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Abstract. We study the computational complexity of an oracle set using a

number of notions of randomness that lie between Martin-Löf randomness and

2-randomness in terms of strength. These notions are weak 2-randomness,
weak randomness relative to ∅′, Demuth randomness and Schnorr randomness

relative to ∅′. We characterize the oracles A such that ML[A] ⊆ C, where

C is such a randomness notion and ML[A] denotes the Martin-Löf random
reals relative to A, using a new meta-concept called partial relativization. We

study the reducibility associated with weak 2-randomness and relate it with

LR-reducibility.

1. Introduction

Studying the computational complexity of a set A of natural numbers is a fun-
damental goal of computability theory. As a tool, one often uses relativization, an
important operation in both set theory and computability. All concepts in com-
putability are ultimately defined in terms of computations; to relativize such a
concept to an oracle set A means to enhance the underlying computational device
(such as a Turing machine) by allowing it to ask whether certain numbers obtained
during the computation are in A. Broadly speaking, one wants to understand the
complexity of A by its effect on specific concepts when relativized to A.

There is a rich history of successful research in the case that the concept is
a randomness notion. A central such notion is the one of Martin-Löf. Let µ
denote the usual product measure on Cantor space 2ω. A Martin-Löf test is a
uniformly computably enumerable sequence (Vi) of open sets in Cantor space such
that µ(Vi) ≤ 2−i. A set is called Martin-Löf random if it passes all Martin-Löf
tests in the sense that Z 6∈

⋂
i Vi.

Following [KT99], we say that an oracle A is low for Martin-Löf if each Martin-
Löf random set is already Martin-Löf random relative to A. This class has multiple
characterizations; for instance by [Nie05] it coincides with the K-trivial sets intro-
duced by Chaitin [Cha76].

Martin-Löf randomness has been criticized for not being strong enough to ap-
propriately formalize our intuition of a random set. For instance, relatively easily
definable sets can be Martin-Löf random, such as the halting probability Ω of a uni-
versal prefix-free machine, and some superlow sets (i.e., sets that are computable
from the halting problem by means of a truth-table reduction). On the other hand,
Martin-Löf randomness interacts very well with computability-theoretic concepts.

Date: February 22, 2011.
Barmpalias was supported by the Marsden Foundation of New Zealand, via a postdoctoral

fellowship. Miller was supported by the National Science Foundation under grants DMS-0945187
and DMS-0946325, the latter being part of a Focused Research Group in Algorithmic Randomness.
Nies was supported by the Marsden Foundation of New Zealand under grant 03-UOA-130.

1



2 GEORGE BARMPALIAS, JOSEPH S. MILLER, AND ANDRÉ NIES

Many examples of such an interaction are given in [Nie09a, Chapter 4]; see the
beginning of that chapter for an overview.

We say that Z is 2-random if it is Martin-Löf random relative to the halting
problem ∅′. In this paper we study the computational complexity of sets via rel-
ativization of randomness notions between Martin-Löf randomness and 2-random-
ness. In this way, we also find new interactions of these randomness notions with
computability theoretic concepts. The notions include weak 2-randomness, where
in the definition of tests the condition µ(Vi) ≤ 2−i is replaced by the weaker condi-
tion that limi µ(Vi) = 0; Demuth randomness, where passing the test means to be
out of almost all Vi, but the components Vi can each be “replaced” a computably
bounded number of times; and Schnorr randomness relative to ∅′, where tests are
taken relative to ∅′, and in addition µ(Vi) is uniformly computable relative to ∅′.

There are two measures of computational complexity of a set A: absolute and
relative. For the absolute complexity, one places A in classes, such as being low
(A′ ≤T ∅′), or of hyperimmune-free Turing degree (each function computed by A is
dominated by a computable function). For the relative complexity, one compares
A with other sets via a reducibility such as Turing ≤T .

We will study both aspects of complexity via relativization of randomness no-
tions. For the absolute complexity aspect, consider randomness notions C and D
where D is stronger than C, i.e., we have the containment D ⊂ C. We ask:

which oracles A are computationally strong enough to ensure that CA ⊆ D?
If C is Martin-Löf randomness and D is 2-randomness, then certainly any set Turing
above ∅′ will have sufficient strength. However, there are others. Dobrinen and
Simpson [DS04] called a set A uniformly a.e. dominating (u.a.e.d.) if A computes a
function f such that for each Turing functional Ψ, for almost every Z, we have that
ΨZ is total→ ΨZ is dominated by f . Kjos-Hanssen, Miller and Solomon [KHMS10]
showed that the sets A such that each Martin-Löf random in A is already 2-random
coincide with the uniformly a.e. dominating sets.

In Section 3 we will answer the same question when C is Martin-Löf randomness,
and D is any of the randomness notions mentioned above. For Demuth randomness,
this answers a question left open in [FHM+10]. Each of the answers involves an
important idea called partial relativization: a concept combining several computa-
tional notions is given, and only some of these components are relativized. This
idea was introduced implicitly in papers of Simpson such as [CS07], and in more
explicit form in Nies’ 2009 talk [Nie09b]. See Subsection 2.1 for more detail.

For the relative complexity aspect, we consider reducibilities weaker than Turing.
The first one was introduced in [Nie05] and has been widely studied since: A is LR
reducible to a set B (denoted by A ≤LR B) if every B-random set is A-random.
(In particular, ∅′ ≤LR B iff each B-random set is 2-random, which is equivalent to
being u.a.e.d. as mentioned above.)

Generalizing the scheme that led to ≤LR, for each randomness notion C we have
an associated reducibility ≤C given by

A ≤C B ⇔ CA ⊇ CB .
Namely, if A can find “regularities” in a set in the sense of C, then so can B. In
Section 4 we study for the first time such a reducibility other than ≤LR: we consider
the reducibility associated with weak 2-randomness, denoted by ≤W2R. We show
that it is unexpectedly close to ≤LR. Firstly, ≤W2R implies ≤LR. While this
implication is shown to be strict, we also show that the degree equivalence classes
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corresponding to both weak reducibilities coincide. This extends the result that
lowness for Martin-Löf coincides with lowness for weak 2-randomness (see [Nie09a,
Thm. 5.5.17] and the references given there).

The degree equivalence classes are known to be countable by [KHMS10] combined
with [Nie05]. Yet, we also show that there are continuum many Z such that Z ≤W2R

∅′′.
Every ∆0

2 set is a Π0
2 singleton. Hence, there is no weakly 2-random ∆0

2 set. In
the final Section 5 we study the LR-interaction of ∆0

2 sets with weakly 2-random
sets. We show that a ∆0

2 set LR-below a weakly 2-random must be K-trivial.
Further, there is a weakly 2-random set Z such that Z ≤LR ∅′, and in fact Z is
K-trivial relative to ∅′. Thus a weakly 2-random set can be very close to ∅′.

2. Background

2.1. Partial relativization. Recall that partial relativization of a computational
concept to an oracle A means that we only relativize parts of its definition. In effect,
we study what happens under restricted access to the oracle. In [CS07, Sim07] some
properties obtained by partial relativization were shown to play an important role
in the study of mass problems and the degrees of difficulty. Although we are not
going to study these in the present paper, we mention the notions of bounded limit
recursiveness and jump traceability as examples.

Given a class C, we denote its full relativization to A by C[A]. While full rel-
ativization to an oracle A is indicated with the phrase “relative to A” or “in A”,
partial relativization is indicated with the phrase “by A”. In this subsection we
give two examples of partial relativization which will be needed in Section 3.
First example. Let JX(e) = ΦXe (e) where Φe is the e-th Turing functional. J(e) is
short for J∅(e). Recall that a set Y is called diagonally non-computable (d.n.c.) if
there is a function f ≤T Y such that f(e) 6= J(e) whenever J(e) is defined. Then
Y is d.n.c. relative to an oracle A if there is a function f ≤T Y ⊕ A such that
f(e) 6= JA(e) whenever JA(e) is defined. We say that Y is d.n.c. by A if we can in
fact choose f ≤T Y ; we do not relativize that component of the definition.

Recall that a set A is generalized low (GL1) if A′ ≤T ∅′ ⊕ A. Equivalently, ∅′
is Turing complete relative to A, so this is an example of a full relativization. By
the Arslanov completeness criterion relative to A, ∅′ ⊕ A is d.n.c. relative to A iff
∅′ is Turing complete relative to A. If ∅′ is d.n.c. by A then it is d.n.c. relative to
A, and hence GL1.

Second example. We say that a sequence of sets (Tn)n∈N is a trace for a function f
if f(n) ∈ Tn for all n ∈ N. Also, a function h is a bound for (Tn) if |Tn| < h(n) for
all n ∈ N. Recall that Y is c.e. traceable if there is a computable function h such
that each function f ≤T Y has a uniformly c.e. trace with bound h. Since we trace
only total functions, by a method of Terwijn and Zambella ([TZ01], or see [Nie09a,
Thm. 8.2.3]), if Y is c.e. traceable then the bound on the required trace can be any
non-decreasing unbounded computable function.

We say that Y is c.e. traceable by A if there is a computable function h such
that each function f ≤T Y has a uniformly A-c.e. trace with bound h. Thus, we
only have to trace functions f ≤T Y (not f ≤T Y ⊕A as in full relativization). On
the other hand, the bound on the size of the trace sets needs to be computable.



4 GEORGE BARMPALIAS, JOSEPH S. MILLER, AND ANDRÉ NIES

2.2. Randomness notions between Martin-Löf and 2-randomness. Recall
from the introduction that a Martin-Löf test is a uniformly computably enumerable
sequence (Vi)i∈N of open sets in Cantor space such that µ(Vi) ≤ 2−i, and a set is
called Martin-Löf random if it passes all Martin-Löf tests in the sense that Z 6∈⋂
i Vi.
Randomness notions other than Martin-Löf’s are often obtained by varying the

highly malleable concept of a Martin-Löf test, and sometimes also the passing
condition.

• Weak randomness (or Kurtz randomness) is defined by asking that the tests
have the special property that Vi is a clopen set generated by a uniformly
computable finite set of strings.
• Schnorr randomness is defined by asking that the tests have the special

property that their members have uniformly computable measure.
• Weak 2-randomness is the notion obtained when the condition µ(Vi) ≤ 2−i

is replaced by the weaker condition that limi µ(Vi) = 0.
Note that Z is weakly random iff it is not a member of any null Π0

1 class; Z is
weakly 2-random if it is not a member of any null Π0

2 class.
Weak 2-randomness is a natural notion of randomness which has a very simple

definition. Its exact relation with Martin-Löf randomness was clarified by a result
of Hirschfeldt/Miller (see [Nie09a, Section 5.3]): a set is weakly 2-random iff it is
Martin-Löf random and it forms a minimal pair with ∅′.

Recall that a set is 2-random if it is Martin-Löf random relative to ∅′. We will
only consider Schnorr and weak randomness relative to ∅′. Table 1 summarizes the
relevant notations. For more background on algorithmic randomness we refer to
[Nie09a, Chapter 3].

Martin-Löf randomness ML

weak randomness relative to ∅′ Kurtz[∅′]
weak 2-randomness W2R

Schnorr random relative to ∅′ SR[∅′]
2-randomness ML[∅′]

Table 1. Randomness notions and the symbols used to denote them.

A Martin-Löf test (Ui)i∈N is called universal if this single test is sufficient:
⋂
i Ui

contains
⋂
k Vk for any Martin-Löf test (Vk)k∈N. It is well known that there is a

universal Martin-Löf test. In contrast, with the exception of 2-randomness, the
notions introduced above lack a universal test.

The following implications hold:

(2.1) ML[∅′] ⇒ SR[∅′] ⇒ W2R ⇒ Kurtz[∅′] ∩ML ⇒ ML.

The first implication follows from the definitions. The second follows from the
observation that every null Π0

2 class is contained in a Schnorr test. The third
follows in a similar way (every Π0

1[∅′] class is a Π0
2 class) and the fourth is trivial.

In the following we indicate why none of the implications can be reversed. The
strictness of the first implication follows by relativizing the well known fact that
some Schnorr random set is not Martin-Löf random.

The strictness of the second implication can be derived from the following, to-
gether with the result of [LMN07] that some weakly 2-random set is not GL1.
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Proposition 2.1. Each set in SR[∅′] is GL1.

Proof. Uniformly in e, the set ∅′ can compute a stage s so large that e goes into
A′ after stage s for at most measure 2−e−1 oracles A. Let f be the ∅′-computable
function that computes s from e. Given e and s = f(e), the oracles A such that e
goes into A′ after stage s form a Σ0

1 class Ve. Since µVe < 2−e, ∅′ can uniformly form
a Σ0

1[∅′] class Ue that contains Ve and has measure exactly 2−e. Then Si =
⋃
e>i Ue

determines a Schnorr test relative to ∅′. If A 6∈
⋂
i Si, then, except for finitely many

e, we have e ∈ A′ iff e ∈ A′f(e). Thus A is GL1. �

The strictness of the third implication in (2.1) is shown in Theorem 2.3 below.
Finally for the strictness of the fourth implication, notice that some Martin-Löf
random set is computable from ∅′, and hence a Π0

1[∅′] singleton.
Another strengthing of Martin-Löf randomness is Demuth randomness, intro-

duced by Demuth [Dem88] to study differentiability of constructive functions de-
fined on the unit interval. A Demuth test is a sequence of c.e. open sets (Vi)i∈N
such that ∀i µVi ≤ 2−i, and there is a function f ≤wtt ∅′ such that Vi is the open
set generated by the strings in Wf(i) (viewed as a subset of 2<ω).

A set Z passes the test if Z 6∈ Vi for almost every i. We say that Z is Demuth
random if Z passes each Demuth test. See [Nie09a, 3.6.24] for more detail, and
a proof that Demuth randomness is incomparable with weak 2-randomness. Note
that SR[∅′] is contained in the Demuth random sets. A more complex argument
than in the previous result shows that each Demuth random set is in GL1 (see
[Nie09a, 3.6.26]).

2.3. The weakness of Kurtz[A] randomness. In the present subsection, which
is independent of the rest of the paper, we investigate Kurtz[A] randomness for
an arbitrary oracle A. It is easy to see that there is no A such that every Kurtz
random relative to A is Martin-Löf random (in other words, there is no set in
High(Kurtz,ML) as defined at the beginning of Section 3 below). This follows from
purely topological considerations. Since each component of a universal Martin-Löf
test is dense in Cantor space, the non-ML random reals form a comeager class. On
the other hand, for any A, the union of all measure zero Π0

1[A] classes is meager.
Hence by the Baire category theorem, there is a Kurtz random relative to A that is
not Martin-Löf random. One must work harder to answer the following question:
what does Kurtz randomness relative to A imply if Z is already Martin-Löf random?
We show that there is no oracle A such that Martin-Löf randomness and Kurtz[A]
randomness together is enough to imply weak 2-randomness. First, we need the
following lemma.

Lemma 2.2. Let P ⊆ 2ω be a nowhere dense Π0
1 class. There is a null Π0

2 class Q
such that Q ∩ P is dense in P .1

Proof. We will define Q to cover the left endpoints of maximal open intervals in
P = 2ω − P . Since P is nowhere dense, these points are dense in P . It will be
helpful to use the euclidean metric on 2ω; that is, for X,Y ∈ 2ω we take |X−Y | to

1Liang Yu independently proved this lemma, and even without the assumption that P is
nowhere dense. To show that this assumption is superfluous, let P be any Π0

1 class and consider

the null Π0
2 class Q∪

T
i∈ω Ui, where Q is the null Π0

2 class constructed in our proof and (Ui) is a
universal Martin-Löf test. Since Q covers the left endpoints of maximal open intervals in 2ω − P
and

T
i∈ω Ui is dense in 2ω , the union is dense in P .
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be distance between the reals numbers in [0, 1] whose binary expansions are given
by X and Y .2 We also use the natural order on 2ω and let F ⊆ 2ω represent the
sequences with finitely many ones. For s ∈ ω, let

Vs = {X : (∃t ≥ s)(∃A,B ∈ F) X ∈ Ps and X < A < B and

[A,B] ∩ Pt = ∅ and |A−X| < |B −A|/s}.

It should be clear that Vs is a Σ0
1 class. It is also easy to see that if X is the

left endpoints of a maximal open interval in P , then X ∈ Vs. Hence, letting
Q =

⋂
s∈ω Vs, we have X ∈ Q. All that remains to prove is that µ(Q) = 0, for

which it is sufficient to show that lims µ(Vs) = 0.
Fix s ∈ ω. Let (Y,Z) be a maximal interval in P and let ` = |Z − Y | be its

length. Say that X is added to Vs with witnesses A,B ∈ (Y, Z). If X /∈ (Y,Z),
then it must be the case that X < Y and |Y −X| < |A−X| < `/s. Thus we have
µ(Vs) ≤ (1 + 1/s)µ(P ). On the other hand, this estimate includes the measure of
all the sequences in Ps, but these have been excluded in the definition of Vs. So in
fact, we have µ(Vs) ≤ (1 + 1/s)µ(P ) − µ(Ps). But both (1 + 1/s)µ(P ) and µ(Ps)
approach µ(P ) as s goes to infinity. Therefore, lims µ(Vs) = 0. �

Now we are ready to separate Kurtz[A] from the weakly 2-randoms within the class
of Martin-Löf randoms.

Theorem 2.3. For any oracle set A, there is a Martin-Löf random Z in Kurtz[A]
that is not weakly 2-random.

Proof. Let P be a Π0
1 class containing only Martin-Löf random reals. Let Q be

the measure zero Π0
2 class from the lemma. We will, as in the remarks before

Lemma 2.2, use the Baire category theorem, but this time with respect to the
compact subspace P . Note that Q ∩ P is a Gδ set relative to P and it is dense in
P , hence it is comeager in P . Next, consider a measure one Σ0

1[A] class V . Let
σ ∈ 2<ω. If [σ] ∩ P 6= ∅, then it is a nonempty Π0

1 class containing a Martin-Löf
random. So µ([σ] ∩ P ) > 0 because otherwise we would obtain a Martin-Löf test
which contains a Martin-Löf random set. Hence V ∩ [σ]∩P is nonempty. Therefore,
V ∩ P is dense in P . Since it is an open set relative to P , it is also comeager in P .
By the Baire category theorem relative to P , there is a Z ∈ P in the intersection
of Q with (the countable collection of) all measure one Σ0

1[A] classes. Clearly Z is
Kurtz random relative to A. Since Z ∈ P , it is Martin-Löf random. Finally, Z ∈ Q
implies that it is not weakly 2-random. �

3. Characterizing highness notions

For two classes C and D where usually C ⊃ D, we define High(C,D) to be the
class containing all oracles A such that CA ⊆ D. In this section we characterize
highness notions when C is Martin-Löf randomness and D is a stronger randomness
notion. The results are summarized in Table 2. We prove the characterizations in
(a)–(d). As already mentioned, the equivalence (e) is due to Kjos-Hanssen, Miller,
and Solomon [KHMS10] (also see [Sim07] for a proof). In Corollary 4.4 we show
that High(W2R,ML[∅′]) also coincides with the uniformly a.e. dominating sets.

2Strictly speaking, this is not a metric on 2ω since the two distinct sequences representing a
dyadic rational have distance zero from each other.
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(a) A ∈ High(ML,Kurtz[∅′])
∅′ is non-d.n.c. by A

(b) A ∈ High(ML,W2R)

(c) A ∈ High(ML,Demuth) A is ω-c.e. tracing

(d) A ∈ High(ML,SR[∅′]) ∅′ is c.e. traceable by A

(e) A ∈ High(ML,ML[∅′]) A is u.a.e. dominating

Table 2. Highness classes with respect to randomness notions,
and their computability-theoretic characterizations.

3.1. The class High(ML,W2R). We give a characterization of the highness prop-
erty High(ML,W2R) in computability theoretic terms. Despite the fact that W2R
is a stronger randomness notion than ML ∩ Kurtz[∅′], the computational strength
that is required for an oracle A to turn ML[A] into a subclass of Kurtz[∅′] is the
same as the strength required to turn it into a subclass of W2R.

We start with the following lemma, which is a partial relativization of a result
from [GM09]; the proof is due to the second author. Let DNC[A] denote the set of
functions f such that f(e) 6= JA(e) whenever JA(e) is defined. Thus, Y is d.n.c.
by A iff Y computes such a function.

Lemma 3.1. If A ∈ High(ML,Kurtz[Y ]), then Y does not compute a DNC[A]
function.

Proof. Assume that f ≤T Y is a DNC[A] function. We show that Y computes an
infinite subset D of a set that is ML-random in A. This shows that there is a set
that is Martin-Löf random in A but is in a null Π0

1[Y ] class, thus not in Kurtz[Y ].
Let Q be a non-empty Π0

1[A] class of ML[A]-random sets. By a well known lemma
of Kučera [Kuč85], we may assume that if P ⊆ Q is a nonempty Π0

1[A] class, then
we can compute, uniformly from an index for P , a k such that 2−k < µP .

Using f we compute a sequence d0 < d1 < · · · such that, for each n, the
Π0

1[A] class {Z ∈ Q : d0, . . . , dn−1 ∈ Z} is non-empty. Let D = {d0, d1, d2, . . .}.
By compactness {Z ∈ Q : D ⊆ Z} is non-empty. Suppose we have determined
d0 < · · · < dn−1 such that the Π0

1[A] class

Pn = {Z ∈ Q : d0, . . . , dn−1 ∈ Z}

is non-empty. The set G = {m : ∀Z ∈ Pn [Z(m) = 0]} is c.e. in A uniformly in an
index for Pn. We will determine dn 6∈ G. Since Pn ⊆ Q is nonempty, compute k
such that 2−k < µPn and hence |G| ≤ k.

Let ω<ω be the set of finite sequences of natural numbers. We denote concatena-
tion of strings by ∗. Let (Sσ)σ∈ω<ω be a uniformly computable sequence of sets such
that S∅ = N and for each σ, (Sσ∗i)i∈N is an infinite partition of Sσ into non-empty
sets. Define a Turing functional Ψ as follows. Let ΨA(σ) = i if i is the first number
such that some element of Sσ∗i is enumerated in G. The relation ‘'’ means that
if the left-hand-side is defined then it is equal to the right-hand-side. Let α be a
computable function such that JA(α(σ)) ' ΨA(σ) for all σ ∈ ωω, where J is the
jump functional (i.e., JA(e) ' ΦAe (e), where (Φe) is an effective list of all Turing
functionals). Since f is d.n.c. relative to A, we have f(α(σ)) 6= ΨA(σ) for each σ.

Now let σ0 = ∅ and σi+1 = σi ∗ f(α(σi)) for i < k. Clearly G ∩ Sσk = ∅ since
for each i < k some element of G is in some Sσi∗r for r 6= f(α(σi)) (unless already
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G ∩ Sσi = ∅). Choose dn > dn−1 in Sσk . Then dn is as desired, and the sequence
(di) is computable in Y . So

⋂
i Pi is a non-empty Π0

1[Y ] class of measure 0 and it
is contained in Q. Therefore there is a Martin-Löf random set relative to A that is
not in Kurtz[Y ]. �

Theorem 3.2. For A ∈ 2ω, the following are equivalent:
(i) A ∈ High(ML,W2R),
(ii) A ∈ High(ML,Kurtz[∅′]),

(iii) ∅′ does not compute a DNC[A] function.

Proof. (iii)⇒(i) Assume that {Vn}n∈ω is an effective sequence of Σ0
1 classes such

that µ(Vn) → 0. It suffices to show that
⋂
n Vn is contained in a Martin-Löf test

relative to A. Note that ∅′ computes a function f such that µ(Vf(k)) ≤ 2−k, for all
k ∈ ω. For a Σ0

1 class V and rational ε > 0, let (V )ε denote the Σ0
1 class uniformly

obtained by enumerating V as long as the measure does not exceed ε. Since ∅′ does
not compute a DNC[A] function, there are infinitely many k such that f(k) = JA(k),
where J denotes the jump functional. Therefore, Sm =

⋃
k>m(VJA(k))2−k covers⋂

n∈ω Vn, for each m (where VJA(k) is taken to be empty if JA(k) ↑). By definition,
µ(Sm) ≤ 2−m, so {Sm}m∈ω is a Martin-Löf test relative to A that covers

⋂
n Vn.

Hence A ∈ High(ML,W2R).
Since every Π0

1[∅′] class is a Π0
2 class, we have (i)⇒(ii). Finally, (ii)⇒(iii) follows

by Lemma 3.1 for Y = ∅′. �

By (i)↔(iii) of Theorem 3.2 and the remarks in Subsection 2.1, if A is not GL1,
then A is in High(ML,W2R). In particular we obtain the following.

Corollary 3.3. Let A be a ∆0
2 set. Then the following are equivalent:

(i) A ∈ High(ML,W2R)
(ii) A ∈ High(ML,Kurtz[∅′])

(iii) A is not low.

3.2. The class High(ML,SR[∅′]). Recall from Subsection 2.1 that Y is called c.e.
traceable by A if there is a computable function h such that for each f ≤T Y there
is an A-c.e. trace for f with bound h. The next theorem with Y = ∅′ characterizes
the condition that A ∈ High(ML,SR[∅′]), row (d) in Table 2. First, we need the
following fact whose proof relies on the Lebesgue density theorem. For a string τ ,
let µτ (S) be the measure of a class S ⊆ 2ω relative to [τ ] = {X | τ ≺ X}. That is,
µτ (S) = µ([τ ] ∩ S)/2−|τ |.

Lemma 3.4 ([Nie09a], Lemma 8.3.4). Suppose that
⋂
n Un ⊆ R for open sets Un, R

with µ(R) < q < 1. Then there is a string τ and d ∈ N such that µτ (R) < q and
µτ (Ud −R) = 0.

Theorem 3.5. Let A, Y ∈ 2ω. Then
ML[A] ⊆ SR[Y ] ⇔ Y is c.e. traceable by A.

Proof. ⇐: It suffices to show that every Schnorr test relative to Y is contained in a
Martin-Löf test relative to A. Let (Vi) be a Schnorr test relative to Y , i.e., a Martin-
Löf test relative to Y where the sequence (µ(Vi)) is Y -computable. Without loss of
generality we can assume that µ(Vn) = 2−n−1 for each n ∈ N. Now let (Di) be an
effective sequence of all finite sets. There is a Y -computable function f such that
Vn =

⋃
iDf(n,i) and µ(Df(n,i)) ≤ 2−n−i for all n, i ∈ N. Now consider a trace of
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f(n, i) which is computable in A with bound n+i. That is, an A-c.e. sequence (Tn,i)
such that |Tn,i| ≤ n+ i and f(n, i) ∈ Tn,i for all n, i ∈ N. Without loss of generality
we can assume that Tn,i only contains numbers j such that µ(Dj) ≤ 2−n−i. Define
Un =

⋃
i

⋃
j∈Tn,i Dj . Clearly Vn ⊆ Un for all n ∈ N. Also,

µ(Un) ≤
∑
i

(n+ i) · 2−n−i

which means that (Un) is a Martin-Löf test relative to A (modulo a computable
shift of the indices).
⇒: Suppose f ≤T Y and we wish to build an A-c.e. trace for f with bound 2n. It
suffices to build an A-c.e. trace for the function given by g(n) := nf(n) + n. Let
Bk,n be the set of reals that have n consecutive 0s starting at the k-th digit. Clearly,
µ(Bk,n) = 2−n for all k, n ∈ N. It is easy to check that the sets Ud =

⋃
n>dBg(n),n

form a Schnorr test relative to Y . Let R be the second member of the universal
Martin-Löf test relative to A, so that µ(R) < 2−2. Since ML[A] ⊆ SR[Y ] we have⋂
d Ud ⊆ R. By Lemma 3.4 there is a string τ and d ∈ N such that µτ (R) < 2−2

and µτ (Bg(n),n − R) = 0 for all n > d. Now let nN denote the multiples of n and
consider the following trace:

(3.1) Tn = {k ∈ nN | µτ (Bk,n −R) < 2−k−3}.
Since Bk,n clopen and R is Σ0

1[A], the sequence (Tn) is uniformly c.e. in A. On the
other hand, g(n) ∈ Tn for all n > d, by the choice of d, τ .

It remains to show that the sequence |Tn| is computably bounded. By (3.1) we
have µτ (

⋃
k∈Tn Bk,n −R) < 2−2, which implies that

µτ (2ω −
⋃
k∈Tn

Bk,n) + µτ (R) ≥ 1− 2−2.

Since µτ (R) < 2−2, this means that µτ (2ω −
⋃
k∈Tn Bk,n) > 2−1. On the other

hand, µτ (Bk,n) = 2−n for n > |τ |. Since Tn consists of multiples of n, the sets
Bk,n, k ∈ Tn are independent and

µτ (2ω −
⋃
k∈Tn

Bk,n) = (1− 2−n)|Tn|

for n > |τ |. Hence (1−2−n)|Tn| > 2−1 which shows that |Tn| < 2n, for n > |τ |.3 �

We note that the proof of Theorem 3.5 is an adaptation of the proof of Theorem
8.3.3 in [Nie09a].

3.3. The class High(ML,Demuth). Note that ∅′ is c.e. traceable by A if there is a
computable function h such that, for each ∆0

2 function, there is an A-c.e. trace for
f with bound h. In the foregoing subsection, we showed that this computability
theoretic condition characterizes the class High(ML,SR[∅′]). In this subsection we
characterize the larger class High(ML,Demuth) by a weaker variant of this property,
which was introduced in [FHM+10, Definition 21 of the Journal version].

A set A is called ω-c.e.-tracing if there is a computable function h such that each
function f ≤wtt ∅′ has an A-c.e. trace (Tx)x∈N such that |TAx | ≤ h(x) for each x.
Since we trace only total functions, by the method of Terwijn and Zambella already
mentioned above, the bound h can be replaced by any nondecreasing unbounded

3This follows from the fact that (1− 1/k)k < e−1 for any k ≥ 1.
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computable function without changing the class. In [FHM+10, Prop. 32] it is
shown that each ω-c.e. tracing set is in High(ML,Demuth). We provide the converse
implication. This establishes row (c) in Table 2.

Theorem 3.6. For A ∈ 2ω, we have

ML[A] ⊆ Demuth ⇔ A is ω-c.e.-tracing.

Proof. ⇐: This was proved in [FHM+10].
⇒: The proof is a modification of the proof of the corresponding implication in
Theorem 3.5. Firstly, we provide a variant of Lemma 3.4 suitable for Demuth
randomness.

Lemma 3.7. Suppose that {Z | ∃∞nZ ∈ Un} ⊆ R for open sets Un, R with
µ(R) < q < 1. Then there is a string τ and d ∈ N such that

µτ (R) < q and ∀n > d [µτ (Un −R) = 0].

Assume the hypothesis holds but the conclusion fails. We define inductively a
sequence of strings (τd)d∈N such that τ0 ≺ τ1 ≺ · · · and ∀dµ(R | τd) < q. Let τ0 be
the empty string. Suppose τd has been defined and µ(R | τd) < q. Then, since the
Lemma fails, there is n > d such that µ((Un − R) | τd) > 0. So we can choose y
such that [y] ⊆ Un and µ([y]−R | τd) > 0; in particular, y < τd. By the Lebesgue
density theorem we may choose τd+1 � y such that µ(R | τd+1) < q.

Now let Z =
⋃
d τd, then ∃∞nZ ∈ Un and Z 6∈ R, contradiction. This establishes

the lemma.
To conclude the proof of Theorem 3.6, suppose f is an ω-c.e. function and we

wish to build an A-c.e. trace for f with bound 2n. As before, it suffices to build an
A-c.e. trace for the function given by g(n) := nf(n) +n. Let Un = Bg(n),n. Since g
is ω-c.e., the sequence (Un)n∈N forms a Demuth test. As before let R be the second
member of the universal Martin-Löf test relative to A, so that µ(R) < 2−2. By the
hypothesis that ML[A] ⊆ Demuth, we may pick τ, d according to Lemma 3.7 where
q = 2−2.

Define the A-c.e. trace (Tn)n∈N by (3.1). By the Lemma we have µτ (R) < q and
∀n > d [µτ (Un − R) = 0]. Hence, as before, |Tn| < 2n and (Tn)n∈N is a trace for
g. �

4. The reducibility associated with weak 2-randomness

Recall from the introduction the weak reducibility associated with weak 2-
randomness: A ≤W2R B if each weak 2-random relative to B is weakly 2-random
relative to A. In this section we study ≤W2R and compare it to ≤LR.

A set is called low for Ω if Ω is Martin-Löf random relative to it. We show that
≤LR and ≤W2R coincide on the ∆0

2 sets, as well as the low for Ω sets. Given that
the low for Ω sets are downward closed with respect to ≤LR, it follows that the
two reducibilities have interesting common initial segments. On the other hand, we
show that they differ on the class of ∆0

3 sets.
The two reducibilities ≤LR and ≤W2R induce equivalence relations ≡LR and

≡W2R respectively on P(N), and therefore degree structures. We show that ≡LR,
≡W2R coincide on all sets. Hence, although the degree structures differ as partially
ordered sets, the actual degrees as equivalence classes coincide.
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Barmpalias, Lewis and Soskova [BLS08a] proved that there are continuum many
sets ≤LR ∅′. We conclude Section 4 with a similar result, proving that there are
continuum many sets ≤W2R ∅′′.

We will frequently use a theorem of Kjos-Hanssen, Miller and Solomon (also see
[Nie09a, Thm. 5.6.9]).

Theorem 4.1 ([KHMS10]). If A ≤LR B and A ≤T B′ then every Π0
2[A] class is

contained in a Π0
2[B] class of the same measure.

In fact, the converse implication also holds.

4.1. ≤W2R implies ≤LR. We say that a class C ⊆ 2ω is bounded if µC < 1. Let U be
the second component of a fixed universal oracle Martin-Löf test (thus µUX ≤ 1/2
for each oracle X). Kjos-Hanssen [KH07] proved that the following are equivalent
for X,Y ∈ 2ω:

(a) X ≤LR Y ;
(b) there exists a bounded Σ0

1[Y ] class V such that UX ⊆ V .
This shows that ≤LR is Σ0

3. We show that instead of UX ⊆ V , one can equivalently
require the weaker condition that UX − V is null.

Lemma 4.2. The following are equivalent for X,Y ∈ 2ω:
(a) X ≤LR Y ,
(b) There exists a bounded Σ0

1[Y ] class V such that µ(UX − V ) = 0.

Proof. We have (a)⇒ (b) from the Theorem of Kjos-Hanssen, so it suffices to show
that (b) ⇒ (a). Choose a bounded Σ0

1[Y ] class V such that µ(UX − V ) = 0, and
a rational q < 1 such that µ(V ) < q. We claim that µσ(V ) = 1 for all σ such that
[σ] ⊆ UX . Otherwise there is a σ such that µσ(V ) < 1 and [σ] ⊆ UX . This implies

µ(UX − V ) ≥ µ([σ]− V ) > 2−|σ|(1− µσ(V )) > 0

which contradicts the hypothesis (b). Let

F = {τ | τ is minimal such that µτ (V ) > q}.
In other words, F is the set of all strings τ such that µτ (V ) > q and µρ(V ) ≤ q for
all proper prefixes ρ of τ . Then we have UX ⊆ [F ] and [F ] is a Σ0

1[Y ] class. If (ρi)
is a list of the strings in F , then

q · µ([F ]) ≤
∑
i

2−|ρi|µρi(V ) = µ(V ∩ [F ]) ≤ µ(V ) < q,

which implies that µ(F ) < 1, proving (a). �

We will now use the foregoing lemma to show that X ≤LR Y is equivalent to
W2R[Y ] ⊆ ML[X]:

Theorem 4.3. The following are equivalent for X,Y ∈ 2ω:
(a) X ≤LR Y ,
(b) Every weakly 2-random relative to Y is Martin-Löf random relative to X.

Hence, ≤W2R implies ≤LR.

Proof. By definition of ≤LR we have (a) ⇒ (b). For (b) ⇒ (a) suppose that
X 6≤LR Y . We construct a set Z that is weakly 2-random relative to Y but not
Martin-Löf random relative to X.
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Let (Ui) be a universal oracle Martin-Löf test. By Lemma 4.2 we know that for
every τ ∈ 2<ω, every Σ0

1[Y ] class V Y and every i ∈ N, if µ([τ ]−V Y ) > 0 then there
exists [σ] ⊆ UXi such that τ ⊂ σ and µ([σ]− V Y ) > 0. Otherwise, (2ω − [τ ]) ∪ V Y
would satisfy part (b) of Lemma 4.2. Let (Sej ) be a double sequence of Σ0

1[Y ] classes
such that Sej+1 ⊆ Sej and every Π0

2[Y ] class is of the form
⋂
j S

e
j for some e. We

build Z =
⋃
s σs and a sequence of open sets (Rs) in stages.

Let σ0 = ∅ and R0 be S0
j for the least j such that µ(S0

j ) < 2−2 if there is such,
and ∅ otherwise. Inductively assume that µ([σs] − Rs) > 0 and at stage s + 1 we
choose some σ ⊃ σs such that σ ∈ UXs and µ([σ] − Rs) > 0. Let σs+1 = σ. Let
q > 0 be a rational such that µ([σs+1]−Rs) > q and let Rs+1 = Rs ∪ S where S is
Ss+1
j for the least j such that µ(Ss+1

j ) < q if there is such, and ∅ otherwise. Notice
that µ([σs+1]−Rs+1) > 0.

The construction is well defined since Rs is Σ0
1[Y ] for all s ∈ N, so the required

string σ will be found at every stage s + 1. Moreover [σs] 6⊆ Rs for all s ∈ N and
Rt ⊆ Rs for all t < s. So Z =

⋃
s σs is not in any Rt, which shows that it is not in

any null Π0
2[Y ] class. On the other hand Z ∈

⋂
i U

X
i so it is not 1-random relative

to X. �

As mentioned above, ∅′ ≤LR Y is equivalent to Y being uniformly a.e. dominating.
Hence Theorem 4.3 with X = ∅′ yields a further classification of a highness property
along the lines of Table 2.

Corollary 4.4. High(W2R,ML[∅′]) equals the class of u.a.e.d. sets.

In contrast, by the remarks after Theorem 3.2 we have GL1 ⊆ High(ML,W2R).
Since GL1 is a much larger class than the u.a.e.d. sets, this gives evidence that
the class ML is closer to W2R than W2R is to ML[∅′]. Indeed, the computa-
tional strength required for an oracle A to lift Martin-Löf randomness to weak
2-randomness is just the property ‘∅′ non-d.n.c. by A’ (which contains GL1 and
coincides with non-lowness for ∆0

2 sets). This is much less than u.a.e. domination,
which is the strength required for A to lift weak 2-randomness to 2-randomness.

4.2. When ≤W2R coincides with ≤LR. The sets that are low for Ω are, by
definition, closed downward with respect to ≤LR; in other words, they form an
initial segment of the LR degrees.

Theorem 4.5. The relations ≤W2R and ≤LR coincide on the LR initial segment
of sets that are low for Ω.

Proof. Let X,Y be low for Ω reals such that X ≤LR Y . In view of Theorem 4.3 it
suffices to show that X ≤W2R Y . By a theorem in [Mil10] we have that X ≤T Y ′.
Then by Theorem 4.1 due to [KHMS10], every weakly 2-random real relative to Y
is also weakly 2-random relative to X, i.e., X ≤W2R Y . �

By Theorem 4.1 we also obtain the following.

Corollary 4.6. The relations ≤LR,≤W2R coincide on the class of ∆0
2 sets.

4.3. When ≤W2R does not coincide with ≤LR. First we show that the relations
≤W2R and ≤LR differ on every LR-lower cone of a non-K-trivial ∆0

2 set.

Theorem 4.7. If Y is ∆0
2 and Y is not K-trivial, then for all Z ≥T ∅′ there exists

X ≤LR Y such that X ⊕ ∅′ ≡T Z.



RANDOMNESS NOTIONS AND PARTIAL RELATIVIZATION 13

Proof. By [Bar10] we know that there is a perfect Π0
1 class P such that A ≤LR Y

for all A ∈ P . We use P and a standard coding to define X ∈ P in stages s by finite
extensions σs. Let σ0 = ∅ and if σs is defined, find (with oracle ∅′) the least node
τ ⊃ σs such that both τ ∗ 0, τ ∗ 1 are extendible in P . Then define σs+1 = τ ∗Z(s).
Clearly Z ≡T X ⊕ ∅′ and X ≤LR Y since X belongs to P . �

Corollary 4.8. If Y is ∆0
2 and not K-trivial, then there exists X ≤LR Y such that

X 6≤W2R Y .

Proof. Let X be as in Theorem 4.7 for Z = ∅′′′. It suffices to find a set A that is
not weakly 2-random relative to X but is weakly 2-random relative to Y . Let A be
a 3-random that is recursive in ∅′′′. Since Y ≤T ∅′, the set A is (weakly) 2-random
relative to Y (i.e., A ∈ ML[Y ′]). However,

A ≤T ∅′′′ ≤T X ⊕ ∅′ ≤T X ′.
so A belongs to a null Π0

2[X] class; in fact, {A} is Π0
2[X]. Hence, A is not weakly

2-random relative to X. �

Next, we obtain a result that contrasts with Corollary 4.6. It follows by using
lowness in the proof of Corollary 4.8.

Corollary 4.9. The relations ≤LR,≤W2R do not coincide on the class of ∆0
3 sets.

Proof. Notice that the set X separating ≤LR, ≤W2R that was constructed in the
proof of Theorem 4.7 is computable in ∅′ ⊕ Z. Now in the statement of Corollary
4.8, pick Y such that Y ′ ≡T ∅′ and Y 6≤LR ∅. We modify the proof so that we
separate ≤LR, ≤W2R within ∆0

3. Consider the X given by Theorem 4.7 for Z = ∅′′.
Let A be 2-random and computable in ∅′′. Since Y is low, the set A is 2-random
relative to Y , i.e., A ∈ ML[Y ′]. In particular, it is weakly 2-random relative to Y .
However

A ≤T ∅′′ ≤T X ⊕ ∅′ ≤T X ′.
so A belongs to a null Π0

2[X] class. Hence, it is not weakly 2-random relative to X.
Finally, note that Y is ∆0

2 and X ≤T ∅′ ⊕ Z ≡T ∅′′ is ∆0
3. �

4.4. The equivalence relations ≡LR and ≡W2R coincide. From [KHMS10] and
[Nie05] we know that if A ≡LR B then A′ ≡tt B′ (see [Sim07] for more discussion).
This, combined with Theorem 4.1 gives the following.

Corollary 4.10. For all sets A,B we have A ≡LR B if and only if A ≡W2R B.

Hence the equivalence classes induced by ≤W2R coincide with those induced by
≤LR, but the ordering of them differs as was shown in Corollary 4.8.

4.5. An uncountable initial segment of ≤W2R. Despite the above results, we
do not have a characterization of ≤W2R similar to the one of Kjos-Hanssen men-
tioned above. In particular, we do not know whether ≤W2R is arithmetical (note
that its definition is merely Π1

1).
For a first approarch, note that if every Π0

2[A] null class is contained in some
Π0

2[B] null class (i.e., if A is “test-wise” reducible to B), then A ≤W2R B. However,
the converse is open:

Question 4.11. Does A ≤W2R B imply that every Π0
2[A] null class is contained

in some Π0
2[B] null class?
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As noted in Theorem 4.1, Kjos-Hanssen, Miller and Solomon [KHMS10] studied
a stronger condition, that every Π0

2[A] class is contained in a Π0
2[B] class of the

same measure. They proved that this condition is equivalent to A ≤LR B and
A ≤T B′, and hence arithmetical. We can separate this stronger condition from
A ≤W2R B by proving that A ≤W2R B does not imply A ≤T B′. In [BLS08a] it
was shown that there are uncountably many sets ≤LR ∅′. Since every lower Turing
cone is countable, A ≤LR B does not imply A ≤T B′. We follow a similar approach
for ≤W2R.

Theorem 4.12. The class of sets {X : X ≤W2R ∅′′} is uncountable.

Proof. It suffices to build a perfect tree T and a Martin-Löf test (Ui) relative to ∅′′
with the following property: for all X ∈ [T ], every null Π0

2[X] is contained in
⋂
i Ui.

A perfect tree can be seen as a function from strings to strings that preserves the
prefix and incompatibility relations. Level n of T is the set of strings T (σ) such
that |σ| = n. We build T level by level, computably in ∅′′. At stage e we define level
e and enumerate into the open sets Si, i ≤ e. We ensure that the total measure of
Si is at most 2−i. Our Martin-Löf test relative to ∅′′ will be Uj :=

⋃
i>j Si.

Consider a double sequence (Ve,j) of oracle Σ0
1 classes such that V Xe,j+1 ⊆ V Xe,j for

all e, j ∈ N and all sets X. Notice that every Π0
2[X] class is of the form

⋂
j V

X
e,j for

some e ∈ N. We refer to the map X →
⋂
j V

X
e,j as the oracle Π0

2 class with index e
(the eth oracle Π0

2 class). Level e of T will be devoted to dealing with the eth oracle
Π0

2 class. For each string σ, let Tσ be the full subtree of T above node T (σ).4 We
consider a countable set of requirements that are sufficient for the proof. For each
e ∈ N and each Tσ for σ of length e, we require that one of the following holds:

• for all X ∈ [Tσ] the e-th Π0
2[X] class is not null, or

• for some j ∈ N and all X ∈ [Tσ] we have V Xe,j ⊆ Se.
To see that this is sufficient, suppose that X ∈ [T ] and let F =

⋂
j V

X
e,j be a null

Π0
2[X] class. Then we can show that F ⊆ Sk for infinitely many k. Indeed, let

k0 ∈ N be given and let e > k0 be an index of F . Let σ be the string of length e
such that X ∈ [Tσ]. Since F is null, the construction will ensure that V Xe,j ⊆ Se for
some j ∈ N and all X ∈ [Tσ]. In particular, F ⊆ Se.

The requirements can be written as follows:

Re : ∀σ ∀X
[
|σ| = e ∧ X ∈ [Tσ]⇒

(
µ

(⋂
j

V Xe,j

)
> 0 ∨ ∃j V Xe,j ⊆ Se

)]
.

At level/stage e we first define splittings of the strings in the previous level, in order
to ensure that T is perfect. After this preliminary step, we make a decision about
how to deal with the eth Π0

2 class (above each string of this level). In particular,
for each node T (ρ) on the eth level of T , we check if we can force

⋂
j V

X
e,j to be

non-null for all X ∈ [Tρ]. That is, for an appropriately small value 2−t, we check if
for all τ ⊇ T (ρ) and all i ∈ N there exists γ ⊇ τ such that µ(V γe,i) > 2−t. In that
case we let f(ρ) = 0 to declare this fact. In later stages we define T above ρ to
ensure that µ(

⋂
j V

X
e,j) ≥ 2−t for all X ∈ [Tρ].

Otherwise for some n > 1 and ζ ⊇ T (ρ), the oracle class Ve,n has the uniform
bound 2−t on the measure of V Xe,n for all X extending ζ. To declare this fact, we let

4Our trees are ‘growing’ upward.
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f(ρ) = n and move T (ρ) to ζ.5 By choosing appropriate extensions in later stages,
under this hypothesis we will be able to enumerate into Se all V Xe,n for X ∈ Tρ while
keeping the measure of Se small.6

To sum up, at stage e the following actions determine level e:

• split the strings of the previous level,
• define extensions of the current paths according to the decisions that have

been made in previous stages about Ri, for i < e, and
• make a decision about how to satisfy Re above each node of level e.

Construction. At stage 0 define T (∅) = ∅ (where ∅ is the empty sequence here).
At stage e > 0 we can assume that all previous levels of T have been defined. Given
σ of length e we define T (σ) in e substages, corresponding to the indices of the first
e oracle Π0

2 classes (starting from index 1). We define τ0, . . . , τe−1 successively, and
set T (σ) ⊇ τe−1. Define τ0 so that incompatibility is met: let i be the last digit of
σ and define τ0 := T (σ−) ∗ i, where σ− is the predecessor of σ. Now if τj , j < k
have been defined and k < e, let ρk = σ � k. If f(ρk) = 0, let τk be an extension
of τk−1 such that µ(V τkk,e) > 2−2k−1. Otherwise let τk be an extension of τk−1 such
that

(4.1) µ(V τk,f(ρk) − V
τk
k,f(ρk)) ≤ 2−2(e+1)−1 for all τ ⊇ τk.

When τe−1 is defined, using ∅′′ as an oracle determine if the following is true:

(4.2) ∀i∀ρ ⊇ τe−1∃γ ⊇ ρ [µ(V γe,i) > 2−2e−1].

If (4.2) holds, set f(σ) = 0 and T (σ) = τe−1. Otherwise choose an n ∈ N and
ρ ⊇ τe−1 such that µ(V γe,n) ≤ 2−2e−1 and

(4.3) µ(V γe,n − V ρe,n) ≤ 2−2(e+1)−1,

for all γ ⊇ ρ. Let T (σ) = ρ and f(σ) = n.
Finally, for all k < e such that f(ρk) > 0 enumerate V T (σ)

k,f(ρk) into Sk.

Verification. First we note that the construction is well defined. That is, when the
construction defines a string according to (4.1) or (4.3), the search halts. Otherwise,
we could inductively push up the measure of V τk,f(ρk) (or V γe,n) as high as we would
like, which is impossible.

Second, we show that µ(Se) ≤ 2−e for all e ∈ N. Notice that the only ‘strategies’
that enumerate into Se are the nodes T (ρ) with |ρ| = e and f(ρ) > 0. There are at
most 2e such nodes ρ, so fix one. Let Se(ρ) be the part of Se that is enumerated
by Tρ. Consider the full subtree Tρ of T above T (ρ).

By the construction, µ(V τe,f(ρ)) ≤ 2−2e−1 for all strings τ ∈ Tρ. In particular,

µ
(
V
Tρ(∅)
e,f(ρ)

)
≤ 2−2e−1. Also, by the way we define Tρ we have

µ
(
V
Tρ(η)

e,f(ρ) − V
Tρ(η−)

e,f(ρ)

)
≤ 2−2(e+|η|)−1 for all η ∈ 2<ω with |η| > 0.

5The final value of T (ρ) is only fixed at the end of stage e.
6The method in this case is the same as in the proof in [BLS08a] that the class of sets ≤LR ∅′

is uncountable.
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Hence,
µ(Se(ρ)) ≤ 2−2e−1 +

∑
i>0

2i · 2−2(e+i)−1 = 2−2e,

and so µ(Se) ≤ 2e · 2−2e = 2−e.
Third, we argue for the satisfaction of Re. At stage e the construction defines

f(ρ) for all strings ρ of length e. Fix such a string ρ. If f(ρ) = 0 the subtree Tρ
is defined such that µ(V Xe,i) > 2−2(e+1)−3 for all X ∈ [Tρ] and all i ∈ N. Therefore
µ(
⋂
i V

X
e,i) > 0 for all X ∈ [Tρ]. On the other hand, if f(ρ) > 0 the construction

enumerates V Xe,f(ρ) into Se, for all X ∈ [Tρ]. �

Corollary 4.13. A ≤W2R B does not imply A ≤T B′.

5. The LR-interaction of ∆0
2 sets with weakly 2-random sets

Note that ≤LR is a Σ0
3 relation implied by ≤T . In many further ways ≤LR is

similar to ≤T [BLS08a, BLS08b]. In this section we study the LR relations between
a ∆0

2 set A and a weakly 2-random set Z. Recall from Subsection 2.2 that A ≤T Z
implies that A is computable.

5.1. The case A ≤LR Z. Recall that by [Nie05] the class of K-trivial sets coincides
with the class of low for Martin-Löf random sets.

Proposition 5.1. If Z is weakly 2-random then every ∆0
2 set A ≤LR Z is K-trivial.

Proof. We prove the contrapositive. Suppose that A ≤LR Z and A is not K-trivial.
By the theorem of Kjos-Hanssen mentioned in Subsection 4.1, there is a bounded
oracle Σ0

1 class V such that UA ⊆ V Z , where U is a component of a universal oracle
Martin-Löf test. But then Z is a member of the class

{X | UA ⊆ V X} =
⋂
n,s0

⋃
s>s0

{X | UA�n[s] ⊆ V X}

which is Π0
2. Since A is K-trivial, it is also low for Martin-Löf. By a theorem

of Stephan (see [BLS08a]) all non-trivial LR upper cones are null. Therefore the
above class is null. This shows that Z is not weakly 2-random. �

5.2. The case Z ≤LR A when A = ∅′. Recently there has been an interest
in understanding the class of sets ≤LR ∅′; see for example [Nie09a, Section 5.6].
In [BLS08a] it was shown that this class is uncountable, and in [BLS08b] that it
contains sets of hyperimmune-free Turing degree. In the following we show that
it contains a weakly 2-random set. Notice that by definition of ≤LR it does not
contain 2-random sets.

Theorem 5.2. There is a weakly 2-random Z that is K-trivial relative to ∅′. Thus
Z ≤LR ∅′. Moreover, Z can be chosen of hyperimmune-free Turing degree.

Proof. By Nies [Nie05], a set Z is K-trivial relative to ∅′ iff Z ⊕ ∅′ ≤LR ∅′. In
particular, this notion is closed downward with respect to ≤T . Kučera and Nies
[KNxx] have shown the following. Let P be a non-empty Π0

1 class. Suppose that
B >T ∅′ is Σ0

2. Then there is a set Z ∈ P of hyperimmune-free Turing degree such
that Z ′ ≤T B.

Now let P be a non-empty Π0
1 class of ML-randoms. The members of P that form

a minimal pair with ∅′ are weakly 2-random (see [Nie09a, Section 5.3]). Let B >T ∅′
be a Σ0

2 set that is K-trivial relative to ∅′. This exists by a relativization of the well
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known construction of a non-computable c.e. K-trivial set. By applying the above
theorem we get Z is as required. Indeed, since the degree of Z is hyperimmune-
free, it forms a minimal pair with ∅′. Hence it is weakly 2-random. Moreover it is
computable from B, therefore it is K-trivial relative to ∅′. �

Theorem 5.2 does not hold if we replace ‘weakly 2-random’ with SR[∅′]. Indeed,
[Nie09a, Exercise 5.5.10] shows that no Schnorr random set is K-trivial; the rel-
ativization of this argument to ∅′ shows that no set in SR[∅′] is K-trivial relative
to ∅′. Also, notice that any K-trivial relative to ∅′ is computable from ∅′′. This
follows by relativization of the fact from [Cha76] that every K-trivial is ∆0

2.

5.3. The case Z ≤LR A when A′ ≤T ∅′. Intuitively, it is possible to have a weakly
2-random set LR-below ∅′ (Theorem 5.2) because the LR lower cone below ∅′ is
only Σ0

4. In contrast, we show that if the oracle A (the top of the lower cone) is low
then its LR lower cone is Σ0

3, which forbids the existence of a weakly 2-random Z
in this cone.

Proposition 5.3. If A′ ≤T ∅′ then there is no weakly 2-random Z (and in fact no
Z in Kurtz[∅′]) such that Z ≤LR A.

Proof. Again by the theorem of Kjos-Hanssen, Z ≤LR A iff Z belongs to

(5.1) {X | ∀n∃s UX�n ⊆ V A[s]}
for some bounded oracle Σ0

1 class V (where as before U is a member of the universal
oracle Martin-Löf test). For fixed V this is a Π0

1[A′] class. If A′ ≤T ∅′ then (5.1) is
a Π0

1[∅′] class (and so a Π0
2 class). All lower LR cones are null by [BLS08a], so Z

cannot be Kurtz random relative to ∅′ (or weakly 2-random). �

We note that if for some A there is a weakly 2-random Z ≤LR A this does not
necessarily mean that there is a weakly 2-random in the same LR degree as A. For
example, [Nie09a, Exercise 5.6.22] shows that the only c.e. LR degree that contains
a Martin-Löf random set is the LR degree of ∅′. Also notice that by Proposition
5.1 there is no weakly 2-random in the LR degree of ∅′. We do not know whether
the property of LR bounding a weakly 2-random is an LR-completeness criterion
for ∆0

2 sets; in other words, if the condition that ‘A is low’ in Proposition 5.3 can
be replaced with ‘A is ∆0

2 and not LR complete’.
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