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Abstract. One approach to understanding the fine structure of initial seg-
ment complexity was introduced by Downey, Hirschfeldt and LaForte. They
define X ≤K Y to mean that (∀n) K(X ¹ n) ≤ K(Y ¹ n) + O(1). The equiv-
alence classes under this relation are the K-degrees. We prove that if X ⊕ Y
is 1-random, then X and Y have no upper bound in the K-degrees (hence, no
join). We also prove that n-randomness is closed upward in the K-degrees.
Our main tool is another structure intended to measure the degree of ran-
domness of real numbers: the vL-degrees. Unlike the K-degrees, many basic
properties of the vL-degrees are easy to prove. We show that X ≤K Y im-
plies X ≤vL Y , so some results can be transferred. The reverse implication is
proved to fail. The same analysis is also done for ≤C , the analogue of ≤K for
plain Kolmogorov complexity.

Two other interesting results are included. First, we prove that for any
Z ∈ 2ω , a 1-random real computable from a 1-Z-random real is automatically
1-Z-random. Second, we give a plain Kolmogorov complexity characterization
of 1-randomness. This characterization is related to our proof that X ≤C Y
implies X ≤vL Y .

1. Introduction

This paper is part of an ongoing project to understand the initial segment com-
plexity of random real numbers (by which we mean elements of 2ω). Several authors
have investigated oscillations in the complexity of initial segments of 1-random (i.e.,
Martin-Löf random) reals, with respect to either plain or prefix-free Kolmogorov
complexity (denoted by C and K, respectively). These include Martin-Löf [18, 19],
Chaitin [1, 3], Solovay [28] and van Lambalgen [29].

Our approach is different. While previous work focuses on describing the be-
havior of the initial segment complexity of a real number, we instead focus on in-
terpreting that behavior. We argue that the initial segment complexity of X ∈ 2ω

carries useful information about X. An obvious example is Schnorr’s theorem that
X ∈ 2ω is 1-random iff (∀n) K(X ¹ n) ≥ n − O(1). A more recent example is the
fact that X ∈ 2ω is 2-random iff (∃∞n) C(X ¹ n) ≥ n−O(1) (see Miller [20]; Nies,
Stephan and Terwijn [23]). These results raise obvious questions: can 1-randomness
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be characterized in terms of initial segment C-complexity—a long elusive goal—
or 2-randomness in terms of initial segment K-complexity? We will give positive
answers to both questions.

Many of our results will be stated in terms of the K-degrees, which were in-
troduced by Downey, Hirschfeldt and LaForte [6, 7]. Write X ≤K Y if Y has
higher initial segment prefix-free complexity than X (up to a constant). Formally,
(∀n) K(X ¹ n) ≤ K(Y ¹ n) + O(1). The induced partial order is called the K-
degrees. Define the C-degrees in the same way. This brings us to the second major
theme of this paper: degrees of randomness. What does it means to say that one
real number is more random than another? Based on the intuition that higher
complexity implies more randomness, one might think that X ≤K Y (or X ≤C Y )
means that Y is more random than X. We will provide some evidence supporting
this view.

Our effort to connect the properties of a real number to its initial segment com-
plexity culminates in Corollary 7.5, which states that X ⊕ Z is 1-random iff

(∀n) C(X ¹ n) + K(Z ¹ n) ≥ 2n−O(1).

Thus, the initial segment C-complexity of X ∈ 2ω gives a complete accounting of
the reals Z ∈ 2ω such that X⊕Z is 1-random. By symmetry, the same information
is implicit in the initial segment K-complexity of X.

We will see that the corollary says more, but first we introduce the vL-degrees.
These are a slight variant of the LR-degrees, which were introduced by Nies [22];
see Section 3 for details. Write X ≤vL Y if (∀Z ∈ 2ω)[X ⊕ Z is 1-random =⇒
Y ⊕Z is 1-random]. The induced partial order is called the van Lambalgen degrees
(or vL-degrees) because the definition was motivated by a theorem of van Lambal-
gen (Theorem 3.1). These degrees offer an alternative way to gauge randomness,
one based on the global properties of reals, not on their finite initial segments.
Corollary 7.5 shows that X ≤C Y implies X ≤vL Y , and again by symmetry, that
X ≤K Y implies X ≤vL Y . Because many properties of the vL-degrees are easily
proved, this new structure is a useful tool in studying the K-degrees and C-degrees.
For example, we will show that if X ≤vL Y and X is n-random (i.e., 1-random rel-
ative to ∅(n−1)), then Y is also n-random. By the above implications, every real
with higher initial segment complexity than an n-random real must also be n-
random. As promised, this supports the assertion that reals with higher K-degree
(or C-degree) are more random.

The article is organized as follows. Section 2 covers the necessary concepts from
Kolmogorov complexity and Martin-Löf randomness. The van Lambalgen degrees
are introduced in Section 3 and several basic properties are proved. Section 4 is
a digression from the main topics of the paper; in it we prove that any 1-random
real computable from a 1-Z-random real is automatically 1-Z-random. This follows
easily from van Lambalgen’s theorem if Z ∈ 2ω has 1-random Turing degree, but the
general case requires more work. In Section 5, we prove that X ≤K Y implies X ≤vL

Y and derive several results about the K-degrees. As was observed above, this result
follows from Corollary 7.5. But it is also an immediate consequence of Theorem 5.1,
which in turn is used in the proof of Corollary 7.5. Section 6 offers three results that
contrast the K-degrees and the vL-degree. In particular, Proposition 6.2 shows that
1-random reals that differ by a computable permutation need not be K-equivalent
(although they must be vL-equivalent), which demonstrates the essentially “local”
nature of the K-degrees. The final section focuses on plain complexity. We prove
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that X ∈ 2ω is 1-random iff (∀n) C(X ¹ n) ≥ n − K(n) − O(1). Alternately, X
is 1-random iff for every computable g : ω → ω such that

∑
n∈ω 2−g(n) is finite,

(∀n) C(X ¹ n) ≥ n−g(n)−O(1). Finally, we prove Corollary 7.5 and derive several
consequences for the C-degrees.

We finish this section with a brief discussion of how our results fit in with the
previous work on the K-degrees of 1-random reals. It follows from work of Solovay
[28] that Chaitin’s halting probability Ω has a different K-degree than any arith-
metically random real. Hence, there are at least two K-degrees. Yu, Ding and
Downey [32] proved that µ{X ∈ 2ω : X ≤K Y } = 0, for any Y ∈ 2ω. From this,
they conclude that there are uncountably many 1-random K-degrees (an explicit
construction of an antichain of size 2ℵ0 is give in [31]). An early goal of the present
research was to calculate the measure of {Y ∈ 2ω : X ≤K Y }. It must be noted
that this measure depends on the choice of X ∈ 2ω. If X is computable, then it
is K-below every real, hence µ{Y ∈ 2ω : X ≤K Y } = 1. On the other hand, the
result of Yu, Ding and Downey implies that µ{X ⊕Y ∈ 2ω : X ≤K Y } = 0. Hence,
µ{Y ∈ 2ω : X ≤K Y } = 0 for almost all X ∈ 2ω. Now by an easy complexity cal-
culation, the measure is zero when X is (weakly) 2-random. In fact, it follows from
Corollary 5.3 (ii) that 1-randomness is sufficient. It should be noted that this con-
dition does not characterize 1-randomness; it is easy to construct a non-1-random
real X ∈ 2ω for which µ{Y ∈ 2ω : X ≤K Y } = 0.

Several results in this paper produce incomparable 1-random K-degrees, but
none prove the existence of comparable 1-random K-degrees. That is done in a
companion paper [21], where we prove that for any 1-random Y ∈ 2ω, there is a
1-random X ∈ 2ω such that X <K Y (in fact, limn→∞K(Y ¹ n)−K(X ¹ n) = ∞).
Another problem that is not addressed in this paper is whether the C-degrees and
the K-degrees differ for 1-random reals. They are known to be different in general
[28, 7], but their relationship on the 1-random reals remains entirely open.

2. Preliminaries

We begin with a brief review of effective randomness and Kolmogorov complexity.
A more complete introduction can be found in Li and Vitanyi [17] or the upcoming
monograph of Downey and Hirschfeldt [5]. We assume that the reader is familiar
with the basics of computability theory and measure theory. Soare [26] and Oxtoby
[24] are good resources for these subjects.

Martin-Löf [18] introduced the most successful notion of effective randomness
for real numbers. A Martin-Löf test is a uniform sequence {Gn}n∈ω of Σ0

1 classes
such that µ(Gn) ≤ 2−n. A real X ∈ 2ω is said to pass a Martin-Löf test {Gn}n∈ω if
X /∈ ⋂

n∈ω Gn. We say that X ∈ 2ω is 1-random (or Martin-Löf random) if it passes
all Martin-Löf tests. This notion generalizes naturally; for any n ∈ ω and oracle
Z ∈ 2ω, define n-Z-randomness by replacing the Σ0

1 classes with Σ0
n[Z] classes in

Martin-Löf’s definition. The two parameters are related by the jump operator:

Theorem 2.1 (Kurtz [13]). For n ∈ ω and Z ∈ 2ω, n-Z-randomness is equivalent
to 1-Z(n−1)-randomness.

We write n-random for n-∅-random, or equivalently, 1-∅(n−1)-random.
Kolmogorov [10] and Solomonoff [27] defined the complexity of a finite string to

be the length of its shortest description. Formally, we use a partial computable
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function M : 2<ω → 2<ω to “decode” descriptions. Then the Kolmogorov com-
plexity of σ ∈ 2<ω with respect to M is CM (σ) = min{|τ | : M(τ) = σ}. There
is an essentially optimal choice for the decoding function: a partial computable
V : 2<ω → 2<ω with the property that if M : 2<ω → 2<ω is any other partial com-
putable function, then (∀σ ∈ 2<ω) CV (σ) ≤ CM (σ)+O(1). We call V the universal
machine and call C(σ) = CV (σ) the plain (Kolmogorov) complexity of σ ∈ 2<ω.

Levin [15] and Chaitin [2] introduced a modified form of Kolmogorov complexity
that has natural connections to the Martin-Löf definition of randomness. For finite
binary strings σ, τ ∈ 2<ω, we write σ ≺ τ to mean that σ is a proper prefix of τ .
Similarly, σ ≺ X means that σ is an initial segment of X ∈ 2ω. A set of strings
D ⊆ 2<ω is prefix-free if (∀σ, τ ∈ D) σ ⊀ τ . A partial function M : 2<ω → 2<ω is
prefix-free if its domain is a prefix-free set. If M is prefix-free, then we write KM

instead of CM for the Kolmogorov complexity with respect to M . As before, there is
a universal prefix-free machine U : 2<ω → 2<ω that is optimal for prefix-free partial
computable functions, in the sense that (∀σ ∈ 2<ω) KU (σ) ≤ KM (σ) + O(1), for
any such function M . We write K(σ) for KU (σ) and call it the prefix-free complexity
of σ ∈ 2<ω.

It is well known that the 1-random reals can be characterized in terms of the
prefix-free complexity of their initial segments.

Theorem 2.2 (Schnorr). X ∈ 2ω is 1-random iff (∀n) K(X ¹ n) ≥ n−O(1).

Theorem 7.1 gives a similar characterization in terms of plain complexity.
We now review some of the combinatorics of prefix-free complexity. The fact that

U has prefix-free domain implies that
∑

σ∈2<ω 2−K(σ) ≤ 1; this is Kraft’s inequality.
It is clear that (∀σ ∈ 2<ω) C(σ) ≤ |σ|+O(1), but this would clearly violate Kraft’s
inequality were it true of prefix-free complexity. Instead, the natural upper bound
on K is given by the following result.

Lemma 2.3 (Chaitin [2]).
(i) (∀σ ∈ 2<ω) K(σ) ≤ |σ|+ K(|σ|) + O(1).
(ii) (∀n)(∀k) |{σ ∈ 2n : K(σ) ≤ n + K(n)− k}| ≤ 2n−k+O(1).

Observe that K is applied to natural numbers as well as to binary strings. This
is possible because we identify finite binary strings with natural numbers. In par-
ticular, σ ∈ 2<ω represents n ∈ ω if the binary expansion of n + 1 is 1σ. Note
that strings of length n are identified with numbers between 2n − 1 and 2n+1 − 2.
Having fixed a natural effective bijection between 2<ω and ω, we may view K as a
function of ω when it is convenient.

Information content measures provide an alternative approach to prefix-free com-
plexity. These were introduced by Levin and Zvonkin [33] and studied further by
Levin [16, 15]. They are implicit in Chaitin [2] and the name comes from his later
paper [3]. A function K̂ : ω → ω ∪ {∞} is an information content measure if

(i)
∑

n∈ω 2− bK(n) converges (where 2−∞ = 0).
(ii) {〈n, k〉 : K̂(n) ≤ k} is computable enumerable.

Not only is K an information content measure (when viewed as a function of ω), but
it is minimal [15]: if K̂ is another information content measure, then (∀n) K(n) ≤
K̂(n) + O(1).

We write CZ and KZ for the relativizations of plain and prefix-free complexity
to an oracle Z ∈ 2ω. The results mentioned above remain true in their relativized
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forms. In particular, X ∈ 2ω is 1-Z-random iff (∀n) KZ(X ¹ n) ≥ n − O(1). The
following result relates KZ to unrelativized prefix-free complexity when Z ∈ 2ω is
1-random.

Ample Excess Lemma. Let Z ∈ 2ω be 1-random.
(i)

∑
n∈ω 2n−K(Z ¹ n) < ∞.

(ii) (∀n) KZ(n) ≤ K(Z ¹ n)− n + O(1).

Proof. (i) Note that, for any m ∈ ω,
∑

σ∈2m

∑

n≤m

2n−K(σ ¹ n) =
∑

σ∈2m

∑
τ≺σ

2|τ |−K(τ)

=
∑

τ∈2≤m

2m−|τ |2|τ |−K(τ) = 2m
∑

τ∈2≤m

2−K(τ) ≤ 2m,

where the last step is Kraft’s inequality. Therefore, for any p ∈ ω, there are
at most 2m/p strings σ ∈ 2m for which

∑
n≤m 2n−K(σ ¹ n) > p. This implies that

Gp =
{
X ∈ 2ω :

∑
n∈ω 2n−K(X ¹ n) > p

}
has measure at most 1/p. Thus {G2k}k∈ω—

clearly a uniform sequence of Σ0
1 classes—is a Martin-Löf test. Therefore, Z /∈ G2k

for some k ∈ ω, and so
∑

n∈ω 2n−K(Z ¹ n) ≤ 2k.
(ii) Define K̂(n) = K(Z ¹ n) − n. Note that {〈n, k〉 : K̂(n) ≤ k} is computably

enumerable from Z. Hence by (i), K̂ is an information content measure relative to
Z. The result now follows from the minimality of KZ among such functions. ¤

3. The van Lambalgen degrees

When is a given 1-random real more random than another? The K-degrees
attempt to answer this question using initial segment complexity. In this section,
we propose a different approach—one based on the global behavior of real numbers,
rather than their local structure. Our definition will be motivated by the following
result.

Theorem 3.1 (van Lambalgen [30]). If X, Y ∈ 2ω, then X ⊕ Y is 1-random iff X
is 1-random and Y is 1-X-random.

Nies [22] defined X ≥LR Y to mean

(∀Z ∈ 2ω)[Z is 1-X-random =⇒ Z is 1-Y -random].

By Theorem 3.1, if X and Y are both 1-random, then X ≥LR Y iff X ⊕ Z is
1-random implies that Y ⊕ Z is 1-random, for all Z ∈ 2ω. Taking this partial
characterization of ≥LR as a definition, we write X ≤vL Y iff

(∀Z ∈ 2ω)[X ⊕ Z is 1-random =⇒ Y ⊕ Z is 1-random].

We call the equivalence classes induced by this relation the van Lambalgen degrees.
The vL-degrees differ from the LR-degrees in two relatively minor ways: the

least vL-degree contains exactly the non-1-random reals (part (ii) of Theorem 3.4),
and on 1-random reals ≤vL is equivalent to ≥LR. Both changes make ≤vL more
plausible as a measure of relative randomness. For the first, note that X ≡T Y
implies X ≡LR Y , so every LR-degree contains non-1-random reals. On the other
hand, the vL-degree of a 1-random real contains only 1-random reals. But why the
reversal of the ordering on 1-random reals? We will see in Corollaries 5.2 and 7.6
that both ≤K and ≤C imply ≤vL. So the direction of the ordering is appropriate
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for our purposes and X ≤vL Y can reasonably be interpreted as saying that Y is
more random than X.

The fact that both initial segment notions refine the vL-degrees allows us to
transfer facts about the vL-degrees to these other structures, which is useful because
many basic properties of the vL-degrees are easy to prove from known results. In
addition to Theorem 3.1, we will use the following two facts.

Theorem 3.2 (Kučera [11]). There is a 1-random real in every Turing degree ≥ 0′.

Theorem 3.3 (Kučera and Terwijn [12]). For every X ∈ 2ω, there is a W �T X
so that every 1-X-random real is 1-X ⊕W -random.

Theorem 3.4 (Basic properties of the vL-degrees).
(i) If X ≤vL Y and X is n-random, then Y is n-random.
(ii) The least vL-degree is 0vL = {X ∈ 2ω : X is not 1-random}.
(iii) If X⊕Y is 1-random, then X and Y have no upper bound in the vL-degrees.
(iv) If Y ≤T X and Y is 1-random, then X ≤vL Y .1

(v) There are 1-random reals X ≡vL Y but X <T Y .

Proof. (i) Assume that X ≤vL Y and X is n-random. First consider n = 1. Select
a 1-X-random real Z. Then X ⊕Z is 1-random, so Y ⊕Z is 1-random. Thus Y is
1-random.

Now take n > 1. By Theorem 3.2, there is a 1-random real Z ≡T ∅(n−1). Then
X is n-random =⇒ X is 1-Z-random =⇒ X ⊕ Z is 1-random =⇒ Y ⊕ Z is
1-random =⇒ Y is 1-Z-random =⇒ Y is n-random.

(ii) Clearly, if X is not 1-random then X ≤vL Y for any real Y . If X is 1-random,
then X �vL ∅, or else ∅ would be 1-random by part (i). Therefore, 0vL consists
exactly of the non-1-random reals.

(iii) Let X ⊕ Y be 1-random and assume, for a contradiction, that X, Y ≤vL Z.
Because X ≤vL Z and X ⊕ Y is 1-random, Z ⊕ Y is 1-random too. Therefore,
Y ⊕ Z is 1-random. But Y ≤vL Z, so Z ⊕ Z must also be 1-random, which is a
contradiction.

(iv) Assume that Y ≤T X and Y is 1-random. For any Z ∈ 2ω, X ⊕ Z is
1-random =⇒ Z is 1-X-random =⇒ Z is 1-Y -random =⇒ Y ⊕ Z is 1-random.
Therefore, X ≤vL Y .

(v) Pick any 1-random real X ≥T ∅′ (e.g., the halting probability Ω; see below).
By Theorem 3.3, there is a W �T X such that every 1-X-random real is 1-X ⊕W -
random. Take a 1-random real Y ≡T X ⊕ W ; this is guaranteed to exist by
Theorem 3.2. So X <T Y . Also, Z ⊕X is 1-random ⇐⇒ Z is 1-X-random ⇐⇒
Z is 1-X⊕W -random ⇐⇒ Z is 1-Y -random ⇐⇒ Z⊕Y is 1-random. Therefore,
X ≡vL Y . ¤

Corollary 3.5 (More basic properties of the vL-degrees).
(i) There is no join in the vL-degrees.
(ii) If X ⊕ Y is 1-random, then X ⊕ Y <vL X,Y and X |vL Y .
(iii) There is no maximal vL-degree.
(iv) There is no minimal 1-random vL-degree.
(v) Every finite poset can be embedded into (2ω,≤vL).

1Nies [22] observed that Y ≤T X implies Y ≤LR X, from which part (iv) of Theorem 3.4
follows.
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Proof. (i) Immediate from part (iii) of Theorem 3.4.
(ii) By part (iii) of Theorem 3.4, X |vL Y . By part (iv) of the same theorem,

X ⊕ Y ≤vL X,Y . Therefore, X ⊕ Y <vL X,Y .
(iii) If X = X1 ⊕ X2 is 1-random, then X <vL X1, X2 by part (ii). So the

vL-degree of X is not maximal.
(iv) Assume that X is 1-random. Take any 1-X-random real Y ; thus X ⊕ Y is

1-random. By part (ii), ∅ <vL X ⊕ Y <vL X. So, there is no minimal 1-random
vL-degree.

(v) Suppose that P = (P,≤) is a finite partial order; let P = {pi}i<n. Pick a
1-random real X =

⊕
i<n Xi. For any k < n, define F (k) = {i : pk ≤ pi} and let

Yk =
⊕

i∈F (k) Xi. Let g : P → 2ω be defined by g(pk) = Yk. It suffices to prove
that pj ≤ pk ⇐⇒ Yj ≤vL Yk. If pj ≤ pk, then F (k) ⊆ F (j) so Yj ≤vL Yk, by part
(i). If pj � pk, then k /∈ F (j) and so Yj ⊕ Xk is 1-random. But Yk ⊕ Xk is not
1-random since k ∈ F (k). So Yj �vL Yk. ¤

Note that part (v) of the corollary implies that the Σ0
1 theory of (2ω,≤vL) is

decidable, as in Lerman [14].
We finish the section by considering the vL-degrees of specific reals. Chaitin

[2] proposed the halting probability Ω of the universal prefix-free machine U as
a natural example of a 1-random real. Formally, let Ω =

∑
U(σ)↓ 2−|σ|. It is

known that Ω ≡T ∅′. The construction of Ω has a natural relativization. For
any oracle Z ∈ 2ω, let UZ be universal for prefix-free machines relative to Z.
Let ΩZ =

∑
UZ(σ)↓ 2−|σ|. Relativizing the usual proofs, ΩZ is 1-Z-random and

computable from Z ′. Using the results above, there are several simple observations
we can make about the vL-degrees of Ω, the columns of Ω, and Ω∅

(n)
for n ∈ ω.

First, it is worth asking if the vL-degree of ΩZ is independent of the choice of
UZ . It is not. The vL-degree of Ω is well defined, but this is not even true for
Ω∅

′
. It can be proved (using ideas in [8]) that if Z ∈ 2ω has 1-random degree,

then different choices of UZ can give values of ΩZ that are 1-random relative to
each other. Therefore, by Theorem 3.4 (iii), different versions of ΩZ have different
vL-degrees. Even for a uniform choice of universal machines, there must be oracles
Z0, Z1 ∈ 2ω that differ only finitely much but for which ΩZ1 and ΩZ2 are relatively
random [8], hence have no upper bound in the vL-degrees. Despite these issues,
the results below depend only on the most elementary properties of ΩZ and are
independent of the choices of universal machines.

Corollary 3.6 (The vL-degrees of distinguished reals).

(i) Ω is the least ∆0
2 1-random real in the vL-degrees.

(ii) For n > 1, an n-random and a ∆0
n 1-random have no ≤vL upper bound.

(iii) If m 6= n, then Ω∅
(n)

and Ω∅
(m)

have no upper bound in the vL-degrees.
(iv) If Ω =

⊕
n∈ω Ωn, then {Ωn}n∈ω is a vL-antichain of ∆0

2 1-random reals
(and again, no two have an upper bound in the vL-degrees).

Proof. (i) follows from part (iv) of Theorem 3.4 and the fact that Ω ≡T ∅′. For
(ii), assume that X ∈ 2ω is a ∆0

n 1-random real. If Y ∈ 2ω is n-random, then Y
is 1-X-random. Now apply Theorem 3.4 (iii). In (iii), we can assume that m > n.
Note that Ω∅

(n)
is a ∆0

n+1 1-random real and that Ω∅
(m)

is (n + 1)-random. So, (ii)
implies (iii). Finally, (iv) follows from Theorem 3.4 (iii). ¤
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4. Digression: the Turing degrees of 1-Z-random reals

The point of departure for this section is the observation that Theorem 3.4 has
a simple but surprising consequence that is of interest independent from the study
of degrees of randomness.

Corollary 4.1. If X is n-random and Y ≤T X is 1-random, then Y is n-random.

Proof. Immediate from parts (i) and (iv) of Theorem 3.4. ¤

This result is relatively counterintuitive; it seems to say that it is possible to
ensure a high degree of randomness by bounding the Turing degree of a 1-random
real from above.

Corollary 4.1 has a parallel in the context of genericity: if X is n-generic and
Y ≤T X is 2-generic, then Y is n-generic.2 The fact that it is not sufficient to
assume that Y is 1-generic is the subject of a recent paper of Csima, Downey,
Greenberg, Hirschfeldt, and Miller [4].

Note that Nies, Stephan and Terwijn [23, Theorem 3.10] showed that a set A
is 2-random iff A is 1-random and low for Ω (i.e., Ω is 1-A-random). From this
result—a consequence of van Lambalgen’s theorem—and the fact that the low for
Ω sets are obviously closed downwards under Turing reducibility, Corollary 4.1 can
be concluded for n = 2.

We wish to generalize the corollary from n-randomness to 1-Z-randomness for an
arbitrary Z ∈ 2ω. It is easy to prove this generalization if Z has 1-random Turing
degree; it follows from essentially the same argument that we used in the proof of
Theorem 3.4. In particular, assume that X is 1-Z-random and that Y ≤T X is
1-random. Furthermore, assume (without loss of generality) that Z is 1-random.
Then Z is 1-X-random, by van Lambalgen’s theorem. So Z is 1-Y -random, which
implies that Y is 1-Z-random, completing the argument.

A somewhat more complicated proof is necessary to remove the requirement that
Z has 1-random degree.3

Lemma 4.2. If X ∈ 2ω is 1-random, then

(∀e)(∃c)(∀n) µ{A ∈ 2ω : ϕA
e ¹ n = X ¹ n} ≤ 2−n+c.

Proof. Fix an index e. Uniformly define a family {Hσ}σ∈2<ω of Σ0
1 classes by

Hσ = {A ∈ 2ω : ϕA
e ¹ |σ| = σ}. Note that if σ and τ are incomparable strings, then

2We thank the referee for pointing out this result.
3The reader might hope to reduce Theorem 4.3 to the case solved above by conjecturing that

if X is a 1-Z-random real, for some Z ∈ 2ω , then there is a 1-random real bZ ≥T Z such that X

is 1- bZ-random. Although this would solve our problem, it is not true in general.
For a counterexample, take X = Ω and let Z be any non-computable ∆0

2 low for random real;
i.e., a real such that every 1-random real is 1-Z-random. These were first constructed in [12]. By

definition, Ω is 1-Z-random. Now take any 1-random real bZ ∈ 2ω such that Ω is 1- bZ-random; we

will prove that bZ �T Z. By van Lambalgen’s theorem, bZ is 1-Ω-random. But Ω ≡T ∅′, so bZ is

2-random. Fix e ∈ ω and consider the class G = {A ∈ 2ω : ϕA
e = Z}. Because Z is a ∆0

2 set, it is
the limit of a computable sequence {Zs}s∈ω of finite sets. Thus

G = {A ∈ 2ω : (∀n)(∀t)(∃s ≥ t) ϕA
e,s ¹ n = Zs ¹ n},

so G is a Π0
2 class. A result of Sacks [25] states that µ{A ∈ 2ω : A ≥T Z} = 0 because Z is not

computable. Hence, µG = 0. Kurtz [13] observed that no 2-random real is contained in a measure

zero Π0
2 class, so ϕ

bZ
e 6= Z. But the choice of e was arbitrary, proving that bZ �T Z.
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Hσ ∩Hτ = ∅. Now for each i ∈ ω, define

Fi = {σ ∈ 2<ω : µHσ > 2−|σ|+i}.
Note that the sets Fi ⊆ 2<ω are uniformly computably enumerable and thus Gi =
[Fi] is a uniform sequence of Σ0

1 classes. We claim that µGi ≤ 2−i. Assume not.
Then there is a prefix-free set D ⊆ Fi such that µ[D] > 2−i. For distinct σ, τ ∈ D,
we have Hσ ∩Hτ = ∅. Therefore,

µ{A ∈ 2ω : (∃σ ∈ D) ϕA
e ¹ |σ| = σ} =

∑

σ∈D

µHσ

>
∑

σ∈D

2−|σ|+i = 2i
∑

σ∈D

2−|σ| = 2iµ[D] > 2i2−i = 1.

This is a contradiction, so µGi ≤ 2−i. Therefore, {Gi}i∈ω is a Martin-Löf test. Now
let X ∈ 2ω be 1-random. Then X /∈ Gc for some c. In other words,

(∀n) µ{A ∈ 2ω : ϕA
e ¹ n = X ¹ n} ≤ 2−n+c,

which completes the proof. ¤

Theorem 4.3. For every Z ∈ 2ω, every 1-random real Turing reducible to a 1-Z-
random real is also 1-Z-random.

Proof. Take X, Y ∈ 2ω such that X is 1-random and X ≤T Y . Fix an index e such
that X = ϕY

e and let c be the constant guaranteed by the previous lemma for this
choice of X and e. Now uniformly enumerate, for every σ ∈ 2<ω, a set of strings
Fσ ⊆ 2<ω as follows. Search for strings σ, τ ∈ 2<ω such that ϕτ

e ¹ |σ| = σ and the
use of ϕτ

e ¹ |σ| is exactly τ . Whenever such strings are found, put τ into Fσ provided
that this maintains the condition

(1)
∑

τ∈Fσ

2−|τ | ≤ 2−|σ|+c.

Note that each Fσ is prefix-free, hence µ[Fσ] =
∑

τ∈Fσ
2−|τ |. Furthermore, it is

clear that [FX ¹ n] = {A ∈ 2ω : ϕA
e ¹ n = X ¹ n}, for every n. This is because, by our

choice of c, condition (1) does not prevent the addition of any strings to FX ¹ n.
Now consider Z ∈ 2ω such that X is not 1-Z-random. Our goal is to prove

that Y is also not 1-Z-random. As usual, let KZ denote prefix-free Kolmogorov
complexity relative to Z. For each i ∈ ω, define a Σ0

1[Z] class

Gi =
⋃

KZ(σ)≤|σ|−c−i

[Fσ].

Then

µGi ≤
∑

KZ(σ)≤|σ|−c−i

µ[Fσ] ≤
∑

KZ(σ)≤|σ|−c−i

2−|σ|+c ≤
∑

σ∈2<ω

2−KZ(σ)−i ≤ 2−i.

Therefore, {Gi}i∈ω is a Martin-Löf test relative to Z. Because X is not 1-Z-random,
for each i ∈ ω there is a n such that KZ(X ¹ n) ≤ n − c − i. But then Y ∈ {A ∈
2ω : ϕA

e ¹ n = X ¹ n} = [FX ¹ n] ⊆ Gi. This is true for all i, so Y is not 1-Z-
random. ¤
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5. Prefix-free complexity and the K-degrees

What properties of X ∈ 2ω are implicit in the prefix-free complexity of its initial
segments? We begin this section with a partial answer to this question; we show that
the initial segment complexity of X determines, for any Z ∈ 2ω, whether X⊕Z is 1-
random. This proves that X ≤K Y implies X ≤vL Y , so the results of the previous
sections have consequences in the K-degrees. For example, Corollary 5.3 (i) implies
that the prefix-free complexity of the initial segments of X determine whether of
not X is n-random.

For the statement of the main theorem, recall that we use strings of length n to
represent the numbers between 2n− 1 and 2n+1− 2. We also need some additional
notation for the proof of the theorem. Define X⊕̂Z to be

〈z0, x0, z1, x1, x2, z2, x3, x4, x5, x6, z3, . . . . . . , zn, x2n−1, . . . , x2n+1−2, zn+1, . . . . . . 〉,
where X = 〈x0, x1, x2, . . .〉 and Z = 〈z0, z1, z2, . . .〉. It is easy to see that the class
of 1-random reals is closed under computable permutations of ω. Therefore, X⊕̂Z
is 1-random iff X ⊕ Z is 1-random. In fact, X⊕̂Z ≡vL X ⊕ Z. We can also define
σ⊕̂τ for strings σ, τ ∈ 2<ω, provided that 2|τ |−1 − 1 ≤ |σ| ≤ 2|τ | − 1.

Theorem 5.1. X ⊕ Z is 1-random iff (∀n) K(X ¹(Z ¹ n)) ≥ Z ¹ n + n−O(1).

Proof. First, assume that X ⊕ Z is 1-random. Then X⊕̂Z is also 1-random. Note
that K(X ¹(Z ¹ n)) = K((X ¹(Z ¹ n))⊕̂(Z ¹ n)) + O(1) (the definition of ⊕̂ is con-
trived to ensure that (X ¹(Z ¹ n))⊕̂(Z ¹ n) is well defined). But (X ¹(Z ¹ n))⊕̂(Z ¹ n) =
(X⊕̂Z) ¹(Z ¹ n + n), so K(X ¹(Z ¹ n)) = K((X⊕̂Z) ¹(Z ¹ n + n)) + O(1) ≥ Z ¹ n +
n−O(1), for all n.

For the other direction, define a prefix-free machine M : 2<ω → 2<ω as follows.
To compute M(τ), look for τ1, τ2, η1 and η2 such that τ = τ1τ2, U(τ1) = η1⊕̂η2 and
|η1τ2| = η2. If these are found, define M(τ) = η1τ2.

Assume that X ⊕ Z is not 1-random. Then for each k, there is an m such that
K((X⊕̂Z) ¹ m) ≤ m−k. Take strings η1 and η2 such that η1⊕̂η2 = (X⊕̂Z) ¹ m and
let τ1 be a minimal U -program for η1⊕̂η2. Let n = |η2|. Note that |η1| ≤ 2n − 1
and that η2 ≥ 2n − 1. So, there is a string τ2 such that η1τ2 = X ¹ η2. Then
M(τ1τ2) = X ¹ η2. Therefore,

K(X ¹(Z ¹ n)) ≤ K(X ¹ η2) ≤ KM (X ¹ η2) + O(1) ≤ |τ1τ2|+ O(1)

≤ K(η1⊕̂η2) + |τ2|+ O(1) ≤ |η1η2| − k + |τ2|+ O(1)

= |η1τ2|+ |η2| − k + O(1) = η2 + |η2| − k + O(1) = Z ¹ n + n− k + O(1),

where the constant depends only on M . Because k was arbitrary, K(X ¹(Z ¹ n))−
Z ¹ n− n is not bounded below. Therefore, (∀n) K(X ¹(Z ¹ n)) ≥ Z ¹ n + n−O(1)
implies that X ⊕ Z is 1-random. ¤

The following corollary is immediate.

Corollary 5.2. X ≤K Y =⇒ X ≤vL Y .

We see in the next section that the reverse implication fails. Combined with
Theorem 3.4 and Corollaries 3.5 and 3.6, this corollary has interesting implications
in the K-degrees.

Corollary 5.3.
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(i) If X ≤K Y and X is n-random, then Y is n-random.
(ii) If X ⊕Y is 1-random, then X |K Y and X and Y have no upper bound in

the K-degrees. Therefore, there is no join in the K-degrees.
(iii) If m 6= n, then Ω∅

(n)
and Ω∅

(m)
have no upper bound in the K-degrees.

(iv) If Ω =
⊕

n∈ω Ωn, then {Ωn}n∈ω is a K-antichain of ∆0
2 1-random reals

(and again, no two have an upper bound in the K-degrees).

R. Rettinger has independently announced the first part of (ii): that if X ⊕ Y
is 1-random, then X |K Y . Part (iii) of the corollary extends a result of Yu,
Ding and Downey (with Denis Hirschfeldt) [32]; they proved that if p < q, then
Ω∅

(q) �K Ω∅
(p)

. Other connections to [32] were discussed in the introduction.
Part (i) of Corollary 5.3 implies that n-randomness has a characterization in

terms of initial segment K-complexity, although not necessarily an elegant one. As
an example, we give an explicit characterization of 2-randomness. By van Lambal-
gen’s theorem X ⊕ Ω is 1-random iff X is 1-Ω-random. But Ω ≡T ∅′, so X ⊕ Ω is
1-random iff X is 2-random. Hence, by Theorem 5.1:

Corollary 5.4. X is 2-random iff (∀n) K(X ¹(Ω ¹ n)) ≥ Ω ¹ n + n−O(1).

6. Contrasting the K-degrees and vL-degrees

The connection between the K-degrees and the vL-degrees has proved useful
in understanding the K-degrees, but it provides only part of the picture. In this
section, we prove three results that contrast ≤K and ≤vL. One consequence will
be that ≤vL does not, in general, imply ≤K , even for ∆0

2 1-random reals. By
Corollary 3.6, Ω is vL-below every other ∆0

2 1-random real. On the other hand, our
first result implies that Ω �K Ω0, where Ω = Ω0⊕Ω1. Furthermore, Proposition 6.2
gives us a ∆0

2 1-random real X ∈ 2ω such that X and Ω have no upper bound in
the K-degrees.

Once again, recall that the string σ ∈ 2<ω represents the natural number 1σ−1.
So, strings of length n represent numbers between 2n−1 and 2n+1−2, which implies
that σ ≥ |σ| for every σ ∈ 2<ω.

Proposition 6.1. If X ⊕ Y is 1-random, then X |K X ⊕ Y .

Proof. Assume that X ⊕Y is 1-random. It follows from Corollary 5.2 and part (ii)
of Corollary 3.5 that X �K X ⊕ Y .

Now assume, for a contradiction, that X ⊕ Y <K X. Fix n and consider σ =
σ1σ2σ3 ≺ X such that |σ1| = 2n+1, |σ2| = n and |σ2σ3| = σ2. The last condition is
consistent because σ2 ≥ |σ2|. The idea of the proof is to show that σ has a short
description, and hence X ⊕Y ¹ |σ| does too. But we can compute σ2 from |σ|. Just
take the unique number n such that 2n+1 < |σ| < 2n+2; then σ2 = |σ| − 2n+1.
Thus |σ| encodes n bits of X that are not in X ⊕ Y ¹ |σ|, from which we refute the
randomness of X ⊕ Y .

We turn to the details. First note that we can determine both n and |σ| from σ2,
so K(σ) ≤ K(σ2)+|σ1σ3|+O(1) ≤ |σ2|+K(n)+|σ1σ3|+O(1) ≤ |σ|+2 log n+O(1),
where the constant does not depend on n. Therefore, K(X⊕Y ¹ |σ|) ≤ |σ|+2 log n+
O(1). Next we compute K(X ⊕ Y ¹ 2|σ|). Note that |σ| < 2n+2, so X ⊕ Y ¹ |σ|
contains at most the first 2n+1 bits of X, hence no part of σ2. On the other hand,
X⊕Y ¹ 2|σ| contains all of σ2. From X⊕Y ¹ |σ| we can compute |σ|, and hence σ2.
Therefore, to compute X⊕Y ¹ 2|σ| from X⊕Y ¹ |σ| we need to store only |σ|− |σ2|
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unknown bits. Thus K(X ⊕ Y ¹ 2|σ|) ≤ K(X ⊕ Y ¹ |σ|) + |σ| − |σ2| + O(1) ≤
|σ|+ 2 log n + |σ| − n + O(1) = 2|σ|+ 2 log n− n + O(1). Again, the constant does
not depend on n. Because n is arbitrary, X ⊕ Y is not 1-random. This contradicts
our hypothesis, proving that X ⊕ Y 6<K X. Therefore, X |K X ⊕ Y . ¤

In light of the other results in this section, one might hope to improve Propo-
sition 6.1 to show that X and X ⊕ Y have no upper bound in the K-degrees.
Surprisingly, this need not be the case. In the companion paper [21], it is proved
that for every 1-random Z ∈ 2ω, there is another 1-random X ∈ 2ω such that
X <K Z and for every Y ∈ 2ω we also have X ⊕ Y <K Z. By taking Y to be
1-X-random, we get an example where X ⊕ Y is 1-random (by van Lambalgen’s
theorem) but Z bounds both X and X ⊕ Y in the K-degrees.

We turn to the second result of the section. A computable permutation of a 1-
random real is also 1-random; hence by Theorem 3.4 (iv), vL-degrees are invariant
under computable permutations of ω. On the other hand, the next proposition
shows that 1-random reals X,Y ∈ 2ω that differ only by a computable permutation
can have K-degrees with no upper bound. In fact, we prove that there is a fixed
permutation f of the natural numbers such that X and f(X) have no K-upper
bound for every 1-random X ∈ 2ω. This calls into question the validity of the K-
degrees as a measure of the degree of randomness of random reals. If one believes
that computably isomorphic 1-random reals should be equivalently random, then
the K-degrees are too strong.

To understand the proof of Proposition 6.2, one should think of it as a modifi-
cation of a direct proof that could have been given for Corollary 5.3 (ii): if X and
Y are 1-random relative to each other, then they have no upper bound in the K-
degrees. Of course, if f : ω → ω is a computable permutation, then X and f(X) are
definitely not mutually 1-random, so it may not be clear how the corollary relates
to the current situation. The idea is to define an f that switches pairs of disjoint
blocks of ω such that each pair of blocks is large enough to make the smaller blocks
insignificant in comparison. Then for any 1-random real X ∈ 2ω, there are long
initial segments of X and f(X) that behave sufficiently as if they were mutually 1-
random (because the vast majority of the bits are from disjoint parts of X). These
initial segments are enough to prove that no real can be K-above both X and f(X).

Proposition 6.2. There is a computable permutation f : ω → ω such that if X ∈ 2ω

is 1-random, then X and f(X) have no upper bound in the K-degrees.

Proof. First define a computable sequence {an}n∈ω by recursion; let a0 = 0 and
an+1 = an + 22an+2, for all n ∈ ω. Define a computable permutation of ω by

f(m) =

{
m + 22an+1, if n ∈ ω and an ≤ m < an + 22an+1

m− 22an+1, if n ∈ ω and an + 22an+1 ≤ m < an+1.

Now let X ∈ 2ω and assume that Z ∈ 2ω is K-above both X and f(X). We
will prove that X is not 1-random. Fix n ∈ ω. Then K(X ¹(an + Z ¹ 2an)) ≤
K(Z ¹(an + Z ¹ 2an)) + O(1) ≤ an + Z ¹ 2an + K(n) + O(1). For the same reason,
K(f(X) ¹(an + Z ¹ 2an)) ≤ an + Z ¹ 2an + K(n) + c, for some c ∈ ω that does not
depend on n. By Lemma 2.3 (ii), the number of strings τ ∈ 2an+Z ¹ 2an such that
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K(τ) ≤ an + Z ¹ 2an + K(n) + c is bounded by 2an+Z ¹ 2an−k+O(1), where

k = (an + Z ¹ 2an + K(an + Z ¹ 2an))− (an + Z ¹ 2an + K(n) + c)

= K(Z ¹ 2an)−K(n)−O(1) ≥ 2an −K(n)−O(1).

Therefore, the number of such τ is bounded by 2Z ¹ 2an+K(n)−an+d, for some d ∈ ω
that is again independent of n. We will now show that

K(X ¹(an + 22an+1 + Z ¹ 2an)) ≤ an + 22an+1 + Z ¹ 2an − (an − 2K(n)) + O(1),

where the constant is independent of n. Because limn→∞ an − 2K(n) = ∞, this
proves that X is not 1-random.

We may assume that the universal machine U was chosen so that for every
σ ∈ 2<ω, there are U -programs for σ of every length greater that K(σ). (It suffices
to define U by U(0i1σ) = Û(σ), for every i ∈ ω and σ ∈ 2<ω, where Û is an
arbitrary universal machine.) So there is a U -program σ1 ∈ 2an+Z ¹ 2an+K(n)+O(1)

for X ¹(an + Z ¹ 2an), from which we can also determine n, an, K(n) and Z ¹ 2an.
Now we can effectively enumerate the strings of length an +Z ¹ 2an with prefix-free
complexity bounded by an+Z ¹ 2an+K(n)+c. Let σ2 ∈ 2Z ¹ 2an+K(n)−an+d code the
position of f(X) ¹(an+Z ¹ 2an) in this list. Given σ1 and σ2, since Z ¹ 2an ≤ 22an+1,
we can reconstruct an + 2 ·Z ¹ 2an bits of X ¹(an + 22an+1 + Z ¹ 2an); take σ3 to be
the remaining bits. Finally, note that σ1 is self-delimiting and that from σ1 we can
compute the lengths of σ2 and σ3. Therefore,

K(X ¹(an + 22an+1 + Z ¹ 2an)) ≤ |σ1σ2σ3|+ O(1)

= (an + Z ¹ 2an + K(n)) + (Z ¹ 2an + K(n)− an) + (22an+1 − Z ¹ 2an) + O(1)

= an + 22an+1 + Z ¹ 2an − (an − 2K(n)) + O(1).

This completes the proof. ¤

The final result of this section is less elegant than the previous results, but it is
also more general.

Proposition 6.3. For any finite collection X0, . . . , Xk of 1-random reals, there is
another 1-random real Y ≤T X0 ⊕ · · · ⊕Xk ⊕ ∅′ such that, for every i ≤ k, Y and
Xi have no upper bound in the K-degrees.

Proof. Let R = {Z ∈ 2ω : (∀n) K(Z ¹ n) ≥ n} and note that µR ≥ 1/2. We define
two predicates:

A(τ, p) ⇐⇒ µ{Z Â τ : Z /∈ R} > p

and B(σ, s) ⇐⇒ (∀i ≤ k)(∀τ ∈ 2|σ|)
[

(∃n < |σ|) K(σ ¹ n) > K(τ ¹ n) + s
∨ (∃n < |σ|) K(Xi ¹ n) > K(τ ¹ n) + s

]
,

where σ, τ ∈ 2<ω, p ∈ Q and s ∈ ω. Note that if Z and Xi have no upper
bound in the K-degrees, for every i ≤ k, then by compactness, there is an n
such that B(Z ¹ n, s). It should be clear that B(σ, s) is uniformly decidable from
X0⊕· · ·⊕Xk⊕∅′. To see that A(τ, p) can be decided by ∅′, note that it is equivalent
to (∃s) µ{Z Â τ : (∃n ≤ s) Ks(Z ¹ n) < n} > p. We construct Y =

⋃
s∈ω σs by

finite initial segments σs ∈ 2<ω such that B(σs+1, s) holds. This guarantees that Xi

and Y have no upper bound in the K-degrees, for each i ≤ k. We also require the
inductive assumption that µ({Z ∈ 2ω : Z Â σs}∩R) > 0. This ensures that Y ∈ R
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because R is closed. Therefore, Y is 1-random. Finally, the construction will be
done relative to the oracle X0⊕· · ·⊕Xk⊕∅′ to guarantee that Y ≤T X0⊕· · ·⊕Xk⊕∅′.

Stage s = 0: Let σ0 = ∅. Note that µ({Z ∈ 2ω : Z Â σ0} ∩ R) = µR ≥ 1/2 > 0,
so the inductive assumption holds for the base case.

Stage s + 1: We have constructed σs such that µ({Z ∈ 2ω : Z Â σs} ∩ R) > 0.
Using the oracle X0 ⊕ · · · ⊕ Xk ⊕ ∅′, search for τ Â σs and p ∈ Q such that
B(τ, s), p < 2−|τ | and ¬A(τ, p). If these are found, then set σs+1 = τ and note
that it satisfies our requirements. In particular, µ({Z ∈ 2ω : Z Â σs+1} ∩ R) ≥
2−|σs+1| − p > 0. All that remains is to verify that the search succeeds. We know
by Corollary 5.3 (ii) that if

G = {Z ∈ 2ω : (∀i ≤ k) Xi and Z have no upper bound in the K-degrees},
then µG = 1. Therefore, µ(G ∩ [σs]∩R) > 0. There is a Z ∈ G ∩ [σs]∩R such that
µ([Z ¹ n] ∩ R) > 0, for all n ∈ ω. Otherwise, G ∩ [σs] ∩ R could be covered with a
countable collection of measure zero sets. Because Z ∈ G, there is an n > |σs| such
that B(Z ¹ n, s). Letting τ = Z ¹ n ensures that τ Â σs, B(τ, s) and µ([τ ]∩R) > 0.
The last condition implies that there is a rational p < 2−|τ | such that ¬A(τ, p).

This completes the construction. ¤

7. Plain complexity and randomness

It turns out that much of the information implicit in the prefix-free complexity
of the initial segments of a real can also be determined from the plain complexity
of those initial segments. There is substance to this claim; it was not even known
that 1-randomness can be characterized in terms of initial segment C-complexity.
In Theorem 7.1 we give such characterizations. We prove that X ∈ 2ω is 1-random
iff (∀n) C(X ¹ n) ≥ n − K(n) − O(1). Although this is a natural equivalence,
it falls somewhat short of giving a plain Kolmogorov complexity characterization
of 1-randomness. A somewhat more satisfying solution to that problem is also
provided by Theorem 7.1: X is 1-random iff for every computable g : ω → ω such
that

∑
n∈ω 2−g(n) is finite, (∀n) C(X ¹ n) ≥ n− g(n)−O(1).

Combining Theorems 5.1 and 7.1, we prove that ≤C implies ≤vL. One conse-
quences is that n-randomness is a C-degree invariant for every n ∈ ω. As was men-
tioned in the introduction, 2-randomness is already known to have a C-complexity
characterization [20, 23]: X is 2-random iff (∃∞n) C(X ¹ n) ≥ n−O(1).

Solovay [28, section V] constructed a computable function h : ω → ω such that∑
n∈ω 2−h(n) ≤ ∞ but (∃∞n) h(n) ≤ K(n) + O(1). We use a specific example of

such a function in this section. Define a computable function G : ω → ω by

G(n) =

{
Ks+1(t), if n = 2〈s,t〉 and Ks+1(t) 6= Ks(t)
n, otherwise.

Note that
∑

n∈ω 2−G(n) ≤ ∑
n∈ω 2−n +

∑
t∈ω

∑
m≥K(t) 2−m = 2+2

∑
t∈ω 2−K(t) <

∞. We show that either n−K(n) or n−G(n) can be taken as the cutoff between
the initial segment plain complexity of 1-random and non-1-random reals.

Theorem 7.1. For X ∈ 2ω, the following are equivalent:

(i) X is 1-random.
(ii) (∀n) C(X ¹ n) ≥ n−K(n)−O(1).
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(iii) (∀n) C(X ¹ n) ≥ n−g(n)−O(1), for every computable g : ω → ω such that∑
n∈ω 2−g(n) is finite.

(iv) (∀n) C(X ¹ n) ≥ n−G(n)−O(1).

Condition (ii) of Theorem 7.1 is similar to a characterization that Gács [9] gave
of 1-randomness in terms of length conditional Kolmogorov complexity. He proved
that X ∈ 2ω is 1-random iff (∀n) C(X ¹ n | n) ≥ n−K(n)−O(1), where C(X ¹ n | n)
denotes the Kolmogorov complexity of X ¹n given n (see [17] for a definition).
Because C(X ¹ n) ≥ C(X ¹ n | n)−O(1), for all X ∈ 2ω and n ∈ ω, Gács’ condition
implies condition (ii) of the theorem. Therefore, the Gács characterization proves
that (i) implies (ii). We give another proof of this implication below.

First, we prove the most difficult part of Theorem 7.1.

Lemma 7.2. If (∀n) C(X ¹ n) ≥ n−G(n)−O(1), then X ∈ 2ω is 1-random.

Proof. By Lemma 2.3 (ii), there a c ∈ ω such that

|{τ ∈ 2t : K(τ) ≤ t− k}| ≤ 2t−K(t)−k+c,

for all t, k ∈ ω. We construct a partial computable (non-prefix-free) function
M : 2<ω → 2<ω. For s, t ∈ ω, let n = 2〈s,t〉. To 〈s, t〉 we devote the M -programs
with lengths from n/2 + c + 1 to n + c. Note that distinct pairs do not compete
for elements in the domain of M . For k ∈ ω, let m = n−Ks+1(t)− k + c. Clearly,
m ≤ n+ c. If m ≥ n/2+ c+1, then for every σ ∈ 2n such that K(σ ¹ t) ≤ t−k, try
to give σ an M -program of length m. Different k do not compete for programs, but
it is still possible that there are not enough strings of length m for all such σ. How-
ever, this cannot happen if Ks(t) = K(t). This is because the number of σ ∈ 2n for
which K(σ ¹ t) ≤ t− k is bounded above by 2t−K(t)−k+c2n−t = 2n−K(t)−k+c = 2m,
so there is enough room in the domain of M to handle every such σ. This completes
the construction of M .

Assume that X ∈ 2ω is not 1-random. For each k ∈ ω, there is an t ∈ ω such
that K(X ¹ t) ≤ t − k and t is large enough that K(t) ≤ 2t−1 − k − 1. Take the
least s ∈ ω such that Ks+1(t) = K(t) and let n = 2〈s,t〉. Then

m = n−K(t)− k + c ≥ n− 2t−1 + k + 1− k − c ≥ n/2 + c + 1,

because n = 2〈s,t〉 ≥ 2t. This implies that there is an M -program for X ¹ n of
length m = n−K(t)− k + c. Also note that G(n) = Ks+1(t) = K(t). So,

C(X ¹ n) ≤ CM (X ¹ n)+O(1) ≤ n−K(t)−k+c+O(1) ≤ n−G(n)−k+O(1),

where the constant is independent of X, n and k. Because k is arbitrary,

lim inf
n→∞

C(X ¹ n)− n + G(n) = −∞.

Therefore, if (∀n) C(X ¹ n) ≥ n−G(n)−O(1), then X is 1-random. This completes
the proof. ¤

Proof of Theorem 7.1. (i) =⇒ (ii): Define

Ik = {X ∈ 2ω : (∃n) C(X ¹ n) < n−K(n)− k}.
As usual, let Ks and Cs denote the approximations to K and C at stage s. Then
(∃n)(∃s) Cs(X ¹ n) + Ks(n) < n − k iff X ∈ Ik. Therefore, Ik is a Σ0

1 class.
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Fewer than 2n−K(n)−k V -programs have length less than n − K(n) − k, so |{σ ∈
2n : C(σ) < n−K(n)− k}| ≤ 2n−K(n)−k. Therefore,

µIk ≤
∑
n∈ω

µ{X ∈ 2ω : C(X ¹ n) < n−K(n)− k}

≤
∑
n∈ω

2−n2n−K(n)−k = 2−k
∑
n∈ω

2−K(n) ≤ 2−k.

So, {Ik}k∈ω is a Martin-Löf test. If X is 1-random, then X /∈ Ik for large enough
k. In other words, (∀n) C(X ¹ n) ≥ n−K(n)− k.

(ii) =⇒ (iii): Let g : ω → ω be a computable function such that
∑

n∈ω 2−g(n) <
∞. By the minimality of K as an information content measure, (∀n) K(n) ≤
g(n) + O(1). Therefore, if (∀n) C(X ¹ n) ≥ n−K(n)−O(1), then (∀n) C(X ¹ n) ≥
n− g(n)−O(1).

(iii) =⇒ (iv) is immediate because G is computable and
∑

n∈ω 2−G(n) is finite.
Finally, (iv) =⇒ (i) was proved in Lemma 7.2. ¤

As with K-complexity, the C-complexity of the initial segments of a real deter-
mines its vL-degree. This is a consequence of the following result.

Theorem 7.3. Assume that Z ∈ 2ω is 1-random. The following are equivalent:
(i) X is 1-Z-random.
(ii) (∀n) C(X ¹ n) ≥ n−KZ(n)−O(1).
(iii) (∀n) C(X ¹ n) + K(Z ¹ n) ≥ 2n−O(1).

The following lemma is folklore (see [17, page 138]).

Lemma 7.4. For any real X ∈ 2ω, (∀n) C(X ¹(X ¹ n)) ≤ X ¹ n− n + O(1).

Proof of Theorem 7.3. (i) =⇒ (ii): Suppose that Z is 1-random. If X is 1-Z-
random, then by relativizing Theorem 7.1,

(∀n) C(X ¹ n) ≥ CZ(X ¹ n)−O(1) ≥ n−KZ(n)−O(1).

(ii) =⇒ (iii): Since Z is 1-random, the ample excess lemma gives KZ(n) ≤
K(Z ¹ n) − n + O(1), for all n ∈ ω. So (∀n) C(X ¹ n) ≥ n − KZ(n) − O(1) ≥
2n−K(Z ¹ n)−O(1).

(iii) =⇒ (i): By Lemma 7.4, (∀n) K(Z ¹(X ¹ n)) ≥ 2 · X ¹ n − C(X ¹(X ¹ n)) −
O(1) ≥ 2 ·X ¹ n−X ¹ n + n−O(1) ≥ X ¹ n + n−O(1). By Theorem 5.1, Z ⊕X is
1-random. So, by Theorem 3.1, X is 1-Z-random. ¤

Note that assuming (iii), we have K(Z ¹ n) ≥ 2n− C(X ¹ n)−O(1) ≥ n−O(1)
for all n ∈ ω, so Z is 1-random. This gives us a cleaner way of expressing the
equivalence of (i) and (iii).

Corollary 7.5. X ⊕ Z is 1-random iff (∀n) C(X ¹ n) + K(Z ¹ n) ≥ 2n−O(1).

An immediate consequence that the C-degrees refine the vL-degrees.

Corollary 7.6. X ≤C Y =⇒ X ≤vL Y .

Therefore, the conclusions of Corollary 5.3 hold for the C-degrees as well.

Corollary 7.7.
(i) If X ≤C Y and X is n-random, then Y is n-random.
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(ii) If X ⊕Y is 1-random, then X |C Y and X and Y have no upper bound in
the C-degrees. Therefore, there is no join in the C-degrees.

(iii) If m 6= n, then Ω∅
(n)

and Ω∅
(m)

have no upper bound in the C-degrees.
(iv) If Ω =

⊕
n∈ω Ωn, then {Ωn}n∈ω is a C-antichain of ∆0

2 1-random reals
(and again, no two have an upper bound in the C-degrees).

Finally, we remark that it requires only superficial modification to the proof of
Proposition 6.3 to prove the corresponding result for the C-degrees: if X0, . . . , Xk

are 1-random reals, then there is a 1-random real Y ≤T X0 ⊕ · · · ⊕ Xk ⊕ ∅′ such
that, for every i ≤ k, Y and Xi have no upper bound in the C-degrees. This implies
that there is a ∆0

2 1-random real that is not C-above Ω, hence ≤vL and ≤C differ
on the 1-random reals.
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