-c.e. real [4]. As can be seen in Figure 1, the Solovay degrees are complementary
to B ; on the one hand, all random left-c.e. reals are Solovay equivalent [8],3 while
on the other hand, B maps all nonrandom d.c.e. reals to 0 and distinguishes the
random left-c.e. (and right-c.e.) reals. There is significant overlap, however, in what

2However, we will show that B maps outside of the d.c.e. reals, so it does not make them a
differential field.

3In fact, Rettinger and Zheng [14, 12] extended Solovay reducibility to the d.c.e. reals and
showed that their notion retains this basic property, putting all randoms in the top degree.
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the two approaches tell us about the random left-c.e. reals. For example, in their
work on Solovay degrees, Downey, Hirschfeldt, and Nies [7] showed that a left-c.e.
real β is random if and only if

for every left-c.e. real α, there is a c P ω and a left-c.e. real γ such
that cβ “ α` γ.

This follows easily from the work above: If β is random, then Bβ ą 0. So given any
left-c.e. real α, take c large enough that c Bβ ą Bα. Then let γ “ cβ ´ α and note
that Bγ ą 0, so it is left-c.e. For the other direction, if β is not random and α is,
then for any c and any left-c.e. real γ, we have Bpcβq “ 0 ă Bα` Bγ.

1. Preliminaries

We assume that the reader is familiar with the basics of computability theory and
effective randomness. See Downey and Hirschfeldt [6] and Nies [10] for background,
including past work on random left-c.e. reals.

1.1. Left-c.e. reals. Let tαsusPω be a computable nondecreasing sequence of ratio-
nals converging to α. We say that tαsusPω is a left-c.e. approximation of the left-c.e.
real α.4 We define right-c.e. approximations and reals similarly. It is easy to see
that a real is computable if and only if it is both a left-c.e. and a right-c.e. real.

As we have already hinted, the random left-c.e. reals are an interesting class. The
key steps in understanding this class were made by Chaitin [4], Solovay [13], Calude,
Hertling, Khoussainov, and Wang [3], and Kučera and Slaman [8]. Together, they
showed that the following are equivalent:

˝ α is a random left-c.e. real,
˝ α is the halting probability of a universal prefix-free machine,
˝ Any left-c.e. approximation to α converges at least as slowly as any left-c.e.

approximation to any other left-c.e. real.
The last of these conditions is made precise in the next lemma. It is somewhat
stronger than saying that α is “Solovay complete”, but since we do not need Solovay
reducibility below, we will leave this hair unsplit.

Lemma 1.1 (Kučera and Slaman [8]). Let α and β be a left-c.e. reals with left-c.e.
approximations tαsusPω and tβsusPω. If β is random, then there is a c P ω such that

p@kq α´ αk ď c pβ ´ βkq .

Proof. We define a Martin-Löf test tUnunPω. Fix n. We will build Un in stages. At
stage t, we will define sptq and put rβsptq, βsptq ` 2´npαt`1 ´ αtqs into Un. First, let
sp0q “ 0 and put rβ0, β0`2´npα1´α0qs into Un. At stage t`1, define spt`1q ą sptq
such that βspt`1q is no longer in the previous interval added to Un. In other words,
we have βspt`1q ą βsptq ` 2´npαt`1 ´ αtq. Add the corresponding interval to Un
and complete the stage. Note that µpUnq ď

ř

tPω 2´npαt`1 ´ αtq “ 2´npα ´ α0q,
so tUnunPω is a Martin-Löf test (perhaps offset by a constant).

By assumption, β is random, so take n such that β R Un. For this n, we add
infinitely many intervals to Un. Note that these intervals are all disjoint. In particular,

4There is not broad agreement in the literature on what to call left-c.e. reals. They are often
called “c.e. reals”, as in Downey, Hirschfeldt, and Nies [7], or “left computable”, as in Ambos-Spies,
Weihrauch, and Zheng [1]. Several other names have been used, including “lower semicomputable”.
Both Downey and Hirschfeldt [6] and Nies [10] use “left-c.e.”, so perhaps a consensus is forming.
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for any k, we add disjoint intervals of lengths 2´npαk`1´αkq, 2
´npαk`2´αk`1q, . . .

between βspkq and β. Therefore, β ´ βk ě β ´ βspkq ě 2´npα´ αkq. �

The next lemma is the main technical tool used in the rest of the paper.

Lemma 1.2 (Barmpalias and Lewis-Pye [2]). Let α and β be left-c.e. reals with
left-c.e. approximations tαsusPω and tβsusPω. If β is random, then

lim
sÑ8

α´ αs
β ´ βs

exists.

Proof. Assume, for a contradiction, that the limit fails to exists. By Lemma 1.1,
lim supsÑ8pα ´ αsq{pβ ´ βsq ă 8. On the other hand, all of the terms in the
sequence are non-negative, so lim infsÑ8pα ´ αsq{pβ ´ βsq ě 0. Therefore, there
must be c, d P Q such that

lim inf
sÑ8

α´ αs
β ´ βs

ă c ă d ă lim sup
sÑ8

α´ αs
β ´ βs

.

In particular, there are infinitely many s such that αs ´ dβs ă α´ dβ and infinitely
many t such that αt ´ cβt ą α´ cβ. Fix such stages s ă t. So

αt ´ cβt ą α´ cβ “ α´ dβ ` pd´ cqβ ą αs ´ dβs ` pd´ cqβ.

Rearranging, we have

β ă
αt ´ αs ` dβs ´ cβt

d´ c
.

The idea of the proof is to use such upper bounds to cover β with a Solovay test.
The difficulty is that we cannot effectively determine which stages s and t satisfy
our requirements, so we guess and update our guesses dynamically.

At stage t of the construction, first search for the largest u ă t such that
αu ´ cβu ě αt ´ cβt. If no such u exists, let u “ ´1. Now take the largest s P pu, ts
minimizing αs ´ dβs. We say that t is absorbed by s and we tentatively guess that
s and t will give us an upper bound of β as described above (even though we may
know better, for example, when s “ t). We would like to add the interval

(3)
ˆ

βs,
αt ´ αs ` dβs ´ cβt

d´ c

˙

to the Solovay test, but this might cost too much, so we act more conservatively.
First note that if s “ t, then (3) is the empty interval pβs, βsq, so we can “add”
it to the Solovay test for free. Now consider s ă t. Let v P rs, tq be the largest
stage that has previously been absorbed by s. (It is not hard to see from our
choice of s that s must have absorbed itself, so v is well-defined.) We claim that
αv ´ cβv ě αt´1 ´ cβt´1. If not, then it must be the case that s ď v ă t´ 1 and

αv ´ cβv ă αt´1 ´ cβt´1 ă αt ´ cβt.

(If the second inequality were false, then we would have picked u “ t´ 1 and s “ t.)
The fact that both v and t are absorbed by s implies that t´ 1 should have also
been absorbed by s, contradicting the choice of v.

Now assume inductively that our Solovay test contains the interval
ˆ

βs,
αv ´ αs ` dβs ´ cβv

d´ c

˙

.
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We extend this to the desired interval from (3), which adds measure
pαt ´ cβtq ´ pαv ´ cβvq

d´ c
ď
pαt ´ cβtq ´ pαt´1 ´ cβt´1q

d´ c

ď
pαt ´ αt´1q ´ cpβt ´ βt´1q

d´ c
ď
αt ´ αt´1

d´ c
.

Hence the total weight of the Solovay test is bounded by α{pd´ cq.
What remains is to prove that β is captured by the Solovay test. Pick s0 to

be the largest stage minimizing αs0 ´ dβs0 , and t0 ą s0 to be the least stage
maximizing αt0 ´ cβt0 among stages greater than s0. Note that t0 is absorbed by
s0, so the corresponding interval is in the Solovay test. Also, it must be the case
that αs0 ´ dβs0 ă α´ dβ and αt0 ´ cβt0 ą α´ cβ, so β is contained in this interval.
Now, pick s1 ě t0 to be the greatest stage minimizing αs1 ´ dβs1 and t1 ą s1 to be
the least stage maximizing αt1 ´ cβt1 . Again, β is contained in the corresponding
interval, which in turn, is in the Solovay test. Continuing in this way, β fails the
Solovay test, which is a contradiction. �

1.2. D.c.e. reals. If β and γ are left-c.e. reals, we call α “ β´ γ a d.c.e. real.5 Let
tβsusPω and tγsusPω be left-c.e. approximations of β and γ, respectively. If we set
αs “ βs ´ γs, then not only do we have limsÑ8 αs “ α, but the variation of the
approximation is finite, i.e.,

ÿ

sPω

|αs`1 ´ αs| “
ÿ

sPω

|pβs`1 ´ βsq ´ pγs`1 ´ γsq|

ď
ÿ

sPω

|βs`1 ´ βs| `
ÿ

sPω

|γs`1 ´ γs| “ β ` γ ă 8.

This characterizes the d.c.e. reals.

Proposition 1.3 (Ambos-Spies, Weihrauch, and Zheng [1]). A real α is d.c.e. if
and only if it is the limit of a computable sequence tαsusPω of rationals such that

ÿ

sPω

|αs`1 ´ αs| ă 8.

In this case, we call tαsusPω a d.c.e. approximation of α.

Proof. We proved one direction above. Now assume that α is the limit of a sequence
tαsusPω with finite variation. Let β “ α0 `

ř

tαs`1 ´ αs : αs`1 ´ αs ě 0u and
γ “

ř

tαs ´ αs`1 : αs`1 ´ αs ă 0u. Since tαsusPω has finite variation, both β and
γ are finite. It should be clear that they are left-c.e. reals and that α “ β ´ γ. �

It is evident that the d.c.e. reals are closed under addition and subtraction and
not too hard to see that they form a field [1]. Ng [9] and Raichev [11] independently
proved that they actually form a real closed field ; this just means that the real roots
of a polynomial whose coefficients are d.c.e. reals must also be d.c.e. reals.

Rettinger and Zheng [12] observed that d.c.e. approximations of random reals
are severely limited.

5D.c.e. is short for “difference of computably enumerable”, which is admittedly an imperfect
name because it is too easy to confuse d.c.e. reals with d.c.e. sets. As with “left-c.e.”, various other
terms have been used in the literature. Many sources, including Ambos-Spies, Weihrauch, and
Zheng [1], call them “weakly computable” real numbers, which is not particularly descriptive. On
the other hand, Downey and Hirschfeldt [6] call them “left-d.c.e.”, while admitting that “d.l.c.e.”
would make somewhat more sense. Indeed, Nies [10] calls them “difference left-c.e.”.
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Remark 1.4 (Rettinger and Zheng [12]). Let tαsusPω be a d.c.e. approximation of
α. Consider the Solovay test trαs, αs`1s : αs ă αs`1u; note that it has finite weight
because tαsusPω has finite variation. If there are infinitely many s such that αs ă α
and infinitely many t such that αt ą α, then α would be covered by the test, hence
it would be nonrandom.

Now assume that α is random. We know that all but finitely many of the elements
of the approximation fall on the same side of α. Assume, for the sake of argument,
that there is an s˚ P ω such that p@s ě s˚q αs ă α. Then α˚s “ maxs˚ďtďs αt is
a left-c.e. approximation of α, so α is a left-c.e. real. Similarly, if we assume that
almost all elements of the approximation are greater than α, then α is a right-c.e.
real. Note that α cannot be both a left-c.e. real and a right-c.e. real or it would be
computable, and hence not random. So if we know that α is a random left-c.e. real,
then we know that αs ă α for almost all s. �

Proposition 1.5 (Rettinger and Zheng [12]). Random d.c.e. reals are either left-c.e.
reals or right-c.e. reals.

We finish with what is essentially the converse of Remark 1.4: nonrandom d.c.e.
reals have “properly” d.c.e. approximations.

Lemma 1.6. Let α be a nonrandom d.c.e. real. There is a d.c.e. approximation
tαsusPω of α such that there are infinitely many s for which αs ă α and infinitely
many t for which αt ą α.

Proof. Let tα˚s usPω be a d.c.e. approximation of α. Let trcn, dnsunPω be a Solovay
test that covers α, viewed as a sequence of rational intervals. We define our new
approximation of α as follows. At stage s, check if α˚s is contained in some unused
interval rcn, dns for n ď s. If so, mark that interval used and let α4s “ α4s`3 “ α˚s ,
α4s`1 “ cn, and α4s`2 “ dn. Otherwise, let α4s “ ¨ ¨ ¨ “ α4s`3 “ α˚s .

Note that the variation of tαsusPω is bounded by the variation of tα˚s usPω plus
the extra variation added when intervals are used. When an interval rcn, dns is used,
it adds 2|dn ´ cn| to the variation. Each interval in the Solovay test is used at most
once, so the contribution of all such intervals is bounded by twice the weight of the
test. So tαsusPω has finite variation, which implies that it converges. Since there is
a subsequence converging to α, this must be the limit. Therefore, tαsusPω is a d.c.e.
approximation of α.

Now note that if an interval in the Solovay test contains α, then it will eventually
be used. If such an interval is used at stage s, then α4s`1 ă α and α4s`2 ą α. Since
there are infinitely many such intervals, the lemma is proved. �

2. A derivation on the d.c.e. reals

As before, fix a random left-c.e. real Ω with left-c.e. approximation tΩsusPω.

Definition 2.1. If α is a d.c.e. real with d.c.e. approximation tαsusPω, let

Bα “ lim
sÑ8

α´ αs
Ω´ Ωs

.

To justify this definition, we must prove that the limit is independent of the
choice of approximation. Before we have done so, it will be convenient to write
Btαsu instead of Bα. In light of the results from the previous section, the basic
properties of Btαsu are now fairly easy to prove.



ON BARMPALIAS AND LEWIS-PYE: A DERIVATION ON THE D.C.E. REALS 7

First, note that we get linearity, a fact also observed by Barmpalias and Lewis-
Pye [2]: if α and β are d.c.e. reals with d.c.e. approximations tαsusPω and tβsusPω,
respectively, then

Btαs ` βsu “ lim
sÑ8

pα` βq ´ pαs ` βsq

Ω´ Ωs

“ lim
sÑ8

α´ βs
Ω´ Ωs

` lim
sÑ8

β ´ βs
Ω´ Ωs

“ Btαsu ` Btβsu.

Similarly, if c is rational, then Btcαsu “ c Btαsu.

Lemma 2.2. Let α be a d.c.e. real with d.c.e. approximation tαsusPω.
(a) Btαsu converges.
(b) If Btαsu ą 0, then α is a left-c.e. real.
(c) If Btαsu ă 0, then α is a right-c.e. real.
(d) If α “ 0, then Btαsu “ 0.
(e) If tα˚s usPω is another d.c.e. approximation of α, then Btαsu “ Btα˚s u.

Proof. As in the proof of Proposition 1.3, let β and γ be left-c.e. reals with left-c.e.
approximations tβsusPω and tγsusPω such that αs “ βs´γs for all s. Then α “ β´γ
and Btαsu “ Btβsu ´ Btγsu. Both Btβsu and Btγsu converge by Lemma 1.2, so
Btαsu also converges. This proves (a).

For (b), note that if Btαsu ą 0, then there is an s˚ P ω such that p@s ě s˚q αs ă α.
Hence by the argument in Remark 1.4, α is a left-c.e. real. Part (c) is proved similarly.

To prove (d), assume that α “ 0 but Btαsu ‰ 0. Pick an integer c such that
BtΩs ` cαsu “ BtΩsu ` c Btαsu “ 1 ` c Btαsu ă 0. But tΩs ` cαsusPω is a d.c.e.
approximation of Ω` c ¨ 0 “ Ω, so by part (c), Ω is a right-c.e. real. This implies
that Ω is computable, which is a contradiction.

Finally, to prove (e), note that Btαsu ´ Btα˚s u “ Btαs ´ α˚s u “ 0, because
tαs ´ α

˚
s usPω is a d.c.e. approximation of 0. �

Theorem 2.3. Let α be a d.c.e. real.
(a) Bα converges and does not depend on the d.c.e. approximation of α.
(b) Bα “ 0 if and only if α is not random.
(c) Bα ą 0 if and only if α is a random left-c.e. real.
(d) Bα ă 0 if and only if α is a random right-c.e. real.
(e) Bα “ suptc P Q : α´ cΩ is left-c.e.u

“ inftc P Q : α´ cΩ is right-c.e.u.

Proof. Part (a) is immediate from the previous lemma. Now assume that α is
not random. Let tαsusPω be the approximation guaranteed by Lemma 1.6. So
there are infinitely many s for which α ´ αs ą 0 and infinitely many t for which
α´ αt ă 0. This implies that Bα “ 0.6 On the other hand, if α is random, then by
Proposition 1.5, it must be either a left-c.e. real or a right-c.e. real. Assume that α
is a random left-c.e. real. By Lemma 1.1, there is a c P ω such that

p@sq Ω´ Ωs ď c pα´ αsq .

6An alternate proof might appeal to those familiar with Solovay reducibility: we can show that
if Bα ‰ 0, then we can extract good approximations of Ω from good approximations of α; hence, if
α were not random, then we could derandomize Ω.
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This implies that Bα ą 1{c ą 0. Similarly, if α is a random right-c.e. real, then
Bα ă 0. This proves part (b) and the “if” directions of parts (c) and (d). The “only
if” directions also follow. For example, if Bα ą 0, then α is random by (b) and
left-c.e. by the previous lemma.

Finally, (e) follows from parts (c) and (d) and the fact that Bpα´cΩq “ Bα´c. �

We have now recovered the work of Barmpalias and Lewis-Pye [2] that was
discussed in the introduction. Note that we have lost nothing by working with Ω as
a fixed benchmark; it is easy to see that if β is a random d.c.e. real, then

Bα

Bβ
“
Bα{BΩ

Bβ{BΩ
.

Therefore, Bα{Bβ is not ambiguous: it can either be defined as in equation (1), or
as a ratio of derivations as in Definition 2.1.

Next, we show that B is a derivation on the field of d.c.e. reals; in other words,
that it respects addition and satisfies the Leibniz law.

Theorem 2.4. Let α, β be d.c.e. reals.

(a) Bpα` βq “ Bα` Bβ.
(b) Bpαβq “ α Bβ ` β Bα.

Proof. We proved (a) above. The proof for (b) is standard and simple:

Bpαβq “ lim
sÑ8

αβ ´ αsβs
Ω´ Ωs

“ lim
sÑ8

α

ˆ

β ´ βs
Ω´ Ωs

˙

` lim
sÑ8

βs

ˆ

α´ αs
Ω´ Ωs

˙

“ α Bβ ` β Bα. �

We also get the following version of the chain rule.

Theorem 2.5. Let f : RÑ R be a computable function. If f is differentiable at the
d.c.e. real α, then

(a) fpαq is d.c.e., and
(b) Bfpαq “ f 1pαq Bα.

Proof. Let tαsusPω be a d.c.e. approximation of α. If f were sufficiently nice, then
tfpαsqusPω would be a d.c.e. approximation of fpαq. In particular, it would be
enough to assume that f is Lipschitz in some neighborhood of α, which is true for
any continuously differentiable function. For the stated generality, assume only that
f is differentiable at α. Hence it is continuous at α and there is an ε ą 0 and a
c P ω such that

p@x P Rq |α´ x| ă ε ùñ |fpαq ´ fpxq| ă c|α´ x|.

Fix N large enough that p@n ě Nq |α ´ αn| ă ε. Let np0q “ N . If npsq has
been defined, let nps ` 1q ą npsq be chosen so that |fpαnps`1qq ´ fpαnpsqq| ă
c|αnps`1q ´ αnpsq|. Note that nps` 1q exists because tαsusPω converges to α and f
is continuous at α. In this way, we get an approximation tfpαnpsqqusPω of fpαq. It
is a d.c.e. approximation because its variation is at most c times the variation of
tαnpsqusPω. This proves (a).
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For (b), let tα˚s usPω “ tαnpsqusPω be the d.c.e. approximation of α from the
previous paragraph. Then

Bfpαq “ lim
sÑ8

fpαq ´ fpα˚s q

Ω´ Ωs

“

ˆ

lim
sÑ8

fpαq ´ fpα˚s q

α´ α˚s

˙ˆ

lim
sÑ8

α´ α˚s
Ω´ Ωs

˙

“ f 1pαq Bα. �

The previous theorem allows us to apply basic identities from calculus, so for
example, BeΩ “ eΩ.

As already noted, B does not make the d.c.e. reals into a differential field; it is
straightforward to show that B maps outside of the d.c.e. reals, though we do not
know its range.

Proposition 2.6. If β is a positive ∆0
2 real, then there is a left-c.e. real α such

that Bα “ β.

Proof. Let tβsusPω be an approximation of β; we may assume that is consists only
of positive rationals. Define a left-c.e. approximation tαsusPω as follows: let α0 “ 0
and αs`1 “ αs ` βspΩs`1 ´ Ωsq. The fact that tβsusPω is bounded above implies
that α “ limsÑ8 αs is finite. We must show that Bα “ β. Fix ε ą 0 and take N
such that p@s ě Nq |β ´ βs| ă ε. Then, for any n ě N ,

|βpΩ´ Ωnq ´ pα´ αnq| ď
ÿ

sěn

|βpΩs`1 ´ Ωsq ´ pαs`1 ´ αsq|

“
ÿ

sěn

|β ´ βs|pΩs`1 ´ Ωsq ď εpΩ´ Ωnq.

For such n,
ˇ

ˇ

ˇ

ˇ

β ´
α´ αn
Ω´ Ωn

ˇ

ˇ

ˇ

ˇ

ď ε.

But ε ą 0 was arbitrary, so Bα “ β. �

In the same way, every negative ∆0
2 real is Bα for some right-c.e. real α. So the

range of B contains the ∆0
2 reals, which is a proper superset of the d.c.e. reals.

Question 2.7. What is the range of B on the d.c.e. reals?

3. The field of nonrandom d.c.e. reals

We finish with an exploration of the nonrandom d.c.e. reals, in part as an
application of the work above. First, it is easy to see that if B is a derivation on a
field, then its kernel—in this case the nonrandom d.c.e. reals—is also a field. It is
called the field of constants. With a little more work, we can show:

Corollary 3.1. The nonrandom d.c.e. reals form a real closed field.

Proof. Let α and β be nonrandom d.c.e. reals. Then Bpα` βq “ Bα` Bβ “ 0, so
α ` β is not random. It is similarly easy to see that α ´ β, αβ and α{β are not
random. So the nonrandom d.c.e. reals form a field.

Now let ppxq be a polynomial whose coefficients are nonrandom d.c.e. reals.
Assume that α is a real root of ppxq. As mentioned above, the d.c.e. reals form a real
closed field [9, 11], so α must be a d.c.e. real. We need to show that α is nonrandom.
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We may assume that α has multiplicity one as a root of ppxq; otherwise, we could
replace ppxq with the greatest common divisor of ppxq and p1pxq, which also has
coefficients in the field of nonrandom d.c.e. reals. This ensures that p1pαq ‰ 0. Now
note that Bppαq “ p1pαq Bα. (This does not follow from Theorem 2.5 because ppxq
may not be a computable function, but it can be shown by an easy induction using
parts (a) and (b) of Theorem 2.4.) Therefore, we have

Bα “
Bppαq

p1pαq
“

B0

p1pαq
“ 0,

so α is nonrandom. �

The nonrandom d.c.e. reals were not previously known to be a field. In particular,
it was not previously known that the sum of nonrandom d.c.e. reals is nonrandom.
This was, however, known for left-c.e. reals. It was first claimed by Demuth [5] and
later independently proved by Downey, Hirschfeldt, and Nies [7].

Remark 3.2. The fact that the sum of nonrandom d.c.e. reals is itself nonrandom is
not, apparently, a trivial generalization of the corresponding fact for left-c.e. reals.
To back up this claim, we use the fact to give a short (albeit circular) proof of
Lemma 1.2. As in the actual proof, if limsÑ8pα ´ αsq{pβ ´ βsq does not exist,
then there are rationals c ă d such that there are infinitely many s for which
αs ´ dβs ă α´ dβ and infinitely many t for which αt ´ cβt ą α´ cβ. Note that if
αs ´ dβs ă α´ dβ, then

αs ´ cβs “ αs ´ dβs ` pd´ cqβs ă α´ dβ ` pd´ cqβ “ α´ cβ.

Similarly, if αt ´ cβt ą α´ cβ, then αt ´ dβt ą α´ dβ. Therefore, by Remark 1.4,
both α´ cβ and α´ dβ are nonrandom, so their difference pd´ cqβ is nonrandom.
But this implies that β is nonrandom, which is a contradiction. �

This leads to a natural question: why is it (apparently) harder to prove things
about nonrandom d.c.e. reals than nonrandom left-c.e. reals? One immediate answer
is that there are nonrandom d.c.e. reals that can only be expressed as a difference
of random left-c.e. reals. Although they are nonrandom, such d.c.e. reals have an
intrinsic randomness. This property can also be captured by looking at the variation
of d.c.e. approximations.

Definition 3.3. Call a d.c.e. real α variation nonrandom if it has a d.c.e. approxi-
mation tαsusPω such that the variation

ř

sPω |αs`1 ´ αs| is not random. Otherwise,
call α variation random.

Proposition 3.4. The following are equivalent for a d.c.e. real α:
‚ α is variation nonrandom,
‚ There are nonrandom left-c.e. reals β and γ such that α “ β ´ γ.

Proof. First, assume that α is variation nonrandom, as witnessed by the d.c.e.
approximation tαsusPω. Let α˚ be the variation of this approximation, with the
natural left-c.e. approximation tα˚s usPω. Following Proposition 1.3, let βs`1 “

αs`1´αs if this is positive; otherwise let γs`1 “ αs´αs`1. Let β0 “ α0, and set all
remaining values of βs and γs to 0. Thus β and γ are left-c.e. reals and α “ β ´ γ.
Note that

βs`1 ´ βs ď |αs`1 ´ αs| “ α˚s`1 ´ α
˚
s ,
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for all s. So β ´ βs ď α˚ ´ α˚s , which means that Bβ ď Bα˚ “ 0. But Bβ ě 0 since
β is left-c.e., so β is not random. A similar argument works for γ.

Now assume assume that α “ β ´ γ, where β and γ are nonrandom left-c.e. reals
with left-c.e. approximations tβsusPω and tγsusPω. Let αs “ βs´ γs, so tαsusPω is a
d.c.e. approximation of α. As before, let α˚ be the variation of this approximation
and tα˚s usPω the natural left-c.e. approximation to α˚. Then

α˚s`1 ´ α
˚
s “ |αs`1 ´ αs| ď pβs`1 ´ βsq ` pγs`1 ´ γsq,

for all s. So α˚ ´ α˚s ď pβ ´ βsq ` pγ ´ γsq. This means that Bα˚ ď Bβ ` Bγ “ 0,
so α˚ is nonrandom. �

Next, we will show that variation randomness is a nontrivial notion. So as
promised, there is a nonrandom d.c.e. real that cannot be written as the difference
of nonrandom left-c.e. reals.

Theorem 3.5. There is a nonrandom, variation random d.c.e. real.

Proof. Let tβ0,susPω, tβ1,susPω, . . . be an effective list of rational sequences that
contains d.c.e. approximations of every d.c.e. real, with every possible variation.
This is possible because we can pad a partial computable sequence of rationals by
repeating the last value until a new convergence is seen, and this process does not
change the variation.

We build a nonrandom d.c.e. real α such that, for each e P ω:
Re : If tβe,susPω is a d.c.e. approximation of α,

then its variation is random.
The construction uses the infinite injury priority method. Strategies are organized
on a tree, with the eth level containing strategies for Re. Each node on the tree
has outcomes 8 ă ¨ ¨ ¨ ă w2 ă w1 ă w0. Strategies will update the global value
of α as they are executed; we start with α “ 1{2. To each node σ on the priority
tree, we assign a rational parameter εσ ą 0, in an effective way, such that the total
sum of these parameters is bounded by 1. They will be used to meet the global
requirements that α is nonrandom and d.c.e.

We are ready to describe the behavior of a node σ on level e of the tree. Let
ε “ εσ. The goal of σ is to make sure that, at any stage, the error in the current
approximation to the variation of tβe,susPω is at least ε times the error in the current
approximation of Ω. That will ensure that the variation is random. To force the
variation to increase, σ will move α back and forth, subject to restraints imposed
by other nodes, each time waiting for βe,s to get close to α before moving again.

If σ is visited at stage s, it runs the following algorithm, picking up where it left
off after the last visit:

(1) Impose the restraint pα´ ε{2, α` ε{2q. Let t “ 0.
(2) End the substage with outcome 8.
(3) Let pa, bq be the intersection of all current restraints. Let c be the current

value of α (which will be in the interval pa, bq). Pick n P ω and a rational
δ ă b´ c such that nδ “ εpΩt`1 ´ Ωtq. Run the following loop n times:
(a) Let σwm be the rightmost unvisited child. Move α to c, if it is not

already there. Establish the restraint pα´ δ{8, α` δ{8q.
(b) If βe,s is within δ{8 of α, then cancel the restraint from (3a) and all

restraints imposed by nodes extending σwm, including itself, (these
nodes will never again be visited); continue the algorithm. Otherwise,
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end the substage with outcome wm; the next time σ is visited, repeat
this step.

(c) Let σwm be the rightmost unvisited child. Move α to c` δ. Establish
the restraint pα´ δ{8, α` δ{8q.

(d) If βe,s is within δ{8 of α, then cancel the restraint from (3c) and all
restraints imposed by nodes extending σwm; continue the algorithm.
Otherwise, end the substage with outcome wm; the next time σ is
visited, repeat this step.

(4) Execute steps (3a) and (3b) one more time.
(5) Increment t and go to (2).

At stage s of the construction, we execute the algorithm above, starting at the root
node and following the outcomes until we get to a node at level s of the tree. Let
αs be the value of α at the end of the stage. Note that α always respects all current
restraints. In particular, any new restraints that are imposed while we wait in steps
(3b) or (3d) for σ are canceled before we move α again for the sake of σ.

We must show that tαsusPω is a d.c.e. approximation. Let us look at how much
σ can move α. Fix a value of t and the corresponding n and δ from step (3). When
we transition from (3b) to (3c), we move α by at most 9δ{8. The same holds for
the transition from (3d) to (3a). There are a total of 2n such transitions for t, so α
is moved by at most

2n ¨ 9δ{8 “ 9{4 ¨ nδ “ 9{4 ¨ εpΩt`1 ´ Ωtq,

where ε “ εσ. Over all t, the algorithm for σ moves α by at most 9{4 ¨ εΩ ď 9{4 ¨ εσ.
So in total, α is moved by at most 9{4. Therefore, tαsusPω is a d.c.e. approximation
converging to a d.c.e. real, which of course we call α.

Next, it is not hard to see that α is nonrandom. Each σ that is visited imposes
a restraint in step (1). Put the closure of this restraint into a Solovay test; it has
length εσ, so the total weight of the test is bounded by 1. If σ is on the true path,
this restraint is never canceled, hence all future approximations of α must respect
it. This means that (in the limit) α must be in the closure of the restraint. There
are infinitely many nodes on the true path, so α is covered by the Solovay test.

Finally, we must prove that each Re is satisfied. Assume that tβe,susPω is a
d.c.e. approximation of α. Let β˚e be the variation of tβe,susPω, and let tβ˚e,susPω be
its natural left-c.e. approximation. Let σ be the node at level e of the true path
and let ε “ εσ. Fix t and the corresponding n and δ. Every time we leave (3b),
βe,s is within δ{8 of α, which is within δ{8 of c. Every time we leave (3d), βe,s
is within δ{8 of α, which is within δ{8 of c ` δ. So every transition adds at least
δ{2 to the variation of tβe,susPω. By assumption, the algorithm for σ does not get
stuck in steps (3b) or (3d), so there are 2n such transitions. Therefore, at least
2n ¨ δ{2 “ nδ “ εpΩt`1 ´ Ωtq is added to β˚e for this t. But t is always less than
s, the current stage, so this increase in the variation happens after stage t. This
means that

β˚e ´ β
˚
e,t ě εpΩ´ Ωtq,

for all t. Therefore, Bβ˚e ě ε ą 0, so β˚e is random and Re is satisfied. �

We finish by arguing that the nonrandom, variation random d.c.e. reals cannot
be generated in any reasonably way from nonrandom left-c.e. reals. This is because
the variation nonrandom reals form a robust class with a lot of closure. We will see
that it is a real closed field, making it the real closure of the nonrandom left-c.e.
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reals. Furthermore, the field of variation nonrandom d.c.e. reals is closed under the
application of sufficiently well-behaved computable functions.

Lemma 3.6. Assume that α1, . . . , αn are variation nonrandom d.c.e. reals and
f : Rn Ñ R is a computable function. Let β “ fpα1, . . . αnq. If either

(a) f is Lipschitz in a neighborhood of pα1, . . . αnq, or
(b) f is differentiable at pα1, . . . αnq,

then β is variation nonrandom

Proof. (a) Let tα1,susPω, . . . , tαn,susPω be d.c.e. approximations of α1, . . . , αn that
have nonrandom variations α˚1 , . . . , α

˚
n. Let tβsusPω be an approximation of β such

that βs is within 2´s´1 of fpα1,s, . . . , αn,sq. By the Lipschitz assumption, there is a
c P ω such that

|βs`1 ´ βs| ď 2´s ` |fpα1,s`1, . . . , αn,s`1q ´ fpα1,s, . . . , αn,sq|

ď 2´s ` c }pα1,s`1, . . . , αn,s`1q ´ pα1,s, . . . , αn,sq}2

ď 2´s ` c |α1,s`1 ´ α1,s| ` ¨ ¨ ¨ ` c |αn,s`1 ´ αn,s|.

This proves that tβsusPω has finite variation; call it β˚. Furthermore, assuming the
natural approximations for β˚ and α˚1 , . . . , α

˚
n, we have

β˚ ´ β˚s ď 2´s`1 ` c pα˚1 ´ α
˚
1,sq ` ¨ ¨ ¨ ` c pα

˚
n ´ α

˚
n,sq.

Using the fact that t´2´s`1usPω is a d.c.e. approximation of 0, we have Bβ˚ ď
Bp0` cα˚1 ` ¨ ¨ ¨ ` cα

˚
nq “ 0, so β is a variation nonrandom d.c.e. real.

The argument for (b) is similar, but now the d.c.e. approximation to β must be
defined using the method in the proof of Theorem 2.5(a). �

Proposition 3.7. The variation nonrandom d.c.e. reals form a real closed field.

Proof. Closure under addition and subtraction are obvious. Multiplication and
division are computable and locally Lipschitz, so by the previous lemma, the
variation nonrandom d.c.e. reals form a field.

Now let ppxq be a polynomial whose coefficients are variation nonrandom d.c.e.
reals. Assume that α is a real root of ppxq. We need to show that α is variation
nonrandom. As in Corollary 3.1, we may assume that α has multiplicity one as
a root of ppxq, so p1pαq ‰ 0. We now essentially follow the proof of Theorem 2.9
in Raichev [11]. Say that ppxq “ γ0 ` γ1x ` ¨ ¨ ¨ ` γnx

n and let fpx, y0, . . . , ynq “
y0 ` y1x` ¨ ¨ ¨ ` ynx

n. So fpα, γ1, . . . , γnq “ 0 and pBxfqpα, γ1, . . . , γnq “ p1pxq ‰ 0.
By the implicit function theorem, there is an open rational ball V containing
pγ1, . . . , γnq and an open rational interval U containing α such that fpx, y1, . . . , ynq
has a unique root gpy1, . . . , ynq P U for every py1, . . . , ynq P V . Furthermore, g is
continuously differentiable, hence Lipschitz in a neighborhood of pγ1, . . . , γnq. By
taking V to be small enough to ensure that gpy1, . . . , ynq is a multiplicity one root
of fpx, y1, . . . , ynq for every py1, . . . , ynq P V , it is not hard to see that g : V Ñ R is
computable. Therefore, α is a variation nonrandom d.c.e. real. �
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