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SURFACES

The rectangular coordinate axes in (x, y,z) space are drawn as in Figure 11.1.1.
Points in real space are identified with triples (x, y, z) of real numbers, and points in
hyperreal space with triples (x, y, z) of hyperreal numbers. The set of all points for
which an equation is true is called the graph, or locus, of the equation. The graph of an
equation in the three variables x, y, and z is a surface in space. We have seen in the last
chapter that the graph of a linear equation

ax +by+cz=d

is a plane. The graphs of other equations are often curved surfaces. The simplest
planes are:

The vertical planes x = x, perpendicular to the x-axis. The plane x = 0 is
called the (y, z) plane.
The vertical planes y = y, perpendicular to the y-axis. The plane y = 0 is
called the (x, z) plane.
The horizontal planes z = z, perpendicular to the z-axis. The plane z = O is
called the (x, y) plane.

Examples of the planes x = x4, y = y, and z = z, are pictured in Figure
11.1.2.

z

Figure 11.1.1 X

639



640

11T PARTIAL DIFFERENTIATION

X=Xy Yy=JYo Z=2Za
Figure 11.1.2

By the graph of a function f of two variables we mean the graph of the
equation z = f(x, y). Recall that a real function of two variables is a set of ordered
triples (x, y, z) such that for each (x, y) there is at most one z with z = f(x, y). Geo-
metrically this means that the graph of a function intersects each vertical line through
(x, y) in at most one point (x, y, z). The value of z is the height of the surface above
(x,y). Figure 11.1.3 shows part of a surface z = f(x, y).

z

Figure 11.1.3 x

Whenever one quantity depends on two others we have a function of two
variables. The height of a surface above (x, y) is one example. A few other examples
are: the density of a plane object at (x, y), the area of a rectangle of length x and width y,
the size of a wheat crop in a season with rainfall » and average temperature ¢, the
number of items which can be sold if the price is p and the advertising budget is a, and
the force of the sun’s gravity on an object of mass m at distance d.

A rough sketch of the graph can be very helpful in understanding a function
of two variables or an equation in three variables. In this section we do two things.
First we describe a class of surfaces whose equations are simple and easily recognized,
the quadric surfaces. After that we shall give a general method for sketching the
graph of an equation. Graph paper with lines in the x, y, and z directions is available
in many bookstores.

The graph of a second degree equation in x, y, and z is called a quadric
surfuce. These surfaces correspond to the conic sections in the plane. There are several
types of quadric surfaces. We shall present each of them in its simplest form.
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Quadric Cylinders 1f z does not appear in an equation, its graph will be a cylinder
parallel to the z-axis. The cylinder is generated by a line parallel to the z-axis
moving along a curve in the plane z = 0.

2 2
The graph (in space) of% + % = L is an elliptic cylinder.
It intersects any horizontal plane z = z, in an ellipse.
The graph of y = ax? + bx + c is a parabolic cylinder.
x2  y? .
The graph of — — 5= ¢ is a hyperbolic cylinder.
a

Cylinders parallel to other axes are similar. The three types of quadric
cylinders are shown in Figure 11.1.4.

z z z

X

(a) Elliptic cylinder (b) Parabolic cylinder (c) Hyperbolic cylinder
Figure 11.1.4

7he Sphere The sphere of radius r and center P(g, b, ¢) has the equation
x—al+@p—-b*+(z—-c?=

It is the set of all points at distance r from P (Figure 11.1.5). A sphere intersects
any plane in a circle (possibly a single point or no intersection).

r2.

Figure 11.1.5
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2 2 2
X y z
The Ellipsoid — + — + — = 1.
a* bt
This egg-shaped surface intersects a plane perpendicular to any coordinate
axis in an ellipse (Figure 11.1.6). It is inscribed in the rectangular solid
—a < x <aq, —b<y=<h, —c=<z=c
L Y2 ]2 22
The Elliptic Cone —_ y =2
at  br ¢t
This surface intersects a horizontal plane z = z, in an ellipse, and the vertical
planes x = 0 and y = 0 in two intersecting lines (Figure 11.1.7).
z
zZ

Elliptic cone

Figure 11.1.7

Ellipsoid

Figure 11.1.6
The Elliptic Paraboloid ,\2+y2 :
t. aranolio 3 73 =
e Elliptic id 2t =,
This surface intersects a horizontal plane z = z, in an ellipse and a vertical
plane x = x, or y = y, in a parabola. It is shaped like a bowl if ¢ is positive

and a mound if ¢ is negative (Figure 11.1.8).

o wr,.«:,__‘ A
G

N‘j"’

(b)

Figure 11.1.8
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x2 32
The Hyperboloid of One Sheet —+ 5 —

p b2 = 1.

2

o

The intersection of this surface with a horizontal plane z = z is an ellipse.
The intersection with a vertical plane x = x, or y = y, is a hyperbola
(Figure 11.1.9).

2 2 2

. X y z
The Hyperboloid of Two Sheets — —

L+ =1
a2 b2 c2

The surface has an upper sheet with z = ¢ and a lower sheet with z < —¢.
It intersects a horizontal plane z = z, in an ellipse if |zo] > c. It intersects a
vertical plane x = x, or y = y, in a hyperbola (Figure 11.1.10).

Hyperboloid of one sheet Hyperboloid of two sheets
Figure 11.1.9 Figure 11.1.10

[

x yr oz
p2 ¢

The Hyperbolic Paraboloid — —

8

This surface has the shape of a saddle. It intersects a horizontal plane z = z,
in a hyperbola, and a vertical plane x = x; or y = y, in a parabola (Figure
11.1.11).

Figure 11.1.11 [ Hyperbolic paraboloid
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We shall describe a method for sketching cylinders and then other graphs in
space. We concentrate on a finite portion of {x, y, z) space.

EXAMPLE 1 Sketch the portion of the cylinder x* + y? =1 where 1 <z <2
(Figure 11.1.12).

Step 7 Draw the curve x> + y? = 1 in the (x, y) plane. The curve is a circle of radius
one.

Step 2 Draw the three coordinate axes and the horizontal planes z = 1, z = 2.

Step 3 Draw the circles x? + y* = 1 where the surface intersects the two planes
z=1,z=2.

Step 4 Complete the sketch by drawing heavy lines for all edges which would be
visible on an “opaque” model of the given surface. This surface is called a
circular cylinder.

Figure 11.1.12

EXAMPLE 2 Sketch the part of the cylinder z = x? where 0 <y <2, 0<z < 1.
This is a parabolic cylinder parallel to the y-axis, because y does not appear
in the equation. The four steps are shown in Figure 11.1.13.

For sketching the graph of a function z = f(x, y), a topographic map, or
contour map, can often be used as a first step. It is a method of representing a surface
which is often found in atlases. In a topographic map, the curves f(x, y) = z, are
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z z
z
1_
0 S E
X 2 ¥y A Y
Step 1 X Step 2 x Steps 3 and 4

Figure 11.1.13

C

Os

%s .
7

x Level Curves
Figure 11.1.14

sketched in the (x,y) plane for several different constants z,, and each curve is
labeled (Figure 11.1.14). These curves are called level curves, or contours.

EXAMPLE 3 Sketch the part of the surface z = x* + y? where —1 < z < 1. This
is an elliptic paraboloid (Figure 11.1.15).

Step 1 Draw the topographic map. The level curves are circles.

Step 2 Draw the axes and the planes z = —1, z = 1.
Step 3 Draw the intersections of the surface with the planes z = —1,z = 1 and also
the planes x = 0 and y = 0.
z= —1: No intersection.
z=1: The circle x* + y* = 1.
x=0: The parabola z = y2.
y=0: The parabola z = x2.

Step 4 Complete the figure with heavy lines for visible edges.
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Step 1 X Step 2

Step 3 Step 4
Figure 11.1.15

EXAMPLE 4 Graph the function

X2

*—J)Z:Z’

4

where —3 < x <3, -2 <y <2 —1<z< 1 Thisis a hyperbolic parabo-
loid (Figure 11.1.16).

Step 7 Draw a topographic map. The level curves are hyperbolas.
Step 2 Draw the axes and rectangular solid.

Step 3 Draw the curves where the surface intersects the faces and also the planes
x = 0, y = 0. The topographic map gives the curveson z = — 1,z = 0, and
z = 1. The curves on x = 0 and y = 0 are parabolas.

Step 4 Complete Figure [1.1.16.

EXAMPLE 5 Sketch the surface

2
N

4
where —2 < z < 2, This is a hyperboloid of two sheets (Figure 11.1.17).
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Figure 11.1.16

y z
z=1x2
z=12
x y
z=*1
z= -2
Step 1 K Steps 2-4

Figure 11.1.17

Although it is not a function, it can be broken up into two functions

7 Y
z = 1+XZ+Z’ Z:_\/1+XZ+Z'

Step 1 Draw topographic maps for z = /1 + x* + y*/4 and z = — /1 + x> + y*/4.
The level curves are ellipses.
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Step 2
Step 3

Step 4

11 PARTIAL DIFFERENTIATION

Draw the axes and the planes z = 2,z = —2.
Draw the intersections of the surface with the planes
z= -2, z =2, x =0, y = 0.
The surface intersects x = 0 and y = 0 in the hyperbolas
P42 =1, —x2 422 =1

Complete Figure 11.1.17.

EXAMPLE 6 Graph the sum function z = x + y. The graph is a plane. A topographic

map and sketch of the surface are shown in Figure 11.1.18.

e

o

Figure 11.1.18

EXAMPLE 7 Sketch the graph of the product function z = xy, where

—2<x<2, —2<y<2, —1<z<1.

The surface is saddle shaped. It intersects the horizontal plane z = z4 in the
curve y = zy/x. It intersects the vertical planes x = xyand y = y, in the lines
z = xoy and z = xy,. The surface is shown in Figure 11.1.19.

Figure 11.1.19
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EXAMPLE 8 Graph the function z = /x + y* where

Step 1

Step 2
Step 3

Step 4

0=<x=1, -1 <y, 0<z<1.
The topographic map has level curves
\/;c +y2=¢ x=(c—y)* with y?<e

The derivative dx/dy = 4y(c — y*) has zeros at y = 0 and y = +./c. The
table shows that the curves are bell shaped.

y x dx/dy
—\ﬁ 0 0 Min
0 c? 0 Max

Draw the rectangular solid.

The surface intersects the plane x = 0 in the parabola z = y?, and intersects

the plane y = 0 in the curve z = \/;c It intersects the plane z = 1 in the
curve x = {1 — y»2

The surface, shown in Figure 11.1.20, is shaped like a beaker spout.

y

Figure 11.1.20

PROBLEMS FOR SECTION 11.1

Sketch the following graphs in (x, y, z) space.

1

" Ak W N

x24+y2=4, —-1<:z<51
x24+z22=1 0<y=<2
x—2+(p-1pF=1 —-1<z<1]
y—1P+@Ez+1)=1 0<x=<3
¥ 4rz=1 0<z 0<x<2

649
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y=x—x y<0 0<:zx2
X+t =1 0<z<

—xf=1, —2<x<2 0<:<4
x=siny, 0<yp=<n 0=<:<2

z=¢ " 0<x<2 0Ly<2

Ayt +t=4

(x =12+ +@+ 17

il
—_

(x— 12+ =27 +1z-3"=9
N+ -2 =4
sttt =1

Xyttt =1

Make contour maps and sketch the following surfaces.

17
18
19
20
21
22
23
24
25
26
27
28

XT4 2=z —4<:z<4
X4+ =422 —-1<z<1
X2 +hyr=22 —4<z<4
z=4x* 4+ —4<z<4
z=-—x? -y —4<z<4
2= -x?—4? -4<:<4
24?2 =1, 45254
P4 —922 =1, -2<z<2

Make contour maps of the following surfaces.

29
30
31

32

33
34
35
36

37

38
39
40
41
42
43
44

[V}

8]

[8]

[

~

y¥+z2=1 —-4<:<4
—4x? — 2+ 42 =1, —-2<z<2
x? -3y —2<x<2 -25y<2
y2—x?, —2<x<2 -2<Zy<2

x—y

¥ —2x

(P+p?+ D)7 —4<x<4d4 —4<yp<4
@i;¥j1 _4<x<4 —4=<yp<4
x4 pd, —2<x<2, —2<y<2

xy?, —2<x<2 -2<y<2

Xy, —2<x<2 0sy<4

Jx+r 0sx<4 0<y<4

% _2<x<2 —2<y<2 -4<:<4
x4yl —2<x<2 —2<y<2 -4
cosx +siny, —n2<x<pm/2, 0<y<nm
cosxesiny, —nf2<x<mnf2, 0=<y<nm
et —2<x<2 -—-2<y<2

e L)< x<2 —-2<y<2

X, 0<x<4d4, -2<y<2 —4<:<4
log y, 0<x<4 0<ys<d, -4<:z<4
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11.2 CONTINUOUS FUNCTIONS OF TWO OR MORE VARIABLES

Two points (x{, y;) and (x,, y,) in the hyperreal plane are said to be infinitely close,
(X1, Y1) & (x5, ), if both x; ~ x, and y; = y,. If

Ax = x; — x4, Ay =y, — yi,

then the distance between (x,, y,;) and (x,, y,) is
As = JAx? + Ay

LEMMA 1
Two points are infinitely close to each other if and only if the distance between

them is infinitesimal.

This lemma can be seen from Figure 11.2.1. (An easy proof of the lemma in
terms of vectors was given in Section 10.8.)

Figure 11.2.1

The definition of a continuous function in two variables is similar to the
definition in one variable.

DEFINITION
A real function f(x, y) is said to be continuous at a real point (a, b) if whenever

(x, y) is infinitely close to(a, b), f (x, y) is infinitely close to f(a, b). In other words,
if st(x) = a and st(y) = b, then st(f(x, y)) = f(a, b).

Figure 11.2.2 shows (a, b) and f{a, b) under the microscope.

Remark 1t follows from the definition that if f(x, y) is continuous at (a, b), then f(x, y)
is defined at every hyperreal point infinitely close to (g, b). In fact, it can even
be proved that f(x,y) is defined at every point in some real rectangle
a; < x < a,,b; <y < b, containing (a, b).
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fx, 0
fla, b) [Az
Sfla,

Figure 11.2.2

EXAMPLE 1 Show that f(x, y) = 2x + xy? is continuous for all (a, b). Let st(x) = a
and st(y) = b. Then

st(2x + xy?) = st(2x) + st(xy?) = 2st(x) + st(x)st(y?) = 2a + ab®.

Here is a list of important continuous functions of two variables.

THEOREM 1

The following are continuous at all real points (x, y) as indicated.
(i} The Sum Function  f(x,y) = x + ).

(ii) The Difference Function  f{(x,y) = x — .

(iii) The Product Function  f(x, y) = xy.

(iv) The Quotient Function f(x,y) = x/y, (y # 0).

(v) The Exponential Function f(x,y) = x*, (x> 0).

(i)iv) follow at once from the corresponding rules for standard parts,
st(x + y) = st{x) + st(y),
st(x — y) = st(x) — st(y),
st(xy) = st(x)st(y),

t
st(E = w if st(y) # 0.
vl siy)
(v) is equivalent to the new standard parts rule
sH(x*) = st(x)™™) if st(x) > 0.

We prove this rule using the fact that ¢' and Inu are continuous functions of one
variable.

st(x") — Sl.(eyln x) — esr(yln x) — esl(y)sl(ln X) — est(y)lnst(x) — ST(X)“”(‘V).

The next theorem shows that most functions we deal with are continuous.
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THEOREM 2

(i) If f(x,y) is continuous at (a, b) and g(u) is continuous at f(a, b), then
h(x, y) = g(f(x, )
is continuous at (a, b).

(ii) Sums, differences, products, quotients, and exponents of continuous
Jfunctions are continuous.

PROOF (i) If(x,y) =~ (a,b) then f(x,y) = f(a, b), hence g(f(x, y)) ~ g(f(a, b)), and
thus A(x, y) = h(a, b).
(i) Let f(x, y) and g(x, y) be continuous at (a, b). As an illustration we show
that if f(x, y) > O then

s 3) = f e P
is continuous at (a, b). Let (x, y) = (a, b). Then

st(h(x, ) = SH(£0x, YPE) = St(f(x, )M = f(a, bEP = hia, b).
EXAMPLE 2 By (i), h(x, y) = sin(x + y) is continuous for all (x, y).
EXAMPLE 3 By (ii), A(x, y) = sinx cosy is continuous for all (x, ).

A function is said to be continuous on a set S of points in the plane if it is
continuous at every point in S. Thus the quotient function f(x,y) = x/y is con-
tinuous on the set of all (x, y) such that y # 0. The function f(x, y) = x* is continuous
on the set of all (x, y) such that x > 0.

EXAMPLE 4 Find a set on which A(x, y) = In(x + y) is continuous.
By Theorems 1 and 2,
x + yis continuous for all (x, y),

Inu is continuous for u > 0,
In(x + y) is continuous for x + y > 0.

Answer In(x + y) is continuous on the set of all (x, y) such that x + y > 0, shown in
Figure 11.2.3.

Figure 11.2.3
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EXAMPLE 5 Find a set on which h(x, y) = x* + cos \/_.\Tiy is continuous.

x” is continuous for x > 0.
x? is continuous for all x.
x? — y is continuous for all (x, y).

/x* — yis continuous for x* — y > 0.
cos./x% — yis continuous for x2 — y > 0.

x¥ 4 cos,/x* — y is continuous for x > 0 and x? — y > 0.

Answer h(x, y) is continuous on the set of all (x, y) such that x > 0 and x> — y > 0.
The set is shown in Figure 11.2.4.

EXAMPLE 6 Find a set on which h(x, y) = log, y is continuous.

: . Iny
We use the identity log,.y = iy

Iny is continuous for y > 0.
Inx is continuous for x > 0,

Iny/Inx is continuous for x > 0, Inx # 0,y > 0,
thatis,x >0, x#1, y>0.

log.yiscontinuous forx >0, x# 1, y>0.

Answer log,y is continuous on the set of all (x, y) such that x >0, x # 1, y > 0
(Figure 11.2.5).

y

1 {
\ {
\‘ 1
\ {
\‘ I
\ !
I
¥

-
e

Figure 11.2.4 Figure 11.2.5

Continuous functions of three or more variables are defined in the natural
way, and Theorem 2 holds for such functions.

EXAMPLE 7 Find a set where the function

2
X )
h(x,y,z) = L
X+y+z

is continuous.

x? is continuous for all x.
x%y is continuous for all (x, ¥).



Answer h(x, y, z) is continuous on the set of all (x, y, z) such that x + y + z # 0.

11.2 CONTINUOUS FUNCTIONS OF TWO OR MORE VARIABLES

x + y is continuous for all (x, y).

(x + y) + z is continuous for all (x, y, z).

xX+y+z

2

is continuous for x + y + z # 0.

PROBLEMS FOR SECTION 11.2

Find the largest set you can in which the following functions are continuous.

1

11

13
15

17
19
21
23
25
27

29
31

33

35

37
O 38

Sl y)=2x -3y

flx,y)=e"™
_ Xy
f(x’y)_x—f—y
x3

f(x,y)=y+2

1
SN = o0 1)
ey =yx+y
o,y =x—~y
flx,y) = x**>

flxp) =03 =y
fle,y) = x~

flx,y) =In(x*—y)
JED = xSy
f{x, ) = log,y . (xy)

2

cosx + y

=) v
%1% "\‘-
L)t NN
<l =

y—2
1
X2+ ¥+ 27
(x + »)'*
Let

2

10

12
14
16
18
20
22
24
26
28

30
32

34

36

f(x,y)={

Show that f is not continuous at (0, 0).

0

1

fxy = THx1 )2
f(x,y)=2—+siln(—xy)
160 =
f(x,y)=x;;y

ey =x+/y
fxy =x*+y

N/
f(x5 y) - m
flx,y) =y~
flx,y) =y
S y) = I__I—X—}

J(x, ) = In(xy)

Jx,y) = In(in(x — y))

Jx, y) = logy,—, (x + 3y)

1
sinXx cosy
IxI + Iyl
X+ 0y
1
x+2y+ 3z

log.(y + 2)

if xy =0,
if xy # 0.
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39 Suppose f(x, y) is continuous at (4, b). Prove that g{x) = f(x, b) is continuous at x = a.
40 Prove that if f(x)and g(x)are continuous at x = a and if h(, v) is continuous at ( f(a), g(a)),
then
k(x) = h(f{x), g(x))
is continuous at x = a.
41 Prove that if f(x, y) and g(x, y) are both continuous at (a, ) and if (i, v) is continuous at
(f(a, b), g(a, b)), then
kx, y) = W1 (x, ), g(x, y))
is continuous at (a, b).
The notation lim f(x,y)=1L

(x.3)= (a,b)
means that whenever (x, y) is infinitely close to but not equal to (a, b), f(x, y) is infinitely close to L.
2 2
xX“+y

42 Evaluate lim ———.
- U 0.0 X[+ [y
O 43 Evaluate lim (1 4 x? 4+ yp2)leoyd,
(x,3)—{0,0)
“ Eval li il
at T
O valuate (.\‘.}')]-r"[(]O.O)\/.\’Z +3?
O 45 Evaluate Iim — —14;
(x.y)-'(0.0)\/ x4 yz
O 46 Show that lim does not exist.
(X.3)=(0.0) \/.\‘2 +32
11.3 PARTIAL DERIVATIVES

Partial derivatives are used to study the rates of change of functions of two or more
variables. In general the rate of change of z = f(x, y) will depend both on the rate
of change of x and the rate of change of y. Partial derivatives deal with the simplest
case, where only one of the independent variables is changing and the other is held
constant.

Given a function z = f(x, y), if we hold y fixed at some constant value b we
obtain a function

g(x) = f(x,b)

of x only. Geometrically the curve z = g(x) is the intersection of the surface z = f(x, )
with the vertical plane y = b. The rate of change of z with respect to x with y held
constant is the slope of the curve z = g(x). This slope is called the partial derivative
of f(x, y) with respect to x (Figure 11.3.1(a)). There is also a partial derivative with
respect to y (Figure 11.3.1(b)).

Here is a precise definition.

DEFINITION

The partial derivatives of f(x, y) at the point (a, b) are the limits

o fla+ Ax,b) — f(a,b)
Mabi= 0= e
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z zZ

(a) /b y j
- (a, b) fx, b) = g(x)
fiola, b)y=g'(a)
X
z=fx, y)
4 V4

A(y) A

i

7f(x, ») |

' i

| t

e 5 [

7 =

| |l E

(b) i ‘-

| Y b
(a, b) fla, y) = h(y)
@fommee e Pl £,(a, by = h'(b)

X
z=f(x, y)

Figure 11.3.1 Partial Derivatives

fa, by = Al)ign() flab+ g) — fla.b)

A partial derivative is undefined if the limit does not exist.

When f,(a, b) exists, it is equal to the standard part

fx(a, b) = st (f(a + Ax’Ab)z — f(a’ b))

for any nonzero infinitesimal Ax. Similarly when f(a, b) exists,

fab) = st (f(_“_AAy_yM)

for any nonzero infinitesimal Ay.

Just as the one-variable derivative f(x) is a function of x, the partial deriva-
tives f,{x, y) and f,(x, y) are again functions of x and y. At each point (x, y), the partial

derivative f,(x, y) either has exactly one value or is undefined.

657
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Another convenient notation for the partial derivatives uses the Cyrillic
lower case D, 0, called a “round 4. If z = f(x, y), we use:

A a AL
g(x’ y)’ l’ or fl' fOI‘ fx(xs ,V),
Ox Ox Ox

} 0z 0
(:—Z(x, y), —, or :1 for f(x, ).
oy dy oy

Partial derivatives, like ordinary derivatives, may be represented as quotients
of infinitesimals.

In 0z/0x, 0x means Ax and Jz means f,(x, y) Ax.
In 0z/0y, dy means Ay and dz means f,(x, y) Ay.

Notice that dz has a different meaning in dz/0x than it has in dz/¢y. For this

reason we shall avoid using the symbol 0z alone.
Partial derivatives are easily computed using the ordinary rules of differentia-

tion with all but one variable treated as a constant.

EXAMPLE 1 Find the partial derivatives of the function
S, p) = x* + 3xy — 8y
at the point (2, — 1).
To find f(x, y), we treat y as a constant,
Sdx, y) = 2x + 3y.
To find f{x, y), we treat x as a constant,
Sy =3x ~ 8.
Thus [, —-10)=2.2+3-1)=1, M2, —-1)=3.2-8= -2
Figure 11.3.2 shows the surface z = f(x, y) and the tangent lines at the point
(2, — 1)
EXAMPLE 2 A point P(x, y) has distance z = ./x? + y? from the origin (Figure
11.3.3). Find the rate of change of z at P(3, 4) if:

(a) P moves at unit speed in the x direction.
(b) P moves at unit speed in the y direction.

In this problem the round d notation is convenient.

@ Zpop =
A !y =T
(259 N x2 + yz
5} 3
6—2(3,4) o3 3
x 32 +42 5
0z y
(b) - (x,y) = ===,
) 3y ) e
Oz 4 4
(34 = == .
dy 32442 5



11.3 PARTIAL DERIVATIVES

SN

-0

Figure 11.3.2

Figure 11.3.3 X

Functions of three or more variables cannot easily be represented graphically.
However, they can be given other physical interpretations. For example, w = f(x, y, 1)
may be pictured as a moving surface in (x, y, w) space where  is time. Alternatively,
w = f(x, y, z) may be thought of as assigning a number to each point of (x, y, z) space
where it is defined ; for example, w could be the density of a three-dimensional object
at the point (x, y, 2).

Partial derivatives of functions of three or more variables are defined in a
manner analogous to the two-variable case.

DEFINITION
The partial derivatives of f(x, y, z) at the point (a, b, ¢) are the limits

fia,byc) = lim 10T %09 7 f(a,b¢)

Ax—0 Ax

659
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[£ b Cc) = ]'m f(a’ b Ays C) f(a, b, C)
-‘-—‘——7,
ﬂv( 1, D, ) . AY

Az—0 Az

A partial derivative is undefined if the limit does not exist.

When f(a, b, c) exists we have

fla + Ax,b,¢) — fla, b, c)

Sla, b, c) = st A

for nonzero infinitesimal Ax.

Thus f,(x, v, z) is the rate of change of f(x, y, z) with respect to x when y and
z are held constant.

We also use the round d notation. If w = f(x, y, z), we use:

ow ow of

—(x, ¥, 2), , or — for fx,y,2),
S na o or oo forfilx).2)
ow ow of i
—(x,y,2z), ——, or —=— forf(xyz),
oy D 5 5y forhler2)
ow ow ef

— (02, —, or = forf,(>xy,2).
P . 2, f05y.2)

EXAMPLE 3 Find the partial derivatives of
Sy, 2) = sin(x*y — 2)
at the point (1, 0, 0).
To find f(x, y, z) we treat y and z as constants,
Jfox, v, 2) = 2xy cos(x2y - 2).
Hx, p.2) = x* cos(x?y — z).
fAx, y,2) = —cos(x?y — 2).
Thus £1,0,0) = 2+1.0cos(1?-0 — 0) = 0.
£(1,0,0) = 1?cos(1?:0 — 0) = 1.
£.(1,0,0) = —cos(1?:0 — 0) = — 1.

PROBLEMS FOR SECTION 11.3

In Problems 1-28, find the partial derivatives.

1 z=4x — 3y 2 z=143x+ 5y
3 z=xp* + x3y 4 z=x3%?
5 z = ! — 6 o= 717

x? 4 y? xy+ 1

7 Sl p) = xy 8 Jx0y) = x/y
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9 flxy)=ax+by 10 [y = et
11 fl,y) =% 12 S(x,y) = sin x cos y
13 fl,y)=/x+ 2y 14 f(x,y)=\/;c}+\[\‘+\/}
15 z=x" 16 z=x'"
17 z = In(xy) 18 z = In(ax + by)
19 z = log.y 20 z = tanx arctany
21 z = arcsin (x?y) 22 W= Xyz
23 w= m 24 flx,y,2) = xe*™ ¢
25 f(x,y,2) = ax + by + cz 26 fx,y,2) = xybz*
27 w=zcosx + zsiny 28 w = zcoshx + zsinhy

In Problems 29-40 find the partial derivatives at the given point.

29 fx,yy=xy% x=1, y=2
30 f(x,y)=xﬁ, x=2, y=4
31 fx,n=1/xy, x=-1, y=1
i 1
32 f(x,y):;+;, x=3 y=4
33 z=e9, x=0, y=2
34 z=¢e" x=0, y=2
35 z=¢e"cosy, x=1, y=0
36 z=¢€"siny, x=1, y=0
37 Z=—x2~:—y3’ x=2, y=3
38 2=/ +xy+ 2y, x=1, y=1
39 fyza)=x*+y>+2% x=1, y=2, z=3
x X

40 f(x,y,z):;—;, x=1, y=1, z=1
41 A point P(x, y)at (1, 2) is moving at unit speed in the x direction. Find the rate of change

of the distance from P to the origin.
42 A point P(x, y) at (1, 2) is moving at unit speed in the y direction. Find the rate of change

of the distance from P to the point (5, —1).
43 A point P(x, y, z) is moving at unit speed in the x direction. Find the rate of change of

the distance from P to the origin when P is at (1, 2, 2).
44 A point P(x, y, z) is moving at unit speed in the z direction. Find the rate of change of

the distance from P to the origin when P is at (3, \/5 2).
45 Find b and ¢ if for all x and y,

z=2x*+bxy+cy* and % _ 0
dx Oy
46 Find b if for all x and y
. . 0z 0z
z =sinxsiny + bcosxcosy and "oy

47 It is found that the cost of producing x units of commodity one and y units of commodity

two is
Clx,y) = 100 + 3x + 4y — /xp.
Find the partial marginal costs with respect to x and y, 0C/dx and C/0y.
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48 When a certain three commodities are produced in quantities x, y, and z respectively,
it is found that they can be sold at a profit of

P(x,y,z) = 100x + 100y + yz — xy — z2,

Find the marginal profits with respect to x, y and z; i.e., P/0x, ¢P/0y, and 0P/éz.

TOTAL DIFFERENTIALS AND TANGENT PLANES

Most of the functions we encounter have continuous partial derivatives. To keep
our theory simple we shall concentrate on such functions in this chapter.

DEFINITION

A function f(x, y) is said to be smooth at (a, b) if both of its partial derivatives
exist and are continuous at (a, b).

The definition for three or more variables is similar.

The Increment Theorem for a diflerentiable function of one variable shows
that the increment Az is very close to the differential dz, and leads to the notion of a
tangent line. In this section we introduce the increment and total differential for a
function of two variables. Then we state an Increment Theorem for a smooth function
of two variables, which leads to the notion of a tangent plane.

Let z depend on the two independent variables x and y, z = f(x, y). Let Ax
and Ay be two new independent variables, called the increments of x and y. Usually
Ax and Ay are taken to be infinitesimals.

We now introduce two new dependent variables, the increment Az and the
total differential dz.

DEFINITION

When z = f(x, y), the increment of z is the dependent variable Az given by

Az = f(x + Ax,y + Ay) — f(x, y).

The increment Az depends on the four independent variables x, y, Ax, Ay,
and is equal to the change in z as x changes by Ax and y changes by Ay. Thus

Az = Af(x, y, Ax, Ay),
where Af is the function

Af(x, p, Ax, Ay) = flx + Ax,y + Ay) — f(x, ).

DEFINITION

When z = f(x, y), the total differential of z is the dependent variable dz given by
dz = [ix, y)dx + f(x, y)dy,
0z

0
or equivalently dz = —dx + 1—Zdy.
éx dy
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When x and y are independent variables, dx and dy are the same as Ax and
Ay. The total differential dz depends on the four independent variables x, y, dx, and dy.
Thus

dz = df (x, y, dx, dy),
where df is the function
df (x, y, dx, dy) = f{x, y)dx + f(x, y)dy.

Figure 11.4.1 shows Az under the microscope.

flx+ Ax,y + Ay)

Increments

(x+ Ax, y + Ay)

Figure 11.4.1

EXAMPLE 1 Find the increment and total differential of the product function z = xy
(Figure 11.4.2).

Increment: Az = (x + Ax)(y + Ay) — xy = yAx + x Ay + Ax Ay.

Total differential: dz = g—i dx + %dy = ydx + xdy.
Ay x Ay Ax Ay
y Xy y Ax
Figure 11.4.2 X Ax

EXAMPLE 2 Find the increment and total differential of z = x* — 3xy?.

Increment :
Az = [(x + Ax)? — 3(x + Ax)(y + Ay)*] — [x? — 3xy?]
= [x? + 2x Ax + Ax? — 3xy? — 6xy Ay — 3x Ay* — 3 Axy?
—6 Axy Ay — 3 Ax Ay?] — [x* — 3xy?]
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= 2xAx 4+ Ax? — 6xy Ay — 3x Ay? — 3Axy? — 6 Axy Ay ~ 3 Ax Ay?
= (2x — 3p*) Ax — 6xy Ay + Ax? — 3x Ay? — 6y Ax Ay — 3 Ax Ay*.

Total differential :

Cz Cz

oo -3 Eo e

éx ¢y
cz iz

dz = —dx + —dy = (2x — 3p?)dx — 6xy dy.
Cx cy

We shall now state the Increment Theorem. It shows that Az is very close to
dz.

INCREMENT THEOREM FOR TWO VARIABLES
Suppose z = f(x, y) is smooth at (a, b). Let Ax and Ay be infinitesimal. Then
Az =dz + ¢, Ax + g, Ay

Jfor some infinitesimals &; and &, which depend on Ax and Ay.
Before proving the Increment Theorem, let us check it for Examples 1 and 2.

EXAMPLE 1 (Continued) The product function z = xy is smooth for all (x,y).
Express Az in the form

Az =dz + ¢, Ax + ¢, Ay.
We have Az = y Ax + x Ay + Ax Ay,
dz = y Ax + x Ay.
Thus Az =dz + Ax « Ay.

The problem has more than one correct answer. One answer is g, = 0
and ¢, = Ax, so that

Az =dz + 0+« Ax + Ax « Ay = dz + ¢, Ax + &, Ay,
Another answer is ¢; = Ay and ¢, = 0, so that
Az =dz + Ay »Ax + 0« Ay = dz + g; Ax + &, Ay.

EXAMPLE 2 (Continued) The function z = x* — 3xy*® is smooth for all (x, ).
Express Az in the form

Az =dz + &) Ax 4 ¢, Ay
at an arbitrary point (x, y) and at the point (5, 4). We have
Az = (2x — 3y?) Ax — 6xy Ay + Ax? — 3x Ay? — 6y Ax Ay — 3 Ax Ay?,
dz = (2x — 3y%) Ax — 6xy Ay.
Then Az = dz + Ax? — 3x Ay? — 6y Ax Ay — 3 Ax Ay*.

Each term after the dz has either a Ax or a Ay or both. Factor Ax from
all the terms where Ax appears and Ay from the remaining terms.
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Az = dz + (Ax — 6y Ay — 3 Ay?) Ax + (—3x Ay) Ay.
Then Az =dz + &, Ax + &, Ay,
where g, = Ax — 6y Ay — 3 Ay, g, = —3x Ay
At the point (5, 4),
Az =dz + g Ax + &, Ay,
where g, =Ax — 24 Ay — 3 Ay?, &, = —15Ay.

PROOF OF THE INCREMENT THEOREM We break Az into two parts by going

Figure 11.4.3

0)

@)

first from (a, b) to (¢ + Ax, b) and then from (@ + Ax, b)to (a + Ax, b + Ay),
as shown in Figure 11.4.3,

y (a+ Ax, b+ Ay)

(a+ Ax, yy)

l (a+ Ax, b)

(a, b)

Az =[f(a+ Ax,b + Ay) — fla + Ax,b)] + [f(a + Ax,b) — f(a, b)].
Our plan is as follows. First, we regard f(a, b) as a one-variable function of a
and show that

fla + Ax,b) — f(a,b) = f(a,b) Ax + ¢, Ax for some infinitesimal ¢, .

Second, we regard f(a + Ax, b) as a one-variable function of b and show that

fla+ Ax,b + Ay) — fla + Ax,b) = f{a,D) Ay + &, Ay
for some infinitesimal ¢, .

Once Equations 1 and 2 are established the proof will be complete because
by adding Equations 1 and 2 we get the desired result

Az = fla, by Ax + fa,D)Ay + &, Ax + e, Ay = dz + ¢, Ax + &, Ay.

Equation | follows at once from the one-variable Increment Theorem since
[fda, b) exists.

We now prove Equation 2. We regard f(a¢ + Ax, y) as a one-variable function
of y. For all y between b and b + Ay, the point (¢ + Ax, y) is infinitely close
to (a, b),so f(a + Ax, y) is defined. By the one-variable Mean Value Theorem
on the interval [b, b + Ay], there is a y; between b and b + Ay such that

__f(a+Ax,b+Ay)—f(a+Ax,b)

fa + Ax, y)) = Ay :

Since f is continuous at (a, b),

665
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Sla + Ax,y,) = fla,b) + &5,
where ¢, is infinitesimal. Then

fla + Ax, b + Ay) — f(a + Ax, b)
Ay

= fla,b) + &;,
and Equation 2 follows.

The following corollary is analogous to the theorem that a differentiable
function of one variable is continuous.

COROLLARY 1
If a function z = f(x, y) is smooth at (a, b) then it is continuous at (a, b).
PROOF Let (x, y) be infinitely close to (a, b) and let
Ax-=x — a, Ay =y — b
Then Az =dz + ¢, Ax + &, Ay

o2
n

cz
= Ax+7Ay+ele+82Ay.
iX ¢y

'

~

Since Ax and Ay are infinitesimal, Az is infinitesimal, so f(x, y) = f(a, b).

Some examples of what can happen when the function is not smooth are
given in the problem set.

Ifa function z = f(x, y) is smooth at (a, b), the curve z = f(x, b) has a tangent
line L, on the plane y = b, and the curve z = f(q, v} has a tangent line L, on the
plane x = a.

L, has the equation z — fla,b) = fla, b)(x — a)
and L, has the equation  z — f(a, b) = f(a, b)(y — b).

The plane determined by the lines L, and L, is called the tangent plane. It has the
equation

z — fla,b) = fda,b)(x — a) + fi(a,b)(y — b),

because the graph p of this equation is a plane and intersects the plane y = bin L, and
the plane x = a in L, (Figure 11.4.4).

DEFINITION

The tangent plane of a smooth function z = f(x, y) at (a, b) is the plane with
the equation

z — fla,b) = fda,b)(x — a) + fa,b)(y — b).

If we set x = ¢ and y = b in thisequation we get z = f(a, b). f weset x — a = dx
and y — b = dy we get z — f(a, b) = dz. Therefore:

The tangent plane touches the surface at (a, b).
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/

y
-
Figure 11.4.4 x Tangent plane p

Az = change in z on the surface.
dz = change in z on the tangent plane.

Figure 11.4.5 shows Az and dz.

z

i ‘ i,}? (a, b)

Az and dz
Figure 11.4.5

Our second corollary to the Increment Theorem shows that the tangent
plane closely follows the surface.

COROLLARY 2

Suppose z = f(x, y) is smooth at (a,b). Then for every point (x,y) at an in-
finitesimal distance

As = JAx? + Ay?
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from (a, b), the change in z on the tangent plane is infinitely close to the change
in z along the surface compared to As, i.e.,

Az dz

As T As’

PROOF We have Az = dz + ¢, Ax + ¢, Ay. Both Ax/As and Ay/As are finite, so

E:di+8 g—ka Ai

As  As ' As 2 As’
Az dz Ax Ay
E—Ezglx-ﬁgzgxo.

In Figure 11.4.6, we see that the piece of the surface seen through an infinitesi-
mal microscope aimed at (a, b, f(a, b)) is infinitely close to a piece of the tangent plane,
compared to the field of view of the microscope.

z

Figure 11.4.6

EXAMPLE 3 Find the equation of the tangent plane to
z=1+sin(2x + 3y)

at the point (0, 0).
We have

~ A
CZ

g(x, ¥) = 2cos(2x + 3y), —(x,)) = 3cos(2x + 3y).
dx dy

At the point (0, 0), z=1+4sin(0 + Q) =1,
0z oz
—(0,0)=2cos(0 + 0) = 2, —(0,0) = 3cos(0 + 0) = 3.
oX cy

The equation of the tangent plane is z — 1 = 2(x — 0) + 3(y — 0), or
z=2x+3y + 1.
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EXAMPLE 4 Find the tangent plane to the sphere
x*+y + 22 =14
at the point (1, 2, 3) (Figure 11.4.7).

The top hemisphere has the equation z = /14 — x2 — y2.

0z X X

T —_— pemmad —_——— . == —
hen 6x(x,y) TR >

0z y Y

)= et = =2,
VT T iy

(1,2,3)

Figure 11.4.7 x

0z 1 0z 2
At(1,2), z=273, 5;(1,2) =3 @(1,2) =-3

Then the tangent plane has the equation
0z

0z
3 =x =)+ Sy =2
z—-3 %u )+®w ),

2
z—3=—§(x—1)+(—§)(y—2),

or x4+ 2y + 3z =14

The total differential of a function w = f(x,y, z) of three variables is the

dependent variable dw given by
dw = f(x,y,2)dx + f(x, y.2)dy + [, y,2) dz,

ow ow

g
or equivalently dw = 5‘;; dx + e dy + e dz.

The following Increment Theorem has a proof like the Increment Theorem

for two variables.

669
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INCREMENT THEOREM FOR THREE VARIABLES

Suppose w = f(x, y, z) is smooth at (a, b, ¢). Let Ax, Ay, and Az be infinitesimal.
Then the increment Aw is equal to

Aw =dw + g, Ax + &, Ay + ¢; Az

for some infinitesimals &, , &, , &5 which depend on Ax, Ay, and Az.

EXAMPLE 5 Given w = xyz, express the increment Aw in the form
Aw = dw + ¢, Ax + &, Ay + &; Az.
We first find Aw and dw,
Aw = (x + Ax)(y + Ay)(z + Az) — xyz
=yzAx + xzAy + xyAz + xAy Az + yAx Az + z Ax Ay + Ax Ay Az
Ow _@ ow

ax = yz, = Xz, 5;
dw = yz Ax + xz Ay + xy Az.
Thus Aw =dw + (y Az + z Ay) Ax + (x Az) Ay + (Ax Ay) Az

a = xy'
dy

Figure 11.4.8 pictures dw and Aw.

Az s

z .
xyz -

// ¥ Ay

//

x )
Ax
W dw Aw — dw
Figure 11.4.8

PROBLEMS FOR SECTION 11.4

In Problems 1-16, find the increment and total differential.

1 z=1+ 3x — 2y 2 z=x%—)?

3 z = x2y? 4 z=x%

5 z = l/xy 6 z=¢"

7 z =¥ W 8 z = cosx + siny
9 z = cosxsiny 10 z = In(x + 2y)
11 z=xlny 12 2= /xy
13 w=x+2y+ 3z 14 w=x?+ y?+ 2?

15 w=Xxy+ yz 16 W= \/gc + \ﬁ + \ﬁ
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In Problems 17-22, express Az in the form Az = dz + &, Ax + ¢, Ay.

17 z=x*+y? 18 z=x>+y
19 z = x%y 20 z=3xy — 2x* + y?
21 2= % 22 2= p/x

In Problems 23-40 find the tangent plane at the given point.

23 z=2x>+y*at(1,2) 24 z=x%—~4y*at(-2,1)
25 z=2x%y + y? + Jat(l. 1) 26 z=x%y? + xy® + 2at(—1,2)
27 z=/xy+ lat(l,1) 28 z=x - 2/yat41
29 z=e"at(l,3) 30 z=e " at(—1, —1)
31 z = sinx siny at (n/3, n/4) 32 z = tan(xy) at (m, 1/4)
33 z=xy*—2at(0,1) 34 z=x%y* 4+ 2at(0,0)
35 z = cosx cosy at (0,0) 36 z = arctan(2x — y) at (1,4)
37 X244+ z2=9at(l,-22)
38 X+ 22432 =6at(—1,1,-1)
39 24yt —zZ2=1at(l,1,1) 40 —x2 -y +z22=1at(2,~23)
41 Show that if z is a linear function of x and y, z = ax + by + ¢, then Az = dz at every
point (x, y).
0 ifxy=0
2 Let f(xy) = {1 ifxi;éo.

Show that at (0, 0)

(@) f(x,y)is not continuous;

(b) £.0,0) and £,(0, 0) exist;

(€) f(x,y)is not smooth.
43 Let f(x, y) = /xy. Prove that at the point (0, 0),

(a) f(x,y)is continuous;

(b) £40,0) and f(0, 0) exist;

(©)  f(x,y)is not smooth;

(d) Az is not infinitely close to dz compared to As = \/Ax* + Ay%.
44 Let f(x, y) = {xy|. Show that at (0, 0),

(a) f(x,y)iscontinuous;

(b) f40,0) and (0, 0) exist;

(©)  f(x,)is not smooth;

(d) Az isinfinitely close to dz compared to As.
45 Let f(x,y) = x| + |y|. Show that at (0, 0),

(@) f(x,y)is continuous;

(b) £(0,0) and f,(0, 0) do not exist.

CHAIN RULE

671

The Chain Rule is useful when several variables depend on each other. A typical case
is where z depends on x and y, while x and y depend on another variable t. We shall
call t the independent variable, x and y the intermediate variables, and z the dependent
variable. Figure 11.5.1 shows which variables depend on which.



672 11 PARTIAL DIFFERENTIATION

z dependent

x\ / y intermediate

Figure 11.5.1 1 independent

CHAIN RULE

If z is a smooth function of x and y, while x and y are differentiable functions
of t, then dz/dt exists and

dz 0Oz dx + dz dy
dt— Oxdr = dydt

Discussion If z = F(x, y) and x = g(t), y = h(t), then z as a function of ¢ is
z = f(0) = F(gQ), hlr)).

We can give a more precise statement of the Chain Rule using functional
notation:

If g(t) and h(¢) are differentiable at ¢4, and F(x, y) is smooth at (xq, yo) where
xo = 8(ty) and y, = hit,), then f*(t,) exists and

S(to) = Fxo, yo)g'te) + F(xq, Vo)l (to).
We shall give some examples and then prove the Chain Rule.

EXAMPLE 1 A particle moves in such a way that

dx dy
= =6, A
dt dt

Find the rate of change of the distance from the particle to the origin when
the particle is at the point (3, —4) (Figure 11.5.2).

3, —4) N

Figure 11.5.2
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z = x2+y2,
oz X 0z y
2 _ozdx ozdy - 6 %
de oxde  Oydi /X742 NS
6-3 2.(—4 26

T ria 3r4 5

EXAMPLE 2 Find the derivative of z = \/sint, using the Chain Rule. (This can also
be done by logarithmic differentiation.)

[

Let X = sint, y=7
Then z = x*.
0 Cz
Z oyl S = (nxx,
" ay
0st dy !
— = cost, =
dt dt t?

dz_oedx | 0cdy
dt  Oxdt = Oydt

1
= yx* " 'cost + (In x)x"( — —)

t2
Usintcost  In(sint),/sint
© tsint t? ’

EXAMPLE 3 Suppose the price z of steel is proportional to the population x divided
by the supply y,

z=—.
y
x and y depend on time in such a way that
‘% = 0.01x, ‘% = —/x.
Find the rate of increase in the price z when x = 1,000,000, y = 10,000.
Jz ¢ 0z cx

> 2

ox y  dy

dz 0zdx 9dzdy ¢ €x

—=-——+4-—— =—(001 E—

dt  Ox dt * dy di y( )+ ( y2) ( \/;C)
= 210741072+ 10° + ¢+ 10° - (10~ %)% . (105)1/2
=c(l + 10) = 11lc.
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PROOF OF THE CHAIN RULE We use the Increment Theorem. Let At be a non-
zero infinitesimal, and let Ax, Ay, and Az be the corresponding increments of
x,y and z. Then Ax and Ay are infinitesimal, and

~

&z éz
Az = —Ax + —Ay + e Ax + &, Ay,
cy

-

cX

where ¢, and ¢, are infinitesimal. Dividing by At,

Az 0z Ax 4 bz Ay N Ax N Ay

— =t — =t + &y

At Sx Ar ey At TAr T TP A
Taking standard parts, we see that

dz ¢zdx Czdy

o axdi Taydr

There is a Chain Rule for any number of independent and intermediate
variables. We state the simplest cases here.

The Chain Rules for two or more independent variables follow from the
Chain Rules for one independent variable.

If z depends on x and x depends on s and ¢, we have the diagram in Figure
11.5.3. The Chain Rule for this case is:

If z is a differentiable function of x and x is a smooth function of s and t, then
0z dz Ox ¢z dz Ox
ds  dx ds’

~
ol

& dx ot

This follows from the ordinary Chain Rule in Chapter 2 by holding s or ¢
constant.

If z depends on x and y while x and y depend on s and r, we have the diagram
in Figure 11.5.4. The Chain Rule for this case is:

If z is a smooth function of x and y while x and y are smooth functions of s and
¢, then

0z 0z dx 0z 0y dz 0z dx <Czdy

=t 2, o= -
G oxds opds a1 oxor oy

z dependent /Z\ dependent

X intermediate X y intermediate

RN |

K 1 independent
Figure 11.5.3 Figure 11.5.4

independent
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The Chain Rule for three intermediate variables is proved like the Chain
Rule for two intermediate variables. We have the diagram in Figure 11.5.5.

If wis a smooth function of x, y, and z, which are in turn differentiable functions

of t, then
dw  ow dx 4 cwdy Owdz
dt — 0x dt 8y dt  éz di
/w\ dependent
X v z intermediate
Figure 11.5.5 \ t/ independent

EXAMPLE 4 Use the Chain Rule to compute 0z/8s and 6z/0r where

o

z=x~, X = st, y =s? -

y

0z 2x 0z x?

ax  y’ oy ¥

0x oy

=t = = 2s.

os s 28

Ox ay

- = —= =2t

ot ’ ot
0z 90z dx 0z dy 2x @ x?
o B2 X
ds 0Oxds dyds oy y

2st? 2532

T2 2 - (52 — t2)2'

2
%:%24_6*2@:255—%(—20
ot dxdt dydt y y

25t 2523
= 22 + (s> — )%

As a check, we compute dz/ds and 0z/dt directly without the Chain Rule.

x? s2t?
z= 7 = sl — t2.
0z (s* — £2)2st® — (25)5°7  2st? 25312
a - (52 _ tz)z T2 £2 (52 _ [2)2'
dz (s> — )2s’n — (=208’ 25%t 25213

('Tt - (32 — tz)z T2 g2 (Sz _ tz)z'

675
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EXAMPLE 5 Let z depend on x and y and let x = r cos#, y = rsinfl. Use the Chain
Rule to obtain formulas for dz/0r and ¢z/06.

-

Ox oy .
— = cosd, — = sind.
. ar

Ox ) dy

— = —rsinf, — = rcosf.

co o
0z &zéx  Czdy @z oz
== + - = —cosl + ——sin0.
ér Ox or  dy ér Ox Cy
Cz 6‘zéx+826y oz | 9+6Z 0
—=—=—+—--= ——rsin —rcost.
ce  ox o0  dy o0 0x oy

EXAMPLE 6 A rectangular solid has sides x, y, and z. Find the rate of change of the
volume V = xyz if

x=1, y =2, z=3 (in feet),

dx dy dz .
—_— = 1 —_— = - —_— = 2 3
& , i , 0 (in feet per second)
We h eV ) oV oV
- = - =) -— = XV
e have o ye, 2y Xz, 3z Xy,
dv aVdx 3V dy JV dz
SO e
dr Ox dt  dy dt 0z dt
dx dy dz
=2.32= 32 1.0
23 dt 13 dt + dt

=231+ 1:3+(=5)+1:2.2= -5,

Thus the volume is decreasing at — 5 cubic feet per second (Figure 11.5.6).

z

2 ft./sec.T

I/ _____ <_—
/ —5 ft./sec.

3 ft./sei/

Figure 11.5.6 X
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PROBLEMS FOR SECTION 11.5

In Problems 1-6, calculate dz/dt by the Chain Rule and check by a direct calculation.

1 z=x2—y% x=¢, y=e!
2 z=x%y?, x=cost, y=sint
3 z——&1 x—sinE ) = si L
Tax+ by T al> =
~ 1
4 zZ= eax+b)', X = \/ts y= 7
t
Inx
5 = — X = = si
z iny’ x = cosh(2t), y = sinh(2t)
6 z=lnxIny, x=tan(3t), y = sec(3t)

In Problems 7-14, calculate dz/dt by the Chain Rule.

7 z=(t+ 8 z=(1+%)

9 z = sint®** 10 z = \ﬁ‘/'

11 z = loggyy, (* — 1) 12 z = logg,, (cost)
d>

13 z=13x -2y, d—f:,n—t‘*, %:,/1~t3

14 z=x+2y+3, g:cosl Q:sinl

dt t dt {

In Problems 15-20, find 8z/8s and ¢z/6t by the Chain Rule.

15 z=1y y=scost 16 z = siny, y = st?
17 z=Inx, x=5*—1* 18 z=¢&%, x = cos(2s) + sin(3n)
1
19 z = ax + by, X=Tp Ve
20 z=x?—y?, x=scost, y=ssint
L . 0z 0z
21 If z = f(ax + by) and f is differentiable, show that ba = aa—y.
22 If z = f(x + at, y + bt) and f is smooth, show that
% = aﬂ + b%
o ox dy’
23 Ifz = f(x,y), x=rcosh, y=rsinf, and fis smooth, show that
oz\* 1 [az\* [of\*  [&f\?
& (-3 B
24 Ifz=f (;2)3—))2), where f is differentiable, show that
O yZ
*ox yay -
25 Find dw/dtr where w = xcosz + ysinz,x = e,y =e¢ ',z = \ﬂ
26 Find dw/dt where w = xy?23, x =2t + 1,y =3t — 2,z = 1 — 4z,

In Problems 27-30, find formulas for dz/dt.

27 z=/x*+ %, x=f@, y=2g
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28
29
30
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z=x%, x=f@t), y=gl)
z=x x= [0, y=3g
z=log,y, x=/f@). y=zgl)

In Problems 31-36, find formulas for ¢z/¢s and ¢z/¢t.

31
33
35

37

38

39

40

41

42

43

2= flu), u=as+ b 32 z=f(u), u=st

s=¢é" u={fi(s1) 34 == fw), u=gs)+ At)

z = g(s)hlr) 36 z=[(x,y), x=g(s)h y=h)

A particle moves in the (x, y) plane so that dx/dr = 2, dy/dt = —4. Find dz/dt, where z

is the distance from the origin, when the particle is at the point (3, 4).
A particle moves in the (x, y) plane so that
dx 1 1 dy
— ==+, — =2 3
dt  x * ¥ dt Xt
Find dz/dt, where z is the distance of the particle from the point (1, 2), when the particle
is at (2, 3).

A particle moves in space so that

by dv_, &
a7 dt " dr
Find the rate of change of the distance from the origin when x = 1,y = —2,z = 2.

Find the rate of change of the area of a rectangle when the sides have lengths x = 5§
and y = 6 and are changing at rates dx/dt = 3, dy/dt = —4.

Find the rate of change of the perimeter of a rectangle when the sides are x = 2, y = 4
and are changing at the rates dx/dt = —2, dy/dtr = 3.

The per capita income of a country is equal to the national income x divided by the
population y. Find the rate of change in per capita income when x = $10 billion,
y = 10 million, dx/dt = $10 million per year, dy/dt = 50,000 people per year.

The profit of a manufacturer is equal to the total revenue x minus the total cost y, As
the number of items produced, v, is increased, the revenue and cost increase at the rates
dx/du = 500/u and dyjdu = l/\/;{. Find the rate of increase of profit with respect to u
when u = 10,000.

When commodities one and two have prices p and g respectively, their respective
demands are D (p, q) and D,(p, g). The revenue at prices p and q is the quantity

Rip,q) = pD\(p. @) + qD:(p, 9),
since a quantity D, (p, g) can be sold at price p and a quantity D,(p, ¢) at price g. Find
formulas for the partial marginal revenues with respect to price, dR/8p and 8R/dq.

IMPLICIT FUNCTIONS

In many applications of the Chain Rule, one or more of the independent variables
is also used as an intermediate variable. The simplest case where this occurs is when
z depends on x and y while y depends on x,

y = glx), z = Fl(x, p)

Figure 11.6.1 shows which variables depend on which.

Assuming F(x, y) is smooth and dy/dx = g'(x) exists, the Chain Rule gives
dz ézg dz dy dz 0z Oz dy

dx T axdx Tayde O dx T ox | dpdx



11.6 IMPLICIT FUNCTIONS

dependent

ZN
NS

Here dz/dx stands for f'(x) where z = f(x) = F(x, g(x)), and dz/0x stands for
The round d, 0, is useful in telling the two apart.

intermediate

independent

Figure 11.6.1

EXAMPLE 1 If z = 2x + 3y, y = sinx,
find dz/0x and dz/dx when x = 0.

0z

0x

dz 0z 0z dy

=2

E=&+aydx_2+3008x
When x = 0, g—xz—=2+3c030=5.

As a check, we find dz/dx directly.
z=2x+4+ 3y = 2x + 3sinx.
dz

—=2+3 .
I + 3cosx
dz
When x = 0, — =2+ 3cos0 =5
dx

EXAMPLE 2 Use the Chain Rule to obtain a formula for dz/dx where z = x¥ and y

depends on x.

0z z

—_— )—1 _— = y

Ix = yx’7 1, 3 (In x)x”.

dz 0z 0zdy dy

DA G A y—1 1 y 7
dx Ox- 0ydx yx7 7+ (Inx)x dx

The Chain Rule can also be used in problems where dz/dx is known and dy/dx

is to be found.

In many problems we are given a relationship between x and y which can be
expressed by an equation of the form F(x, y) = 0, and we wish to find dy/dx. The
graph of F(x, y) = 0 is usually a curve in the (x, y) plane. If we put z = F(x,y) = 0,
then dz/dx = 0 while dy/dx is the slope of the curve. Ordinarily such a curve can be

Fo(x, y).

divided into finitely many pieces each of which is the graph of a function y = g(x).

For example, the top and bottom halves of the circle

x2+3y2—1=0

679
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are the functions

yz\/l—xE, y=—/1 —x?
shown in Figure 11.6.2.

REAR
-

N

(@) x*+yr—1=0 by y=1—x? © y=—1-x*
Figure 11.6.2
DEFINITION

An implicit function of the curve F(x,y) = 0 at (a,b) is a function y = g(x)
such that:
(i) gla) = b;
(il The domain of g(x) is an open interval containing a;
(1)) The graph of y = g(x) is a subset of the graph of F(x.y) = 0.

If every implicit function of F(x, y) = O has the same slope S at (a, b), we call
S the slope of the curve.

Figure 11.6.3 shows an implicit function y = g(x) of a curve F(x, y) = 0.
It is often hard or impossible to express an implicit function in terms of known
(or elementary) functions. However, the next theorem gives an easy test for showing
that there is an implicit function and finding its slope.

IMPLICIT FUNCTION THEOREM

Suppose that at the point (a, b), z = F(x, y)is smooth, F(a, b) = 0, and éz/¢y # 0.

v y
\ \
(a, b) (a, b)
!
] g(x)
) £ oo
a X a X

Figure 11.6.3
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Then the curve F(x, y) = 0 at (a, b) has an implicit function and the slope

dy  0zfox
dx  0z/dy’

There are three things to prove:

(1) There exists an implicit function y = g(x) at (a, b).
(2) The slope dy/dx = g'(a) exists.
(3) dy/dx has the required value.

Instead of proving the whole theorem, we give an intuitive argument for (1)
and (2) and then prove (3). The surface z = F(x, y) has a tangent plane at (a, b, 0). If
we intersect the surface and tangent plane with the plane z = 0 we get the curve
0 = F(x, y) and a line L. Through an infinitesimal microscope aimed at the point
(a, b), the curve looks like the graph of a function y = g(x) which has the tangent line
L and thus has a slope at (g, b) (Figure 11.6.4).

Figure 11.6.4
. dy . .
PROOF OF (3) Given that the slope I exists, we compute its value.
x

dz 0z Odzdy

By the Chain Rule, I ox + 5 I
But F(x, g(x)) is identically zero, so dz/dx = 0 and
dz 0z dy
0=—+_-——.
ax oy dx
. 0z dy Jz/0x
Smceb—}—)¢0, Frie _02/6))'
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The best way to remember the minus sign in the above equation is to derive
the equation yourself. Start with the Chain Rule for dz/dx = 0 and solve for dy/dx.
One way to understand the minus sign is as follows: if z/0x and 0z/0y are positive,
an increase in x must be offset by a decrease in y to keep z constant, so dy/dx should
be negative.

Warning: The two 0z’s have different meanings and cannot be cancelled.

EXAMPLE 3 Find the slope dy/dx of the circle
2+ —-4=0

at the point (1, \//3) (see Figure 11.6.5).

y
(1, V/3)
x
Figure 11.6.5

Put z=x*+y* —4=0.
At a point (x, y),

$=2x, Q=2y’ Q:_ﬁz/@x:_:

0x dy dx dz/dy y

dy 1

At the given point (1, \/g), = =

dx \ﬁ

In this problem we can solve for y as a function of x and check the answer
directly.

Q_ —2x -2 1

ix 2Ji-x* 2/4-1 3

The Implicit Function Theorem gives us a convenient equation for the
tangent line to the curve F(x, y) = 0 at (a, b).
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and finally

)
Tangent Line: ,,—Z x—a+(y—-b=
Ox y

EXAMPLE 3 (Continued) Find the equation for the tangent line in Example 3.
At the point (1,/3),

0z 0z
—=2x=2, — =2y =123,
0x X dy y \[

and the tangent line is

2x — 1)+ 2./3(y — /3) = 0.

EXAMPLE 4 Find the tangent line and slope of the curve
y+Iny+x*=0
at the point (—1, 1) (Figure 11.6.6).

(-LD

Figure 11.6.6
Put z=y+Iny + x>
Then —2; = 3x?, 2‘; =14 %
At(—1,1), %:3, %-——2
Tangent Line: 3(x+ D+ 20y —1)=0.
Slope: % = — ;

eXAMPLE 5 Find the tangent line and slope of the level curve of the hyperbolic
paraboloid

Z=x2__y2

at the point (g, b) (where b # 0) (Figure 11.6.7).
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Figure 11.6.7 Level curves of z = x* — y?

The level curve has the equation
X — y?=q? — b2,
x2 =y —(a? = b)) =0

Put w=x2—y% —(a* - b} =0.
ow ow
Then T“ = 2x, «‘H = =2y
ox Sy
At (a, b), W_ne, o,
Ox cy
Tangent Line: 2a(x — a) — 2b(y — b) = 0.
dy 2a a
Slope : = — =2
ope dx = " —2b b

Let us next consider the case where w depends on x, y, and z, while z depends
on x and y,
w = F(x,y,2), z = g(x, y).
Figure 11.6.8 shows which variables depend on which.
If F(x, v, z) is smooth and 0z/dx, 0z/0y exist, the Chain Rule gives

éw( | 5w( )Bx N ﬁw( )ﬁy N 8w( )82
—x.==—xy)—+ =)=+ —(xpz)=—,
Ox ) cx s oy ) ox 0Oz P2 5%
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N T
\VaVi

independent
Figure 11.6.8
ow cw ow cz
or -y =5 (x, Z)+-(A Vs Z)T
ox Ox Ox
.. ow ow ow 0z
Similarly, — (Y= (2 + (0 2) .
Oy 6y 0z cy
We used the fact that for the independent variables x and y,
ox oy ox 0y
ox dy dy Ox

Notice that in this case 0w/Cx alone is ambiguous so we had to use the more complete
notation

%v (x,y,z)  for F(x,y,2),
ow
g(x, y) for f(x,y), where f(x,y) = F(x, y, g(x, y)).

ow
EXAMPLE 6 Fmda~(x V) and o (x y) where

w= x>+ 2y* 4+ 3z%, 7=

ow ow ow

SR =2 Son) =4y =y =6
oy oz

= Se>**7 % _ e>*y,

dy

\Q)‘ o))
N

ow
Then

,¥) = 2x + 6z 5e5F = 2x 4 30ze5F Ty

= 2x 4 30e205%*0,

5,
a‘v (\ Y) - 4y + 6Z 851+‘ = 4y + 682(5\+\)
y

The graph of an equation

F(x,y,2) =0

is a surface in space. The Implicit Function Theorem can be generalized to this case
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tangent plane

Flx, »,2)=0

Figure 11.6.9

We shall skip the details, but the end result is an equation for the tangent plane of
the surface, pictured in Figure 11.6.9.

THEOREM

Suppose the function w = F(x, y,z) is smooth at the point (a,b,c), and
F,(a, b, ¢) # Q. Then the implicit surface F(x,y, z) = 0 has the partial deriva-
tives

0z F.a,b,c¢) % _ F(la,b,0)

ox  Ffab ) oy Ffab, o)
and the tangent plane

Fla,b,c)(x — a) + Fla, b,c)(y — b) + Fa,b,c)(z — ¢) = 0.

The equation for the tangent plane is obtained as follows.

z—c=g(x—a)+(;z(y—b),
: 5
_ Fda, b,c), Ffa, b, c)
e N N LA TP

and finally F(a, b, c)(x — a) + F/(a, b, c)(y ~ b) + Fa,b,¢)(z — ¢) = 0.

EXAMPLE 7 Find the tangent plane to the ellipsoid
x? 4+ 22+ 322=6
at the point (1, 1, 1) (see Figure 11.6.10).

Put F(x,y,2) = x? + 2y* + 3z — 6.
Then Fx,y,z) = 2x, F(x, y,z) = 4y, F(x,y,z) = 6z
F(1,1,1) =2, F(L, 1, 1) = 4, F,(1,1,1) = 6.

The tangent plane has the equation

Ax =D +4y—-1)+6(z-1)=0
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14, 1,n

¥y
Figure 11.6.10
Find 0z/0x and 0z/0y at (1, 1, 1).
oz F(L1,1)  2x  x
ox F(,1,1) 6z 372
%: _Fy(l,l,l): _ﬂ: __Z_y
dy F[(1,1,1) 6z 3z’
0z 1 0 2
At(1,1,1), gL 9._Z
Ox 3 dy 3
PROBLEMS FOR SECTION 11.6
In Problems 1-8, find dz/0x and dz/dx by the Chain Rule.
1 z=3x—4y, y=¢ 2 z=xy, y=Inx
1
= i = 3x 4 = y=
3 z=cosx + siny, y=3x z I 13y’ y \/;c
5 z=x, y=x 6 z = x%, yzﬁ
7 z = arctan(xy), y=¢e ~ 8 z =sinxsiny, y=2x
In Problems 9-14, find dy/dx.
9 X2+ 2xy—yr=2 10 \/;+,/xy+ﬁ=1
11 X2+ 2y +y=2 12 e+ 3x+ 2yt =1
13 sinxy +x+2=0 14 Inx +2lny+xy =1
In Problems 15-22, find the tangent line and the slope of the curve at the given point.
15 G+ 12+ +22=25at(2,2)
16 X2+ 4y? = 4at ((/3,9) 17 x? — 3xy — y* =3at(l, —1)
18 Jx+Jy=2at(11) 19 3+ P =2at(l,1)
20 x4+ /xy —2y=28at(§,2) 21 cosxsiny = 4 at (n/4, n/4)

22 y+eflny=1at(21)
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d

In Problems 23-26 find 2 (x, y) and 2 (x, y).
ox oy

23
24

25
26

w=3x —4y+4 6z, z=2x—15y

W=zCosX + zsiny, z=./x>+y*
w=./x*+y +z% z=-3x+2y

w=z/xy, z=ylnx

In Problems 27-32, find the tangent plane to the surface at the given point.

27
28
29
30
31
32

3x2 4 5y? + 422 =2l at(—2,1, - 1)
22 —4y? + 22 =2at(l,1,-2)

xyz +x* 4+ y* + 22 =4dat(1,1,1)
xy+xz4+yz=3at(l,1,1)

xe¥ + ye* + ze* = 0at (0,0,0)

sinx cosy tanz = 1 at (n/2, 0, m/4)

In Problems 33-38, find éz/dx and 0z/dy.

33
35
37

39

40

41

4?2

xy+22=1 34 x24+2y2 - 322 =4
sinxy + cosyz = | 36 eFt+e+ef=1
xy?2*+2=0 38 x*+y 4 lnz=2

Suppose that x items can be bought at a price of y dollars per item, where y depends on x
in such a way that dy/dx = —1/(1 + \/x). Find the rate of change of the total cost
z = xy with respect to x.

A point moves along the parabola y = x*. Find the rate of change with respect to x of
the distance from the origin.

Suppose w depends on x, y, and z, and both y and z depend on x. Find a formula for
dw/dx using the Chain Rule.

Suppose z depends on x and y, while y depends on x and ¢. Use the Chain Rule to find a

formula for % (x, ).

MAXIMA AND MINIMA

The theory of maxima and minima for functions of two variables is similar to the
theory for one variable. The student should review the one-variable case at this time.

DEFINITION

Let z = f(x,y) be a function with domain D. [ is said ro have a maximum
at a point (xq, yo) in D if

S (X0, y0) 2 flx,y)
Jor all (x,y)in D. The value f(xy. vo) is called the maximum value of f.

A minimum and the minimum value of [ are defined analogously.
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We shall first study functions defined on closed regions, which correspond
to closed intervals. By a closed region in the plane we mean a set D defined by
inequalities

a<x<h, fx) <y <g(x),

where f and g are continuous and f(x) < g(x) on [a, b]. D is called the region between
[ (x) and g(x) for a < x < b (Figure 11.7.1).

£
I 1
%Y =
i Yy =fx) !
s —
a b x
Figure 11.7.1 A closed region

The points of D on the four curves

X =d, x=b, y:f(x)’ y=g(X)

are called boundary points. All other points of D are called interior points.

EXTREME VALUE THEOREM

Suppose z = f(x,y) is continuous at every point of a closed region D. Then
the function [ with its domain restricted to D has a maximum and a minimum.

The proof is similar to the corresponding proof for one variable.

CRITICAL POINT THEOREM

Suppose the domain of z = f(x, y) is a closed region D and f is smooth at every
interior point of D. If f has a maximum or minimum at (xq, Vo), then either

(1) fdx0,¥0) =0 and fy(xo, Yo) =0, or
(1) (xq, yo) is a boundary point of D.

Figure 11.7.2 illustrates the two cases when f has a maximum at (x,, y,).
An interior point where both partial derivatives are zero is called a critical point.
Thus a critical point is a point where the tangent plane is horizontal. On the graph
of a surface, an interior point looks like a mountain summit if it is a maximum and
a valley bottom if it is a minimum. The theorem states that every interior maximum
or minimum is a critical point. An interesting kind of critical point which is neither

689
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y
D ('xOJ yﬂ)
x X
Case (/) Interior Maximum Case (ii) Boundary Maximum

Figure 11.7.2 Critical Point Theorem

4 maximum nor a minimum is a saddle point, which looks like the summit of a pass
between two mountains. Table 11.7.1 gives three simple examples of critical points,
one maximum, one minimum, and one saddle point. They are illustrated in Figure
11.7.3.

Table 11.7.1
Critical
Function Partials Point Type
0 0 .
z= —(x* + y?) % = —2x, a-; = -2y (0,0) Maximum
0z 0z ..
z=x>4+y? F 2x, N =2y (0,0) Minimum
a ~
2=x2 - y? S Zo ©,0) Saddle Point
ox oy

X

(a) Maximum (b) Minimum (¢) Saddle point
Figure 11.7.3
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PROOF OF THE CRITICAL POINT THEOREM Suppose f has a maximum at an
interior point (xy, ¥o) of D. (x4, ¥o) is not a boundary point so we must prove
(). The function

g(x) = f(x, yo)

is differentiable and has a maximum at x,. By the Critical Point Theorem
for one variable, g'(x,) = f.(xq, yo) = 0. Similarly f(x,, yo) = 0.

METHOD FOR FINDING MAXIMA AND MINIMA ON A CLOSED REGION

When to Use z = f(x, y) is continuous on a closed region D and smooth on the interior
of D.

Step 1 Set the problem up and sketch D.
Step 2 Compute 0z/0x and 0z/0y.
Step 3 Find the critical points of f, if any, and the value of f at each critical point.

Step 4 Find the maximum and minimum of f on the boundary of D. This can be done
by solving for z as a function of x or y alone and using the method for one
variable.

CONCLUSION The largest of the values from Steps 3 and 4 is the maximum value,
and the smallest is the minimum value.

It is convenient to record the results of Steps 3 and 4 on the sketch of D.
EXAMPLE 1 Find the maximum and minimum of z = x? + y?> — xy — x on the

closed rectangle 0 < x < 1,0 <y < [,

Step 7 The region D is sketched in Figure 11.7.4.

/

Y

Figure 11.7.4

0z 0
Step2 —=2x—y—1, =2y — x.
ep2 X —y R y — X
Step3 2x —y—1=0, 2y —x=0.

Solving for x and y we get one critical point

Wi

1
y=13, X =

691
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The value of z at that point is

T B T
Step 4 We make a table.

Boundary Line ‘ z Maximum Minimum
x=0 0<yp=<] y? 1 at (0, 1) 0 at (0,0)
x=1 0<y<I ¥y =y . 0 at corners —tat (1.}
v=0 0<x<I x? —x 0 at corners o —tard,0)
y=1, 0<x<1 = x*+1-2 1 at(0,1) Oat(l.1)

The values from Steps 3 and 4 are also shown on the sketch of D in Figure

11.7.5.
}’
max z = | z=0
o -4
P
°
min z = —y
z=0 3
- 1 - X
Figure 11.7.5 z=-3 z=0
CONCLUSION
Maximum: z = 1at(0,1)
Minimum: z = —%at(3,3).

The maximum is at a boundary point and the minimum at an interior point.

In many problems we are to maximize a function of three variables which
are related by a side condition. We wish to find the maximum or minimum of

w = F(x, y,z)
given the side condition
glx, v, z} = 0.

To work a problem of this type we use the side condition to get w as a function of
just two independent variables and then proceed as before.

EXAMPLE 2 For a package to be mailed in the United States by parcel post, its
length plus its girth (perimeter of cross section) must be at most 84 inches.
Find the dimensions of the rectangular box of maximum volume which
can be mailed by parcel post.
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Step 1 Let x, y, and z be the dimensions of the box, with z the length. We wish to

find the maximum of the volume

V = xyz
given the side condition
length + girth = z + 2x + 2y = 84.
We eliminate z using the side condition and express V as a function of x and y.
z =284 — 2x — 2y,
V= xy(84 — 2x — 2y).
Since x, y, and z cannot be negative the domain is the closed triangle
0<x, 0y, 0<84 — 2x — 2y.
This is the same as the closed region
0< x <42, 0<y<42 —x
The region is sketched in Figure 11.7.6.

y
42
D
0 42 X
Figure 11.7.6
aov

— = 84y — 4dxy — 2y?,
Step 2 ax Y XY Yy

v
—— = 84x — 2x% — 4xy.

Step 3 84y — dxy — 2y? =0,
84x — 2x? — 4xy = 0.
Since x > 0 and y > 0 at all interior points, we have
84 —4x — 2y =0,
84 —2x — 4y = 0.
There is one critical point
x = 14, y = 14,
V= (84 — 28 — 28)-14 .14 = 2(14)>.
Step 4 On all three of the boundary lines
x =0, y =0, 84 —2x -2y =0
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we have V= (84 — 2x — 2y)xy = 0.

Therefore the maximum value of I on the boundary of D is 0.
CONCLUS/ION The maximum of Vis at x = [4, y = 14, where V = 2(14)® (Figure

11.7.7). The box has dimensions

x = 14, y =14, z = 28.

28

U ==

J I

Figure 11.7.7 (a) (b)

We shall now develop a method for finding maxima and minima of functions
defined on open regions.
A bounded open region D is a set of points given by strict inequalities

a < x <b, fix) <y < g(x)

where [ and g are continuous and f(x) < g(x) on (a,b). A closed region with its
boundary removed is a bounded open region.

We shall also consider unbounded open regions, which are given by strict
inequalities where one or more of a, b, f(x), g(x) are replaced by infinity symbols.
For example, the following are unbounded open regions:

() —x <x< =, fx)y <y < glx).
(2) 0<x< x, 0<y< x>,
(3) The whole plane — % < x < =, —L <y < L.

Unbounded open regions are pictured in Figure 11.7.8.

A smooth function whose domain is an open region may or may not have
a maximum or minimum, Many problems have at most one critical point, and we
shall concentrate on that case. The method can readily be extended to the case of
two or more critical points. The Critical Point Theorem holds for open regions as
well as closed regions. The corollary below shows how it can be used in maximum
or minimum problems.

COROLLARY

Suppose the domain of the function z = [{x,y) is an open region D, and [ is
smooth on D.

(1) If [ has no critical points it has no maximum or minimum.
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£(x)

% f(x)

(a) —o<x<w, flx)<y<glx)
yf/%

(b) 0<x<ow, O<y<w

Figure 11.7.8 Unbounded Open Regions

(i) Let f have exactly one critical point (xq, yo). If [ has a maximum or
minimum, it occurs at (xq, yo)-

This corollary can be used to show certain functions do not have a maximum
or minimum. If we are sure a function has a maximum or minimum, the corollary
can be used to find it.

EXAMPLE 3 Show that the function z = ¢* In y has no maximum or minimum.
The domain is the open region

-0 < X < w0, 0<y< w.

The partial derivatives are

There are no critical points because ¢z/Cy is never zero. Therefore there is
no maximum or minimum.

EXAMPLE 4 Show that the function z = x? + 2y? has no maximum.
The domain is the whole plane.
We have

0z iz

— = 2x, — = 4y.

dx x cy y
There is one critical point at (0, 0). At this point, z = 0. This is not a maximum
because, for example, z = 3 at (1. 1). Hence z has no maximum.
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\ . y
min
Figure 11.7.9 x

Notice that = has a minimum at (0,0) because x? + 2% is always =0
(Figure 11.7.9).

EXAMPLE 5 Find the point on the plane 4x — 6y + 2z = 7 which Is nearest to
the origin.

. - . ) . .

Step 1 The distance from the origin to (x.y.z) is /x* + y> + z% It is easier (o
work with the square of the distance, which has a minimum at the same point
that the distance does. So we wish to find the minimum of

w=x?+ }'2 + z2
given that dx — 6y + 2z =7.
We eliminate z using the plane equation.
z =37~ 4x + 6y),
w= x>+ y? + X7 — 4x + 6y)%.

The domain is the whole (x, y) plane.

5

W

1
Step 2 =2x+2-a(—4)(7—4x+6)'): —14 + 10x — 12y,

i’
o

k3]

C‘;‘ =2y + 2-}1-6(7 — 4x + 6y) = 21 — 12x + 20).
Step 3 —14 + 10x — 12y =0,
21 — 12x + 20y = 0.
Solving for x and y we get one critical point

. 3
s V= -3

(ST

X =

CONCLUSION We know from geometry that there is a point on the plane which
is closest to the origin (the point where a perpendicular line from the origin

meets the plane). Therefore w has a minimum and it must be at the critical
point

/
Il
R
-
I
|
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The value of z at this point is
z=37—4x + 6y) = }.

The answer is (£, -2, 1). The plane is shown in Figure 11.7.10.

z

Figure 11.7.10

If we know a function has a maximum or minimum, we can find it simply
by finding the critical point. But usually we are not sure whether a function has a
maximum or minimum. Here is a method that can be used when a function has a
unique critical point in an open region. It is based on the fact that the Extreme
Value Theorem holds for closed regions of the hyperreal plane as well as the real
plane (because of the Transfer Principle).

Given a real open region D we can find a hyperreal closed region E which
contains the same real points as D (Figure 11.7.11).

For example, if D is the real region

a<x < b, flx) <y < glx),
we can take for E the hyperreal region
at+e<x<bh—eg fx)+e<y<gx)—c¢e

where ¢ is positive infinitesimal.

(a) (b)

infinite finiteN X infinite

Figure 11.7.11 Hyperreal Closed Regions
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If D is the whole real plane we can take for E the hyperreal region
-H<x<H, -H<y<H

where H is positive infinite.

METHOD FOR FINDING MAXIMA AND MINIMA ON AN OPEN REGION

When to Use z = [(x,y) is a smooth function whose domain is an open region D, and
f has exactly one critical point.

Step 7 Set up the problem and sketch D if necessary.
Step 2 Compute 0z/0x and 0z/0y.

Step 3 Find the critical point (xq, yo) and the value f(xq, y,). If we already know
there is a maximum (or minimum), it must be (xy, vo) and we can stop here.

Step 4 Find a hyperreal closed region E with the same real points as D.
Step 5 Compare f(xq, o) with the values of f on the boundary of E.

CONCLUSION [ has a maximum at (xq, yo) if f(Xq, o) = f(x, y) for every boundary
point (x, y) of E. Otherwise f has no maximum.

A similar rule holds for the minimum.

EXAMPLE 6 Find the maximum and minimum, if any, of the function

1
(X + y)? + (x + 1)? + y*

Step 7 The domain is the whole (x, y) plane because the denominator is always
positive,

Step 2 —[2(x + y) + 20x + DJ(x + )% + (x + 1)? + y?] 2,

D Lo
klba

)
‘f = —[20x + ) + Wx + ¥ + (x + D2 + p?] 2,

Step 3 The partial derivatives are zero when
Ax+ ) +2x+1)=0, 2Ax+y)+2y=0,
or 2x+y+1=0, x4+ 2y=0

The critical point is

Step 4 Let E be the hyperreal region
~H<x<H -H<y<H
where H is positive infinite.

Step 5 At a boundary point of E where x = + H, (x + 1)? is infinite so z is infini-
tesimal. At a boundary point where y = 4+ H, »* is infinite so again z is
infinitesimal.



Figure 11.7.12

CONCLUSION zhasa maximum of 3 at the critical point (—%, ). z has no minimum.

EXAMPLE 7

Step 1

Step 2

11.7 MAXIMA AND MINIMA

z=~0
H] P
-
N NN N
_____ N

z
jo

1

The region E is sketched in Figure 11.7.12.

Let x, y, and z be the dimensions of the box, with z the height. We want the

minimum of the area
A =xy + 2xz + 2yz

given that xyz = 1.

Eliminating z, we have 7=

2
A=xy+-+—-.
y X

The domain is the open region x > 0,y > O (see Figure 11.7.14).

0A_ 2 aA_ 2
ox T dy y*

\

_

Find the dimensions of the box of volume one without a top which has
the smaliest area (if there is one). The box is sketched in Figure 11.7.13.

Figure 11.7.13 Figure 11.7.14

699



700 11 PARTIAL DIFFERENTIATION

2 2
-)"_7,27:0‘ X—-ZZO.

Step 3
ep N ’

x= 32y =3

A — 22,‘3 + 2.2713 + 2‘2—1/3 — 22,’3 + 25/3.

The critical point is
where

Step 4 -Take for E the hyperreal region ¢ < x < H, ¢ < y < H where ¢ is positive
infinitestmal and H 1s positive infinite.

Step 5 Let (x, y) be a boundary point of E. As we can see from Figure 11.7.15, there
are four possible cases.
l case 3: y infinite
HY gz
€ BRRSSS
RS
[
g case 4
case 1: x infinite
x=0
E
€
€
case | & 2: case 2:
x~0, y=~0 yvas0

Figure 11.7.15

Case 1
Case 2
Case 3
Case 4

x is infinitesimal. Then A is infinite because 2/x is.
y is infinitesimal. A4 is infinite because 2/y is.
x Is not infinitesimal and y is infinite. 4 is infinite because xy is.

y is not infinitesimal and x is infinite. 4 is infinite because xy is.

CONCLUSION A is infinite and hence greater than 2** + 257 on the boundary

of E. Therefore A has a minimum at the critical point

x:ﬁ, y=ﬁ.

The box has dimensions

,\':\75, y=\3ﬁ, Z:xiy:%'
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PROBLEMS FOR SECTION 11.7

In Problems 1-10, find the maxima and minima.

1

N & W N

=

9
10

XHxy+yl, —1<x=<1, —-1=<y<l

—x2 =22 x—y+2 —1<x<1, —-1<y<]1
X2+ 22 —2x+8y+3, —3<x<3 -3<y<x
x—xy+2y, —-4<x<4 —4<y<x

x2—y? —2x+2y+3, 0<x<2 0<y<2
xy+£+§’, %Sx£4, 1<y<8

sinx+siny, 0<x<nxn, 0<y<n

sinxsiny, 0<x<#n, 0<y=<n

X2+ yP -y —l=x<1, x2<yp<]

4—x*—yt, —J1-xF<y< /1 -x?

In Problems 11-16, find the maximum and minimum subject to the given side conditions.

11
12
13
14
15
16

Z{x—y), x+y+z=1 0<x<1, 0<y<1
xyz, z=x4+y —-1<x<1, —-1=<y<1
x+y+z z=x*+y}, z<1

x+ytz z=,/3—-x*~-y
2+ 425 z=xy, —1<x<1, —1<y<1

xy+yz+xz, xyz=1 $<x<4 1<y<4

In Problems 17-26, determine whether the maxima and minima exist, and if so, find them.

17

18
19
20

21

22

23

24

25
26

27
28

29

30

x? 4+ 4x + y?
—x2 -y +2x — 4y
I/xy, 0<x, O<y
x4+ 2x + yd — )2
1 38
xy+-+-, 0<x, O<y
x Yy
1 1
x+4dy+-—+—-, 0<x, O<y
Xy
1

x4y 4+

1 2 2
——_— xX* Yy <]
/I_XZ_yZ y
x? — 4y?
x¥, 0<«x

Find three positive numbers x, y, and z such that x + y + z = 8 and x?yz is a maximum.
Find three positive numbers x, y, and z such that x + y + z = 100 and x%y’z is a
maximum.

A package can be sent overseas by the air mail smail packet rate if its length plus girth
is at most 36 inches. Find the dimensions of the rectangular solid of maximum volume
which can be sent by the small packet rate.

Find the volume of the largest rectangular solid which can be inscribed in a sphere of
radius one.

701
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31

32

33
34
35
36
37

38

39

40

41

42

43
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Find the volume of the largest rectangular solid with faces parallel to the coordinate
planes which can be inscribed in the ellipsoid x%/4 + y? + z%/9 = 1.

A triangle with sides a, b, ¢ and perimeter p = @ + b + ¢ has area
A= /2p2p — &)2p — b)2p - o)
Find the triangle of maximum area with perimeter p = 1.

Find the point on the plane x + 2y — z = 10 which is nearest to the origin.
Find the point on the plane x + y + z = 0 which is nearest to the point (1, 2. 3).
Find the points on the surface xyz = | which are nearest to the origin.

Find the point on the surface z = xy + | which is nearest to the origin.

Show that the rectangular solid with volume one and minimum surface area is the unit
cube.

Show that the rectangular solid with surface area six and maximum volume is the
unit cube.

A rectangular box with volume Vin.? is to be built with the sides and bottom made of
material costing one cent per square inch, and the top costing two cents per square
inch. Find the shape with the minimum cost.

A firm can produce and sell x units of one commodity and y units of another commodity
for a profit of

P(x,y) = 100x + 200y — 10xy — x* — 500.
Due to limitations on plant capacity, x < 10 and y < 5. Find the values of x and y
where the profit is a maximum.

x units of commodity one and y units of commodity two can be produced and sold
at a profit of

P(x,y) = 400x + 500y — x? — y* — xy — 20000.

Find the values of x and y where the profit is a maximum.
x units of commodity one can be produced at a cost of

C,(x) = 1000 + 5x,
and y units of commodity two can be produced at a cost of

C,(y) = 2000 + 8y.
Moreover, x units of one and y units of two can be sold for a total revenue of

R(x, 1) = 100./x + 200./y + 10/x.

Find the values of x and y where the profit is a maximum.

Suppose that with x man hours of labor and y units of capital, z = f(x, y) units of a
commodity can be produced. The ratio z/x is called the average production per man
hour. Show that éz/8x = z/x when the average production per man hour is a maximum.
(Method of Least Squares) A straight line is to be fit as closely as possible to the set of
three experimentally observed points (1.6), (2,9), and (3. 10). The line which best firs
these points is the line y = mx + b for which the sum of the squares of the errors,
E=[mel+b)—6+[(m-2+4b) —9%+[(m-3 + b) — 10)%

is a minimum. Find m and b such that E is a minimum.

11.8 HIGHER PARTIAL DERIVATIVES

Given a function z =

(x,v) of two variables, the partial derivatives f.(x,y) and

J{x, y) may themselves be differentiated with respect to either x or y. Thus there are
four possible second partial derivatives. Here they are.



11.8 HIGHER PARTIAL DERIVATIVES 703

0%z
Twice with respect to x: fexs OF P
X
. . 0%z
Twice with respect to y : fyys OF PR
y

First with respect to x and then with respect to y:

0 [0z %z
(fx)y - fxys é}(a) = ay ax-
First with respect to y and then with respect to x:
0 [0z 0%z
(f;')x - fyx) or a(é}) - 6x ay

Similar notation is used for three or more variables and for higher partial
derivatives.

EXAMPLE 1 Find the four second partial derivatives of

z=e"siny + xy*

%2 _ ersin +y? 0 _ o +2
—_— = 1 5 - = 0S .
Ee e y+y 3y e cosy Xy
522 a x 2 X 2
6x2=a(g siny + y*) = e“sin y,
622 0 x X o3
(’)_yZ:@(e cosy + 2xy) = —e*siny + 2x.
0%z o .. 2 .
Gyox " gye SRy YY) = eosy + 2y,
0%z J . .
mza(e cosy + 2xy) = e*cosy + 2y.

Notice that in this example the two mixed second partials 8%z/dy dx and
0%z/0x dy are equal. The following theorem shows that it is not just a
coincidence.

THEOREM 1 (Equality of Mixed Partials)

Suppose that the first and second partial derivatives of z = f(x, y) are con-
tinuous at (a, b). Then at (a, b),
%z 0’z
dyox  0x 0y

Discussion This is a surprising theorem. 8%z/dy dx is the rate of change with respect
to y of the slope 0z/0x, while 8*z/0x dy is the rate of change with respect to
x of the slope dz/@y. There is no simple intuitive way to see that these should
be equal.

As a matter of fact, there are functions f(x, y) whose mixed second partial
derivatives exist but are not equal. One such example is the function
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0 if (x,y) = (0,0).

Sl = x? —y?

xym if (x, y) # (0, 0).

We have left the computation of the second partials of f(x, y) as a problem. It turns
out that at (0, 0),

oY joxady =1, 0¥ Joyox = —1.

How can this be in view of Theorem 1?7 The answer is that in this example the second
partial derivatives exist but are not continuous at (0, 0), so the theorem does not apply.
We shall only rarely encounter functions whose second partial derivatives are not
continuous, so in all ordinary problems it is true that the mixed partials are equal.
We shall prove the theorem later. We now turn to some applications. Qur first ap-
plication concerns mixed third partial derivatives.

If the third partial derivatives of z = f(x, y) are continuous, then

A3

O 3

z 0’z 2z

A

Oxdxdy  ox dy Ox - &y Ox 0x°

A3
. 8z -
SO We WIite z—— for each of them. Similarly,
éx2 oy
0%z ok 2’z
Oxdydy Oyoxciy Cyélyox
. &z
and we write ——— for each of them.
Cx dy

We prove the first equation as an illustration.
3z 0 &z o 0%z
0x dy dy &x

5z

OxOx 0y  0x dx Ox 8y Ox’

EXAMPLE 2 Find the third partial derivatives of z = ¢**sin y.
oz oz

—— = 2e**sin y. 5= e%* cos y,
ox oy

= 4e2* g I 2% gj
= ny, > = —e*siny,

0%z %z .
= —— = 2¢** cos ),

dyéx  Oxady

|

= 8e?*sin y, .= —e*¥cos y,

Wi g
2™
t3

o

&
w2
w

w

= 4e?*cos v, — s = —2¢%**sin y.
x

a3
(o5}
-

If a function has continuous second partial derivatives we may apply the
Chain Rule to the first partial derivatives. For one independent variable,
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a\ox] “ o ar T dyox di’
d{oz 3%z dx 6%z dy
dr\dy

d(@z) _0%zdx | 0%z dy

:6x6y5+0yz dt’

EXAMPLE 3 If z = f(x, y) has continuous second partials, x = rcosf, and y =
rsin 6, find §%z/0r.
We use the Chain Rule three times.

0 0z 0 0z & 0
z z o z y—02c059+aisin0.

or “oxar ayor ox oy
QZ—Z— 0 cos@ﬁ + 0 si 962
a2 or ax| "o\ dy
o[oz 00z
cos 61'( 6x) + sin @ 6;‘(63})
B &@E—I— 0226_yc N Pz 6x+(3226y 0
" \ox?or  dyoxor Oxdy or  oy? or sin
':2: ~2 62 2
= —cos’6 + ﬂO f sin 0 cos § + ——cos Osin 0 + (2 zsinZG
Ox dy Ox dx dy dy
n2 62 62
=7 20520+ 2% sinfcosO + - sin 0,

ox? dy Ox dy*

By holding one variable fixed in Theorem 1, we get equalities of mixed
partials for functions of three or more variables.

COROLLARY (Equality of Mixed Partials, Three Variables)

Suppose that the first and second partial derivatives of w = f(x,y,z) are
continvous at {a, b, ¢). Then dt (a, b, c),

0w Pw *w 0w ?w  0Pw

dydx  oxdy 0z ox  0x 0z dzdy 0dyodz

PROOF OF THEOREM 1 The plan is to prove a corresponding result for average
slopes and then use the Mean Value Theorem, which states that the average
slope of a function on an interval is equal to the slope at some point in the
interval.

Let Ax and Ay be positive infinitesimals. We hold Ax and Ay fixed. The
first and second partial derivatives of f(x, y) exist for (x, y) in the rectangle

a<x=<a+ Ax, b<y=<b+ Ay
We shall use the following notation for average slopes in the x and y directions :

_ fla+Axy) ~ [@y) _ Sl + Ay — f(x.b)
80) = 2 . 9= A

Label the corners of the rectangle A, B, C, and D as in Figure 11.8.1.
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(a, b)

(a+Ax, b)

Figure 11.8.1

We first show that the following two quantities are equal ;

A

_ glb + Ay) — g(b)

A hla + Ax) — h(a)

AyAx Ay

A*f/Ay Ax is the average slope
x direction of f.

Ax Ay Ax

in the y direction of the average slope in the

f(D) — f(C)  f(B) - f(A4)
A’f glb+ Ay) —g(b) Ax Ax
Ay Ax - Ay a Ay
f@)-fB)  fC) - [f(4)
_ D) SO~ fB + (4 _ Ay Ay
Ax Ay Ax
ha + Ax) — hla)  A*f
- Ax " Ax Ay’
By the Mean Value Theorem,
AY glb+Ay) —glb)
Ay Ax = Ay =g'(y1)>

where b < y, < b + Ay. Using the Mean Value Theorem again,
a f(a + AX,}’) _f(asy)

Axr

gl = oy (@ y1)

of 0
~(a+ Ax,y,) — ==(a, yy)

_ 0Oy oy

- Ax

0%

= ﬁ(xl,h)-

dx Oy
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where a < x; < a + Ax. Since 8%f/dx dy is continuous at (a, b),
( A% ) o*f
st =

Ay Ax Ox Oy

(a, b).

A similar computation gives

st( A ) = or (a, b).

Ax Ayl dyodx
of itk
Therefore ox oy (a,b) = 3y ox (a, b).

We conclude this section by stating a Second Derivative Test for maxima
and minima of functions of two variables. In practice the test often fails except on
small regions D. We therefore have emphasized the tests in the preceding section
rather than the Second Derivative Test.

SECOND DERIVATIVE TEST

Suppose z = f(x, y) has continuous first and second partial devivatives on a
rectangle D, and (a, b) is a critical point of f in D.

(i) f has a minimum at (a, b) if
0%z 0%z 0%z \? -0 0%z
ox? dy?  {oxdy ’
at every point of D.

(i) f has a maximum at (a, b) if

0—)355— dx 3y

0%z 0%z 0%z \2 >0 6_22 <0
0x* 8y  \éxdy T ox?
at every point of D.
(i)  f has a saddle point at (a, b) if
2, A2 2 \2
0%z 0%z (62) at (a,b).

For an indication of the proof of the Second Derivative Test, see Extra
Problem 55 at the end of this chapter.

PROBLEMS FOR SECTION 11.8

In Problems 1-12, find all the second partial derivatives.

1 z=x>+ 2)* 2 z= —3xy

3 z=ax® + bxy + cy? 4 z=(ax + by + )"

5 z = xe*Y 6 z=cos(x + y) +sin(x — y)
7 z = In(ax + by) 8 z=m

9 z = x"y? 10 W= xyz
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11 w = \FHTE 12 W= zCosx -+ zsiny

In Problems [3-16, find all the third partials.

—

13 z = 2x%? — 6x%y3 14 = /xy

15 z = ety 16 Z = cosxsiny
17 Ifz = f(x.y),x = rcos 0,y = rsin 0, find ¢%z/30°.

18 Ifz = fix.y), x = rcos 0, y = rsin 0, find &z/¢0 ér.

In Problems 19-24, find é%z/6x?, 8%2/@y?, and ¢*z/¢x {y.

19 z= f(u), u=ax+by 20 z=f(u), u=xy
21 z = g(x) + A(y) 22 z = g(x)h(y)
23 z=u" u=f(x) 24 z=¢ u=f(x.y
In Problems 25-28 find #2z/és?, ¢%z/ét?, and &%z/s Ct.
25 z=ax + by, x=f(s,1), y=gls1)
26 z=xy, x=f(s1), y=2g(s1
27 z = f{x), x=g(s)+ ht)
28 z=floy, x=gls)h y=h
29 Suppose z = f(x + at) + glx — at) where f and g have continuous second derivatives.
Show that z satisfies the wave equation
~2 N2
28
T T

30 Show that if
z=Ax* + Bxy + Cy* + Dx + Ey + F
then all the second partial derivatives of z are constant.
0 31 Let f(x, y) be the function

0 if (x, y) = (0,0),
ﬂnw:{jﬁ’y%

X Y.XT-;—? if (.\', y) #* (0, 0)

Find the first and second partial derivatives of f. Show that

(a) &% [oxéy # &% [Cy 8x at (0,0),

(b) &% /éx Gy is not continuous at (0, 0).

Hint - All the derivatives must be computed separately for the cases (x. y) = (0,0) and
(x,y) # (0,0).

EXTRA PROBLEMS FOR CHAPTER 11

In Problems 14, make a contour map and sketch the surface.
1 P4yt =2t —4<:<4

2 z=x*+ 4t -4<:<4

3 z=x—3, -2<x<2 -2<y<2

4 z:\/’;)*,-4£.\‘s4.—4_<_yﬁ4

5 Find the largest set you can on which /(x, y) = y + 1/x? Is continuous.

6 Find the largest set you can on which f{x,y) = \,,f{.\j:,\f/x is continuous.

7 Find the largest set you can on which /(x,y) = In(I/x + 1/y) is continuous,



10
11
12
13
14
15
16
17
18
19

20

21
22
23

25
26

27

29
30

3

32

33

34

EXTRA PROBLEMS FOR CHAPTER 11

Find the largest set you can on which f(x, y, z) = (In{x + y))/z is continuous.
Find the partial derivatives of f(x, y) = ax — by.

Find the partial derivatives of f(x, y) = 4, sin(b,x) + a, cos (b,}).

Find the partial derivatives of z = In x/In y.

Find the partial derivatives of w = (x — y)e*.

Find the increment and total differential of z = 1/x + 2/y.

Find the increment and total differential of z = /x + y.

Find the tangent plane of z = x3y + 4 at (2,0).

Find the tangent plane of z = arcsin (xy) at (3, 3).

Find dz/dt by the Chain Rule where z = log 4+, (3t + 2).

Find 0z/0s and 9z/0t where z = x/y,x = ¢**',y = as + bt.

A particle moves in space so that dx/dt = zcos x, dy/dt = zsin y, dz/dt = 1. Find the
rate of change of the distance from the origin when x =0,y =0,z = L.

A company finds that it can produce x units of item 1 at a total cost of x + IOOﬁ
dollars, and y units of item 2 at a total cost of 20y — ﬁ dollars. Moreover, x units of
item 1 and y units of item 2 can be sold for a total revenue of 10x + 30y — xy/100
dollars. If z is the total profit (revenue minus cost), find 9z/8x and &z/0y, the partial
marginal profit with respect to items I and 2.
Find the tangent line and slope of x* + y* = 17 at (2, 1).
Find the tangent plane to the surface x* + y* + z2 = 18 at (1,2, 1).
Find the maxima and minima of

z=x241y? —2x — 4y + 4, 0 x<3, x<y<3

Find the maxima and minima of
1 1
z=x+4y+ -+,
‘. X y

Determine whether the surface z = log, y, x > 1, y > 0 has any maxima or minima.
Find the dimensions of the rectangular box of maximum volume such that the sum of
the areas of the bottom and sides is one.

Find all second partial derivatives of z = arctan (xy).

Find all second partial derivatives of w = (x> — y%)z.

Find 02z/01* if z = f(x,y), x = rcosh 6, y = rsinh 8.

Let f(x) be continuous for a < x < b. Prove that the function F(u,v) = [}, f(x)dx
is continuous whenever u and v are in (g, b).

Prove that f(x, y) is continuous at (a, b) if and only if the following ¢, § condition holds.
For every real ¢ > 0 there is a real & > O such that whenever (x, y) is within ¢ of {a, b),
f(x, y) is within ¢ of f(a, b).

fx, ) ___{ 1 if both x and y are rational,

Let ;
L O otherwise.

Prove that f is discontinuous at every point.

Prove that
lim f(x,y)j=L
(x.y)—(a.b)
if and only if for every real ¢ > O thereis areal & > 0 such that whenever (x, y) is different
from but within & of (a, b), f(x, y) is within ¢ of L. (See Problems for Section 11.2)

Prove that the following are equivalent.
(a) f[x,y)=0forall (x,y)
(b) The value of f(x, y) depends only on y.
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35

36

37
38

39

40

11 PARTIAL DIFFERENTIATION

Prove that the following are equivalent.
(a) fdx,y)=0and f(x,y) = 0 for all (x, ).
(b) [ isa constant function.
A function z = f(x, y) is said to be differentiable at (x, y) if it satisfies the conclusion of
the Increment Theorem. That is, whenever Ax and Ay are infinitesimal,
Az =dz + g, Ax + &, Ay
for some infinitesimals £, and &, which depend on Ax and Ay. Prove the Chain Rule
d- Cézdx ¢z dy
—_—= + —
dt  exdt  fydt
assuming only that the functions z = f(x, y), x = g(t), and y = h(t) are differentiable.
Prove that the function f(x, y) = |xy| is differentiable but not smooth at (0, 0).
A smooth function z = f(x, y) is said to be homogeneous of degree n if
1 flex, ) = 1 (x, y)

for all x, y, and 1. Prove that if z = f(x, y) is homogeneous of degree n then

o o
o0z cz
¢ ‘—— = HZ.

Tox ey
Hint: Differentiate Equation | with respect to r and set t = 1.
Suppose f(x, y) has continuous second partial derivatives and that 8f/dx dy is identi-

cally zero (i.e., zero at every point (x, y¥)). Prove that f(x,y) = g(x) + h(y) for some
functions g and h.

Find all functions f(x, y) all of whose second partial derivatives are identically zero.



