7.1

TRIGONOMETRIC
FUNCTIONS

TRIGONOMETRY

In this chapter we shall study the trigonometric functions, i.e., the sine and cosine
function and other functions that are built up from them. Let us start from the
beginning and introduce the basic concepts of trigonometry.

The unit circle x? + y? = 1 has radius 1 and center at the origin.

Two points P and Q on the unit circle determine an arc @, an angle /. POQ,
and a sector POQ. The arc starts at P and goes counterclockwise to Q along the
circle. The sector POQ is the region bounded by the arc @ and the lines OP and 0Q.
As Figure 7.1.1 shows, the arcs @ and @’ are different.

0 . Q
PO eF
(0] O
P P
Arc l/’—Q\ Arc @’
Sector POQ Sector QOP

Figure 7.1.1

Trigonometry is based on the notion of the length of an arc. Lengths of
curves were introduced in Section 6.3. Although that section provides a useful
background, this chapter can also be studied independently of Chapter 6. As a starting
point we shall give a formula for the length of an arc in terms of the area of a sector.
(This formula was proved as a theorem in Section 6.3 but can also be taken as the
definition of arc length.)
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7 TRIGONOMETRIC FUNCTIONS

DEFINITION

TN . .
The length of an arc PQ on the unit circle is equal to twice the area of the
sector POQ, s = 2A.

This formula can be seen intuitively as follows. Consider a small arc ﬁ@ of
length As (Figure 7.1.2). The sector POQ is a thin wedge which is almost a right
triangle of altitude one and base As. Thus A4 ~ $As. Making As infinitesimal and
adding up, we get 4 = 1s.

The number = ~ 3.14159 is defined as the area of the unit circle. Thus the
unit circle has circumference 2m.

The area of a sector POQ is a definite integral. For example, if P is the point
P(1, 0) and the point Q(x, y) is in the first quadrant, then we see from Figure 7.1.3 that
the area is

1
Alx) = 3x /1 — ,\‘2+J J1 =t

Notice that A(x) is a continuous function of x. The length of an arc has the following
basic property.

o
As Qx, »)
! P
1 A(x)
O

P(1,0)

o

Figure 7.1.2 Figure 7.1.3

THEOREM 1

Let P be the point P(1,0). For every number s between 0 and 2w there is a point
TN
Q on the unit circle such that the arc PQ has length s.

PROOF  We give the proof for s between 0 and n/2, whence
0 <3s < n/d

Let A(x) be the area of the sector POQ where Q = Q(x, y) (Figure 7.1.4).
Then A(0) = n/4, A(1) = 0 and the function A(x)is continuous for 0 < x < [,
By the Intermediate Value Theorem there is a point x, between 0 and 1
where the sector has area is,

A(XO) = %S.
Therefore the arc 1§Q has length
2A(xq) = s.
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Figure 7.1.4

Arc lengths are used to measure angles. Two units of measurement for angles
are radians (best for mathematics) and degrees (used in everyday life).

DEFINITION

Let P and Q be two points on the unit circle. The measure of the angle /. POQ
in radians is the length of the arc IS_Q A degree is defined as

1° = =/180 radians,

whence the measure of £ POQ in degrees is 180/x times the length of }3@

Approximately, 1° ~ 0.01745 radians,
I radian ~ 57°18' = (57:8)°.

A complete revolution is 360° or 2x radians. A straight angle is 180° or « radians. A
right angle is 90° or =/2 radians.

It is convenient to take the point (1, 0) as a starting point and measure arc
length around the unit circle in a counterclockwise direction. Imagine a particle
which moves with speed one counterclockwise around the circle and is at the point
(1,0)at time ¢ = 0. It will complete a revolution once every 2x units of time. Thus if the
particle is at the point P at time ¢, it will also be at P at all the times t + 2kn, k an
integer. Another way to think of the process is to take a copy of the real line, place the
origin at the point (1, 0), and wrap the line around the circle infinitely many times with
the positive direction going counterclockwise. Then each point on the circle will
correspond to an infinite family of real numbers spaced 2z apart (Figure 7.1.5).
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Figure 7.1.5 vers —90°, 270°, 630°....
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The Greek letters 0 (theta) and ¢ (phi) are often used as variables for angles
or circular arc lengths.
DEFINITION

Let P(x,y) be the point at counterclockwise distance 0 around the unit circle
starting from (1,0). x is called the cosine of 0 and y the sine of 0,

x = cos b, y = sin f.
P(x, y)
1 0
sin 8
O| cosd (1, 0)

Figure 7.1.6

Cos 6-and sin 8 are shown in Figure 7.1.6. Geometrically, if 0 is between 0
and 7/2 so that the point P(x, y) is in the first quadrant, then the radius OP is the
hypotenuse of a right triangle with a vertical side sin 8 and horizontal side cos §. By
Theorem 1, sin 8 and cos 6 are real functions defined on the whole real line. We
write sin” 0 for (sin 8)", and cos” 8 for (cos 8Y". By definition (cos 8, sin ) = (x, y) is a
point on the unit circle x2 4+ y? = |, so we always have

sin? @ + cos? 0 = 1.
Also, —1<sinf <1, —1 <cosb <1,
Sin 0 and cos 6 are periodic functions with period 2n. That is,

sin (0 + 27n) = sin B,
cos (0 + 2mn) = cos O

for all integers n. The graphs of sin 0 and cos 0 are infinitely repeating waves which
oscillate between — [ and + 1 (Figure 7.1.7).

For infinite values of 8, the values of sin 0 and cos 0 continue to oscillate
between —1 and [. Thus the limits

lim sin 9, lim sin 0,
08— x 0> —
lim cos 0, lim cos 8,
06— 68— — «

do not exist. Figure 7.1.8 shows parts of the hyperreal graph of sin 0, for positive and
negative infinite values of 0, through infinite telescopes.
The motion of our particle traveling around the unit circle with speed one
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370 7 TRIGONOMETRIC FUNCTIONS

(cos 8, sin 8)

sin 8

cos 8 X

Figure 7.1.9

starting at (1, 0) (Figure 7.1.9) has the parametric equations
X = cos 6, y = sin 6.

The following table shows a few values of sin 8 and cos 8, for 8 in either
radians or degrees.

Table 7.1.1
T

. . n 7 i n 3r 3n
8 in radians 0 3 1 3 3 vy b3 > 2n
6 in degrees | O 30° 45° 60° 90°  135°  180° 270°  360°
sin 0 0 1/2 S22 3 1 J2/2 0o -1 0
cos 6 IEVEY BN} 1/2 0 -J22 -1 0 1
R B
DEFINITION

The other trigonometric functions are defined as follows.

sin 0
tangent: tan 0 =
cos 0
cos @
cotangent : cot = —
sin 6
1
secant: secl =
cos 8
1
cosecant: csch = —
sin 8

These functions are defined everywhere except where there is a division by
zero. They are periodic with period 2zn. Their graphs are shown in Figure 7.1.10.

When 8 is strictly between 0 and #/2, trigonometric functions can be described
as the ratio of two sides of a right triangle with an angle 0. Let a be the side opposite
0, b the side adjacent to 0, ¢ the hypotenuse as in Figure 7.1.11. Comparing this triangle
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with a'similar triangle whose hypotenuse is a radius of the unit circle, we see that

sinf = —, secd = —, tan 0 =

5

cos @ =—, csc O = —, cotf =

QLI S

Ol ola
QIS SR
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cot §
Q
') 3 | o‘ac‘
1 4 &8 g
p\E " 9
cos @ 1
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Figure 7.1.12 (Continued)

Here is a table of trigonometric identities. The diagrams in Figure 7.1.12
suggest possible proofs. ((6) and (7) are called the addition formulas.)
) sin?@ + cos? O =1 (Figure 7.1.12(a))
(2) tan?0 + 1 = sec® (Figure 7.1.12(b))
(3) cot?’@ + 1 =csc?d (Figure 7.1.12(c))
(4) sin(—0)= —sin8, cos(—0) =cosl (Figure 7.1.12(d))
(5) sin(n/2 — 6) =cos B, cos(n/2 —0)=sinb (Figure 7.1.12(¢))
(6) sin(@ + ¢) = sin B cos ¢ + cossing (Figure 7.1.12(f))
(7) cos(6 + ¢)=rcosBcos ¢ — sinBsing (Figure 7.1.12(f))
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PROBLEMS FOR SECTION 7.1

In Problems 1-6, derive the given identity using the formula sin? 8 + cos? 8 = 1 and the addition
formulas for sin (8 + ¢) and cos (8 + ).

1 tan? 0 + 1 = sec? P 2 cos? @ + cos? Bcot? 0 = cot? 8
3 sin 26 = 2sin B cos 8 4 cos 20 = cos? @ — sin? @
. 1 —cost tan @ + tan ¢
210y _ _
) sin” (30) 3 6 tan (0 + ¢) | —tan0tang

In Problems 7-10, find all values of 0 for which the given equation is true.

7 sinf = cos 8 8 sinfcosf =0
9 sec =0 10 5sin30 =0
11 Find a value of 8 where sin 26 is not equal to 2 sin 0.

Determine whether the limits exist in Problems 12-17.

12 lim sin x 13 lim Slzx

14 lim x sin x 15 lirré x cos (1/x)
16 li[‘% cotx 17 ling tan x

18 Find all values of () where tan 0 is undefined.

19 Find all values of 8 where csc @ is undefined.

7.2 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS
THEOREM 1
The functions x = cos 0 and y = sin 0 are continuous for all 6.

PROOF We give the proof for 6 in the first quadrant, 0 < 6 < n/2. Let A@ be
infinitesimal and consider Figure 7.2.1.

Figure 7.2.1
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Let As = . /Ax? 4+ Ay® be the length of the line PR. Then
0 < Area of quadrilateral QPOR < Area of sector POR,
0< 3 As < L A0

Thus As is infinitesimal. It follows that Ax and Ay are infinitesimal, whence
the functions x = cos 8, y = sin 8 are continuous.

THEOREM 2
The functions x = cos 0 and y = sin 0 are differentiable for all 6, and

d(sin 8) = cos 6 d0,
d(cos 8) = —sin 0 40.

Ax

28\I| &y
—ra——

Figure 7.2.2

Discussion  Intuitively, the small triangle in Figure 7.2.2 is infinitely close to a right
triangle with angle § and hypotenuse A, whence

Ay Ax .
—}zcosﬁ, — &~ —sin 6.

A0 Al

Notice that Ax is negative while Ay is positive when 0 is in the first quadrant.
The proof of Theorem 2 uses a lemma.

LEMMA
i ¥ Gy tim C——-OS%_ L_o

-0 -0

PROOF (i} We show that for any nonzero infinitesimal A0,

sin A9 ~ 1
AG T

When A0 is positive we draw the figure shown in Figure 7.2.3, We have

Area of triangle QOR < area of sector QOR < area of triangle QOS,
$sin AG < 1A < Ltan A6.

sin AB sin AG  sin Af sin Af

tanA0<T<M’ cos A8 < Al

sin Af

Then

< 1.

Since cos § is continuous, cos Af x 1, whence x 1. The case A8 < 0

is similar.
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R S

sin A6
tan A6

A8 |
Figure 7.2.3 PO

(ii) We compute the standard part of (cos AG — 1)/A0.
o[ AD—1\ o cos? A0 —1 1\ o —sin? Af

) ~ T \AO(cos A8 + 1)) T\ AB(cos A9 + 1)

_ sin A9\ st(sinAf)

- AO |stcosAO + 1)

0
~1.-=0.
2

PROOF OF THEOREM 2 Let Af be a nonzero infinitesimal. Then

d(sin 6) sin (6 + AB) — sin 0
a0 234 AG )
_ St(sin 0 cos AO + cos 8sin A§ — sin 6)
Af
_ st(Sin O(cos A8 — 1) + cos #sin A@)
AB
=sinf st(ﬂt—l) + cos 8 st(sm AG)
AB A6

=sinf+0 4+ cosf+1 = cos 0.

Here is a second proof that the derivative of the sine is the cosine. It uses the
formula for the length of a curve in Section 6.3.

ALTERNATE PROOF OF THEOREM 2 (Optional) Let0 < 8 < 7/2 and
= cos 0, y = sin 6.

Then (x, y) is a point on the unit circle as shown in Figure 7.2.4.

Figure 7.2.4
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Take ) as the independent variable. Then

T dx —y X
x=Jl—y = :
A : dy 1 — 2 X

0 is the length of the arc from O to y, so

0 — f " S ey dy
0

By the Second Fundamental Theorem of Calculus,

10 /x4y 1
O v = T4 (2 =¥
dy X N
Then by the Chain Rule,
dy 1
5 = x,
a6 df/dy
and dx dxdy v
— = = —T.x = —
" dyd) - x !
Substituting cos 8 for x and sin 8 for y,
i d
_d(s;; 9 = cos 0, (CCI)HS 0 = —sin 6.
(

We can now find the derivatives of all the trigonometric functions by using
the Quotient Rule
u vdu — ude
d() _

L.Z

THEOREM 3
(1) d(sin 6) = cos 0 d0, d(cos ) = —sin 0 d0,
(i) d(tan ) = sec? 040, d(cot ) = —csc? 0do,

(iif) d(sec 8) = sec 0tan 8 d0, d(csc 8) = —cscOcot 0d0.

PROOF We prove the formula for d(tan 8) and leave the rest as problems.

sin 0
tanf = ——
an cos 0’
dtan 0) = d sin 0 _cos 0 d(sin 0) : sin 8 d(cos Q)
cos ) cos* 0
et Y 2 1ia 2 0
__cos # cos 0 im 6 (—sin -0)(1() _ cos’ 0 +7 sin"0

cos” 6 cos”® 0

1
= ———d0 = sec? 0 d0.
cos

These formulas lead at once to new integration formulas.
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THEOREM 4
0] Jcosedf):sinf)—l— C, fsin6d6= —cos 8 + C.
(i1) fsecz 0df =tan6 + C, J‘csc2 0d6 = —cot + C.

_(iii) Jsec@tan@d@ =secl + C, jcsc@cot@d@ = —¢scl + C.

We are not yet able to evaluate the integrals [ tan 6 d0, | cot 6 d6, | sec 8 o,
| csc 0 d6. These integrals will be found in the next chapter.

EXAMPLE 1 Find the derivative of y = tan?(3x).

dy = 2tan 3x d(tan 3x) = 2 tan 3x sec? 3x d(3x)
= 6 tan 3x sec? 3x dx.

. COSt
EXAMPLE 2 Evaluate lim .
tom2 t — )2

This is a limit of the form 0/0 because
. . s
lim cost = 0, lim (t——) =0.
/2 tomf2
By PHospital’s Rule (Section 5.2),

. cos t . —sint . n
lim ——— = lim —— = —sin =] = —1.
tox2t — w2 tomz 1

EXAMPLE 3 A particle travels around a vertical circle of radius r, with constant
angular velocity w = d6/dt, beginning with 8 = 0 at time ¢t = 0. If the sun
is directly overhead, find the position, velocity, and acceleration of the
shadow.

Let us center the circle at the origin in the (x, y) plane (Figure 7.2.5). Then

X = rgcos 6, y = rg sin 6.

Fo

Figure 7.2.5
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At time 1, 0 has the value 8 = wt. So the motion of the particle is given by the
parametric equations

X = rycos (wt), 1= rg sin (wt).

The shadow is directly below the particle, and its position is given by the
x-component

X = ry cos (mt).

The velocity and acceleration of the shadow are

dx in (o)
p=— = —rowsin{w
dt 0 ’
dv
a= = —row? cos (wt).

EXAMPLE 4 A light beam on a 100 ft tower rotates in a vertical circle at the rate of
one revolution per second. Find the speed of the spot of light moving along
the ground at a point 1000 ft from the base of the tower.

We start by drawing the picture in Figure 7.2.6.

100 ft.

/

;! ground

Figure 7.2.6 j* X

Assume the rotation is counterclockwise. Let ¢ be time and let x and 9 be as
in the figure. Then

do
{T = 2n radians/sec, x = 100 tan 6 ft.
4

We wish to find dx/dt when x = 1000.

d 10
= 100sec? 057 = 2007 sec? .
dt de

When x = 1000,

sec?f@ =1+ tan?0 =1 + (x/100)2 = 1 + 10% = 101.
dx

Therefore m = 202007 ~ 63,000 ft/sec.

EXAMPLE 5 Find sin®rcostdt. Let u = sint, du = cos t dt.

4 g
Then Jsin3 rcostdt = Ju3 du = % +C = SH; t

+ C.

EXAMPLE 6 Find the area under one arch of the curve y = cos x.
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(

From Figure 7.2.7 we see that one arch lies between the limits x = — /2
and x = n/2, therefore the area is

nf2 /2
J costdt=sint] =1—-(-1)=2.

—nf2 —nf2

Figure 7.2.7

Trigonometric identities can often be used to get an integral into a form
which is easy to evaluate.

EXAMPLE 7 Evaluate | sec* x dx. Using the identity sec’> x = 1 + tan? x, we have

jsec"' xdx = J(I + tan? x) sec® x dx-

3x

t
= f(l + tan? x) d(tanx) = tan x + an

EXAMPLE 8 Find [./1 — cosxdx. Using the identity sin®x + cos®x = 1, we
have

,&__\/1 —cosx\/l + cos x \/l — cos? x
cos ¥ 1+ cosx 14+ cosx

/sin? x _ sinx]
1+ cosx \/1+cosx'

Case 7 In an interval where sin x > 0,

J‘1/1—cosxdx=J~ sin x dx—f ————————d(l + cosx)
1+ cosx 1+ cosx
= -2/1+cosx + C.

Case 2 In an interval where sin x < 0,

f 1 —cosxdx =2./1 +cosx + C.

PROBLEMS FOR SECTION 7.2

In Problems 1-14, find the derivative.
1 y = sin 5x 2 y = 3cos?x
3 x = sin (36%) 4 y = sec® x

379
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5 x = tan (40 — 3) 6 » o= xsinx

7 u=gasinf + bcosd 8 u = sin (af) + cos (b8)

9 V= COoS , ¥ 10 ¥y =, CosX

11 v = tan{sin §) 12 y=sinftan0

13 u = 717 14 vy =cot(? 4+ 3r—-2)
2 + cesc(3n)

15 Find dy:dx where x = sin® y

16 Find dy:dx where y = tan (xy)

In Problems 17-24, evaluate the limit if it exists.

17 lim 2sin® 0 18 lim csc x
0-n3 x—0
. sin?r
19 lim cscx 20 lim S
x—=0" (=0 I
21 lim sin (21) ) lim sin
t—0 t Dﬂr( m — 0
23 lim S1) 24 lim (sec — tan 6)
Ho rsinf O-n2

In Problems 25-34, find the maxima. minima, inflection points, and limits when necessary, and
sketch the curve for 0 < x < 27.

25 y=3sinx 26 ) = sin x cos X
27 y = sin?x 28 y = cos(2x)
29 y = sin (.\' — g) 30 » =secx
3 y=tanx 32 y=1-cosx
33 y=csc?x 34 y=x+sinx
0 35 Show that at lim sin (1.x) does not exist.
x—0
O 36 Let f(x) = xsin(1:x), with f(0) = 0. Show that f is continuous but not differentiable
at x = 0.

In Problems 37-53, evaluate the integral.

37 fsin 2n dr 38 fsin X cosxdx
39 flan xsecd x dx 40 jtanl 0do
1 s
41 J. _cos\ /X dx 42 jt sin (¢ + 1) dt
43 fcot (56) csc (50) do 44 f\/f + sin 640
sin 8 — cos 8
45 /' secx — 1 i 4 —_——
fsec x,/secx dx 6 _[(sin 0+ cos 0

47

48 J3sintdr
1]

1
49 J sec? 0.d0 50 J sin (7x) dx
0
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7.3 INVERSE TRIGONOMETRIC FUNCTIONS

w2 2
51 f sin § + cos 8d6 52 f sec? x dx
/3 V]
/2
53 .[ cot x csc x dx
o
54 A revolving light one mile from shore sweeps out eight revolutions per minute. Find

the velocity of the beam of light along the shore at the instant when it makes an angle
of 45- with the shoreline.

55 A ball is thrown vertically upward from a point P so that its height at time ¢ is y =
100t — 1612 feet. @ is another point on the surface 100 ft from P. At time t = 5 find the
rate of change of the angle between the horizontal line QP and the line from @ to the ball.

56 Two hallways of width ¢ and b meet at right angles. Find the length of the longest rod
which can be slid on the floor around the corner.

57 Find the area under one arch of the curve y = 3 sin x.

58 Find the area under one arch of the curve y = sin (3x).

59 Find the area of the region between the curves y = sin x cos xand y = sin x,0 < x < 7/2.

60 The region between the x-axis and the curve y = tan x, 0 < x < /4, is rotated about the
x-axis. Find the volume of the solid of revolution.

61 The region between the x-axis and the curve y = (sin x)/x, n/2 < x < =, is rotated about
the y-axis. Find the volume of the solid of revolution.

62 Find the length of the parametric curve x = 2cos (3r), y = 2sin(31),0 <t < L.

63 Find the length of the parametric curve x = cos®t,y = sin’ 1,0 < t < 7/2.

64 Find the length of the parametric curve x = cos3t, y = sin®t,0 < t < n/2.

65 Find the area of the surface generated by rotating the curve in Problem 63 about the
Xx-axis.

66 Find the area of the surface generated by rotating the curve in Problem 64 about the
y-axis.

INVERSE TRIGONOMETRIC FUNCTIONS

Inverse functions were studied in Section 2.4. We now take up the topic again and
apply it to trigonometric functions. A binary relation on the real numbers is any set
of ordered pairs of real numbers. Thus a real function f of one variable is a binary
relation such that for each x, either there is exactly one y with (x, y) in f or there is
no y with (x, ¥) in f. (Other important relations are x < y,x < 3, x # y,x = y.)

DEFINITION

Let S be a binary relation on the real numbers. The inverse relation of S is the
set T of all ordered pairs (y, x) such that (x,y) is in S. If S and T are both
functions they are called inverse functions of each other.

The inverse of a function f may or may not be a function. For example, the
inverse of y = x? is the relation x = iﬁ, which is not a function (Figure 7.3.1).
But the inverse of y = x2, x > 0, is the function x = \/y (Figure 7.3.2).

381
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Geometrically, the graph of the inverse relation of y = f(x) can be obtained
by flipping the graph of y = f(x) about the diagonal line y = x (the dotted line in
Figures 7.3.1 and 7.3.2). This flipping interchanges the x- and y-axes. This is because
f(x) = y means (x, ) is in f, and g(y) = x means (y, x) is in g. It follows that:

If [ and g are inverse functions then the range of f is the domain of g and vice

versa.

Which functions have inverse functions? We can answer this question with
a definition and a simple theorem.

DEFINITION

A real function f with domain X is said to be one-to-one if f never takes the
same value twice, that is, for all x; # x, in X we have f(x;) # f(x,).

THEOREM 1

[ has an inverse function if and only if f is one-to-one.

PROOF The following statements are equivalent,

(1) fisa one-to-one function.
(2) For every y, either there is exactly one x with f(x) = y or there is no

x with f(x) = y.
(3) The equation y = f(x) determines x as a function of y.
(4) f has an inverse function.
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COROLLARY

Every function which is increasing on its domain I has an inverse function. So
does every function decreasing on its domain I.

PROOF Let f be increasing on I. For any two points x; # x, in I, the value of f
at the smaller of x,, x, is less than the value of f at the greater, so f(x,) #

Sf(x2)

For example, the function y = x? is not one-to-one because (—1)* = 12,
whence it has no inverse function. The function y = x2, x > 0, is increasing on its
domain [0, o) and thus has an inverse.

Now let us examine the trigonometric functions. The function y = sin x is
not one-to-one. For example, sin0 = 0,sinn = 0,sin 2rn = 0, etc. We can see in
Figure 7.3.3 that the inverse relation of y = sin x is not a function.

y N\

N

y=sinx not a function

Figure 7.3.2

However, the function y = sin x is increasing on the interval [—n/2, n/2),
because its derivative cosx is >0. So the sine function restricted to the interval

[—n/2, /2],
y = sin x, —7nf2 < x < nf2,

has an inverse function shown in Figure 7.3.4. This inverse is called the arcsine

¥ x
“
Y
LY
1
o
— = ] 4
hig T X —
‘\:7 ) 1 [ y
1]
1
X
‘\
~
y=sinx, —§<x<% x = arcsin y

Figure 7.3.4

383
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function. It is written x = arcsin y. Verbally, arcsin y is the angle x between —n/2
and n/2 whose sine is y.

The other trigonometric functions also are not one-to-one and thus do not
have inverse functions. However, in each case we obtain a one-to-one function by
restricting the domain to a suitable interval, either [ — /2, n/2] or [0, z}. The resulting
inverse functions are called the arccosine, arctangent, etc.

DEFINITION

The inverse trigonometric functions are defined as follows.

X = arcsin y is the inverse of y = sin x, —n/2 < x < nf2
X = arccos y is the inverse of y = cos x, O0<x<m
x = arctan y is the inverse of y = tan x, ~n/2 <x < nf2
x = arccot y is the inverse of y = cot x, O0<x<m
= arcsec y is the inverse of y = sec x, 0<x<nm
X = arcesc y is the inverse of y = csc x, —n/2 <x <n/2

The graphs of these functions are shown in Figure 7.3.5. The domains of the
inverse trigonometric functions can be read off from the graphs, and are shown in
the table below.

Table 7.3.1

Function Domain
arcsin y —-l<y<l
arccos y -l<y<i
arctan y whole real line
arccot whole real line
arcsec y y< =1, y=21
arcesc y y<—1, y>1

We can prove the inverse trigonometric functions have these domains (i.e.,
the figures are correct) using the Intermediate Value Theorem. As an illustration we
prove that arcsin y has domain [—1, 1).

arcsin y is undefined outside [—1,1] because —1 <sinx < [ for all x.
Suppose ygy is in [—1, 1]. Then

sin(—mn/2) = —1 < y, < 1 = sin (x/2).

sin x Is continuous, so by the Intermediate Value Theorem there exists x, between
—7/2 and n/2 such that sin x, = y,. Thus

arcsin y, = X,

and y, is in the domain of arcsin y.

EXAMPLE 1 Find arccos(\ﬁﬂ). From Table 7.1.1, cos(n/4)=\@/2. Since
0<n/4<m,

arccos (\/5/2) = n/4.
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X X

\

I

_

<

|
— -
—
~

Xx = arcsin y X = arccos y

Xx = arctan y Xx = arccot y

-1 y \-Il 1 y
X = arcsec y X = arccsc y
Figure 7.3.5
EXAMPLE 2 Find arcsin(—1). From Table 7.1.1, sin (37/2) = — 1. But 3x/2 is not

in the interval [ — /2, 7/2]. Using sin (0 + 2nn) = sin 0, we have
sin (—mn/2) = sin (3n/2) = —1,

SO arcsin(—1) = —n/2.

EXAMPLE 3 Find arctan _\/§)_ We must find a 6 in the interval [—n/2, 7/2] such
that tan 6 = —./3. From Table 7.1.1, sin (z/3) = \/5/2, cos (n/3) = 1/2.
Then sin (—n/3) = —+/3/2, cos (—n/3) = 1/2. So
—J32
tan (—n/3) = VAL -3,
1/2
arctan(—ﬁ) = —mn/3.
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EXAMPLE 4. Find cos (arctan y). Let § = arctan y. Thus tan 6 = y. Using

sin® 0 + cos? 0 =1

sin 0 o
cos 0 =0
we solve for cos 8.
sin @ = ycos 6, (ycos 0)* + cos? B = 1,
1
0P+ =1 20 = :
cos“ 0 (y + 1) , cos e
1
Thus coslf = +—m——.
¥+ 1

By definition of arctan y, we know that —zn/2 < 8 < n/2. In this interval,
cos 0 = 0. Therefore

oS ) = .
v+ 1

EXAMPLE 5 Show that arcsin y + arccos y = #/2 (Figure 7.3.6). Let 8 = arcsin y.
We have y = sin 8 = cos (n/2 — 0). Also, when —n/2 < 8 < n/2, we have

nf2 > —0 = —n/2, n>n/2—6>0.
Thus /2 — 0 = arccos y,
arcsin y + arccos y = 6 + (n/2 — 0) = =/2.

arccos y
_______ T

_i [ Y

arcsin y

Figure 7.3.6

We shall next study the derivatives of the inverse trigonometric functions.
Here is a general theorem which tells us when the derivative of the inverse function
exists and gives a rule for computing its value.

INVERSE FUNCTION THEOREM

Suppose a real function f is differentiable on an open interval I and f has an

inverse function g. Let x be a point in I where f'(x) % 0 and let y = f(x).
Then
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(1) g'(y) exists,
I
(i) g0 = 1)

We omit the proof that g'(y) exists. Intuitively, the curve y = f(x) has a non-
horizontal tangent line, so the curve x = g(y) should have a nonvertical tangent
line and thus g'(v) should exist.

The Inverse Function Rule from Chapter 2 says that (ii) is true if we assume
(i). The proof of (ii) from (i) is an application of the Chain Rule:

) =% gUON =1 g0 =1  g0)=
176

The Inverse Function Theorem shows that all the inverse trigonometric
functions have derivatives. We now evaluate these derivatives.

THEOREM 2
. . dx
(i) d(arcsinx) = — (where —1 < x < 1).
1 —x?
dx
dlarccos x) = — —————=  (where —1 < x < 1).
J1 = x2
d
(ii) d(arctan x) = I +xx2.
dx
d(arccot x) = T
dx
(i) d(arcsec x) = (where |x| > 1).
x| /x% —

d(arccsc x) = where |x| > 1).

dx (
[l /x2 — 1
PROOF We prove the first part of (i) and (iti). Since the derivatives exist we may use
implicit differentiation.

(1) Lety = arcsin x. Then
x = sin y, —n/2 <y < nf2,
dx = cos ydy.
From sin? y + cos? y = 1 we get

cosy = +./1 —sin?y = +./1 — x2
Since —n/2 <y < n/2,cosy = 0. Then

cosy = /1 — x2

d>
Substituting, dx = /1 — x*dy, dy = S

(i) Let y = arcsec x.

387
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Then X = Secy, 0<y<m,
dx = sec ytan y dy.
From tan?y + 1 =sec?y we get tan y = i\/sec2 y—1= i\/_\“" — L

. 1 .
Since 0 < y < m,tan y and sec y = —— have the same sign.
cos y

Therefore secytany > 0
and dx = [sec ylftan y|dy = |x|./x* — 1 dy,
dx
dy

IENGE

When we turn these formulas for derivatives around we get some surprising
new integration formulas.

THEOREM 3

1 .
(1) f—w]x = arcsinx + C = —arccos x + C. (Provided that |x] < 1).

\/1—,\'2

.. dx
(11) f 5 = arctanx + C = —arccot x + C.
I+ x

ch
(1i1) jllif;:l =arcsecx + C = —arcescx + C. (Provided that |x] > 1).
NIVAGES

From part (i), arcsin x and —arccos x must differ only by a constant. We
already knew this [rom Example 5,

arcsin x = —arccos x + m/2.

Before now we were not able to find the area of the regions under the curves
1 1 1

Vo= T )‘ =T 3 ’ S

’ I - x 1+ x? ’ x/x? —1

It is a remarkable and quite unexpected fact that these areas are given by inverse
trigonometric functions.

EXAMPLE 6 (a) Find the area of the region under the curve

for -1 <x <L

(b)y Find the area of the region under the same curve for —x < x < =.
The regions are shown in Figure 7.3.7.

! 7

! 1
(a) A= f711—+ xzdx =arctanx}_1 ==
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Figure 7.3.7 —1 | 1

*® 1 0 1 © 1
A=| ——dx=| ——d ——d
®) j_m1+x2x j,w1+x2x+f T+

0 1
= lim s dx + llmf 152

a=—x J, 1+ b—w

= lim (arctan O — arctana) + hm (arctan b — arctan Q)

a>—w

= —lim arctan a + lim arctan b.

a—>— o b- o
From the graph of arctan x we see that the first limit is —n/2 and the second
limit is =/2, so

71: L

Thus the region under y = 1/(1 + x?) has exactly the same area as the unit
circle, and half of this area is between x = —1 and x = 1.

_ﬁ 1
EXAMPLE 7 Find f ———dx
2 oxJ/x?—1

The region is shown in Figure 7.3.8. Since x is negative, x = —|x|. Thus

-J2 1 -J2 1
f o dx :f - dx
-2 x/x* -1 -2 x|l /x* — 1

-2
= —arcsec x:l = —(arcsec (— \/5) — arcsec (—2))

-2

-~
~———
~
~

Figure 7.3.8
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PROBLEMS FOR SECTION 7.3

In Problems 1-9, evaluate the given expression.

1 arcsin (\ﬁ/2) 2 arcsin (— 1/2)
3 arctan (— 1) 4 sec (arctan (— 1))
5 arcsec 2 6 arcsin (cos m)
7 sin {(arccos x) 8 cot (arcsec x}
9 arcsin(cosx), O0<x<n
10 Prove the identity arctan (— x) = —arctan x,
11 Prove arctan (1/x) = arccot x, for 0 < x.
12 Prove arccos (—x) = n — arccos x.
13 Prove arctan x + arccot x = n/2.
Find the derivatives in Problems 14-25.
14 y = arcsin (x/2) 15 y = arcsec (Sx — 2)
16 y = (arcsin x)? 17 y = arcsin (x?)
18 y = arctan \/: 19 s = tarcsin t
20 } = X arcsec x 21 y = arcsin x + \ﬁ - x?
22 ' = arccos x +(x_/\/1_':?) 23 y=xaresinx + /1 — x?
24 u=aresect + /17 — 1 25 y = arctan (1/\/;)
26 Evaluate 1im arcesc x,
27 Evaluate lim arctan x.
28 Evaluate lim aresin x
x—0 X
29 Evaluate lim oot
x— 2 ATCCSC X
In Problems 30-47 evaluate the integrals.
dx dx
30 f1+4x2 3 J‘9+x2
dx dx
32 J.ﬁ 33 J‘*
J4 — x? Jx = x?
Cos x dx
34 — e dx BEE—
J.1+sm2xd\ 35 f fax? — 1
xdx xdx
36 — 37
jx“ +1 J. /1 — x*
38 f A 39 f
{1+ x)/x x\/x -1
40 Jardan X gy - 4l J‘ arcsin x
I+ J1 = x?
gy
42 f e 43 f dx
_al+tx "\/ 2
44

J F\\/V—— 45 L ﬁ—dx
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=1 dX «© dx
46 A 25x% +1 47 J‘Awa2+x2
48 Find the area of the region bounded by the x-axis and the curve y = 1/./1 — x2,
—-l<x<l
49 Find the area of the region under the curve y = 1/(x./x? — 1),1 < x < o0.
50 Find the area of the region bounded below by the line y = 4 and above by the curve
y =1/ + 1)

7.4 INTEGRATION BY PARTS

One reason it is harder to integrate than differentiate is that for derivatives there is
both a Sum Rule and a Product Rule,

dlu + v) = du + dv, duv) =udv + vdu

while for integrals there is only a Sum Rule,

Jdu + dv = fdu + jdv.

The Sum Rule for integrals is obtained in a simple way by reversing the sum
rule for derivatives.

There is a way to turn the Product Rule for derivatives into a rule for integrals.
It no longer looks like a product rule, and is called integration by parts. Integration
by parts is a basic method which is needed for many integrals involving trigonometric
functions (and later exponential functions).

INDEFINITE INTEGRATION BY PARTS

Suppose, for x in an open interval I, that u and v depend on x and that du and

dv exist. Then
Ju dv = uv — fv du.
PROOF We use the Product Rule

udv + vdu = duv), udv = d(uv) — v du.

Integrating both sides with x as the independent variable,

ju dv = j(d(uu) —vdu) = jd(uv) — jv du = uv — fv du.

No constant of integration is needed because there are indefinite integrals on
both sides of the equation.

Integration by parts is useful whenever [vdu is easier to evaluate than a
given integral | u dv.
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EXAMPLE 1 Evaluate [ x sin x dx. Our plan is to break x sin x dx into a product of
the form u dv, evaluate the integrals [ dv and [ v du, and then use integration
by parts to get [ u dv. There are several choices we might make for v and dr,
and not all of them lead to a solution of the problem. Some guesswork is
required.

First try: u=sinx,dv = xdx. [dv = [xdx =3x* + C. Take v = §x
Next we find du and try to evaluate | v du.

du = cos x dx, fv du = j%xz cos x dx.

This integral looks harder than the one we started with, so we shall start
over with another choice of # and dt.

Second try: u = x,dv = sin x dx.
Jdr = ~[sinxd,\' = —cosx + C.
We take v = —cos x. This time we find du and easily evaluate [ v du.
du = dx, fudu:j—cosx:f,\cz—sinx+C1.

Finally we use the rule

J-Ll dv = uv — fv du,

stinxdx = x(—cosx) — (—sinx + C;),

or fxsinxdx= —xcosx + sinx + C.

EXAMPLE 2 Evaluate [arcsin x dx. A choice of « and dv which works is
1 = arcsin x, dv = dx.
We may take v = x. Then
dx
J1=x¥

fvdu=j%= -J1 = x*+C,.

Finally, farcsin xdx = xaresin x — (—./1 — x* + Cy),

farcsin xdx

du =

varesinx + /1 — x2 + C.

Il

This integral and the similar formula for {arccos x dx are included in our
table at the end of the book. We shall see how to integrate the other inverse trigono-
metric functions in the next chapter.
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EXAMPLE 3 FEvaluate { x2 sin x dx. This requires two integrations by parts.
q g yp

Step 1 U= x2 dv = sin x dx,

I

du = 2xdx, fdv J.sinxdx = —cosx + C.
We take v = —cos x.

fxz sin x dx = uv — Jvdu = —x%cosx + fo cos x dx.

Step 2 Evaluate | 2x cos x dx.

U, = 2x, = COS X dx,

dv,
du, = 2dx, J‘du1 = fcosxdx =sinx + C.
We take v, = sin x.
f2x cos xdx = u,v; — fvl du,

= 2xsinx — J2sinxdx

= 2xsinx + 2cos x + C.

Combining the two steps,
~l‘xzsinxdx = —x*cosx + 2xsinx + 2cosx + C.

Sometimes integration by parts will yield an equation in which the given
integral occurs on both sides. One can often solve for the answer.

EXAMPLE 4 Evaluate [ sin® 6 df. Let

u = sin 0, dv = sin 8 d0.
Then du = cos 0 d6, v = —cosb.

fsinZGdB = —sinfcos§ — f—coszé)d()

—sinf@cosf + fcos2 0do

= —sinfcos + f(l — sin? 6) d0

—sinflcos® + 6 — jsinz 6 de.
We solve this equation for [ sin? 8 d6,

jsinZGdG = —3sinfcos® + 36 + C.
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Here is another way to evaluate | sin? § df. Instead of using integration by
parts, we can use the half-angle formula

sin? () = :i;)s (20)—,

This is derived from the addition formula,

cos (6 + ¢) = cos 8 cos ¢ — sin 8 sin ¢,
cos(26) = cos? 0 — sin?@ =1 — 2sin? G,

_ )
2
- ) i |
Then Jsm2 0do = JL- ;OS 20 10 — 5 Jd() - gjcos 20 do

e o1
:EJdH—EJCOSZGd(29)—50—L—151n20+C.

This answer agrees with Example 4 because

sin 20 = sin (0 + 6) = 2 sin 8 cos 0,

1 1. 1 [
S0 59 — Zsm 28 = i() — ismOcos 6.

Integration by parts requires a great deal of guesswork. Given a problem
J h(x) dx we try to find a way to split i(x) dx into a product f(x)g'(x) dx where we can
evaluate both of the integrals [ g'(x) dx and j 2(x) f'(x)dx.

Definite integrals take the following form when integration by parts is
applied.

DEFINITE INTEGRATION BY PARTS

If u= f(x) and v = g(x) have continuous derivatives on an open interval 1,
then for a,binl,

b

b
—ngﬂmm

I

ffumqu:fumm]

PROOF The Product Rule gives

Sx)g(x) dx + glx) f'(x) dx = d([(x)g(x)).
Then by the Fundamental Theorem of Calculus,

b b
j (flx)g'(x) + glx)f'(x))dx = _f‘(.\')g(.\')} .

o a

and the desired result follows by the Sum Rule.

If we plot u = f(x) on one axis and v = g(x) on the other, we get a picture
of definite integration by parts (Figure 7.4.1). The picture is easier to interpret if we
change variables in the definite integrals and write the formula for integration by
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v=2g(x)
&(b) 7 /
/ A’% ”)/ / zzz];;}///r//
&(a) /// [// < . %\
- f (a)\ \\\\\ fb) u %

Figure 7.4.1 Definite Integration by Parts

parts in the form

2(b) f(b)
j udv + f vdu = f(b)gb) — fl(a)g(a).

&(a) Sla)

EXAMPLE 5 Evaluate {7 x sin x dx (Figure 7.4.2). Take u = x,dv = sin xdx as in
Example 1. Then v = —cos x and

ki3 F(d 4
—[ xsinx dx = —xcosx} —J —cos x dx

[ 0 0

n T
= —XCOSX +sinx}
0 0

=(—a(—-1)4+0-)+ 0 —-0)=m.

Figure 7.4.2

PROBLEMS FOR SECTION 7.4
Evaluate the integrals in Problems 1-35.

1 fx cos x dx 2 farccos xdx
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11

13

15

17

19

21

23

25

27

29

31

33

35

36

0o 37

O 38

0o 39
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t? costdt

—

tsin (2t — 1)dr

x? sin (4x) dx

x*arcsec x dx

a

—
=
-

sin /-
arctan | x dx

dx

X 8in x cos x dx

sin 8 sin (260) d6

sin x ¢cos (5x) dx

r3sin (%) dt

“ | =

[l
L
~

w
)
&,
-
————

—
w
<
—

24+ 4dr

Lﬂ"—n%;—u'ﬁ;ﬁ<;—ﬁ%%“—'ﬁ‘——wk——ﬁ
=1
N/'u
|

A
[N

6 cos 0 do

Py

a

f sin’ 6 df

0

i
j xarccot x dx
4]

2

f t arcsec f dt
1

Find the volume of the solid of revolution generated by rotating the region under the

10

12

14

16

18

20

22

24

26

28

30

32

34

J\ arctan x dx
arcsin (31) dt
x arcsec x dx
x3sin x dx
sin # tan? # do

X tan x sec? x dx

cos? 846

rsin?tde

cos x cot™* x dx

x3cos (2x* — D)dx

sin 8 cos 6 cos (sin 0) df

0
I i

-1
\’J “

arcsin x dx

arcsin x dx
4]

xarccot x dx

J
J
J
J
J
J
J
Jcosxcos (3x)d
J
J
J
J
N
l
Jy

0

curve y = sinx, 0 < x < 7, about (a) the x-axis, (b} the y-axis.

Prove that if / is a differentiable function of x, then
J_/‘(.\') dx = xf{x) — fx/"(x) dx.

If v and v are differentiable functions of x, show that

J‘u2 de = u?r — quv- du.

Show that if f” and g are differentiable for all x, then

j g0 (x) /(gL dx = f(gbNglx) — flglx) + C.
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7.5 INTEGRALS OF POWERS OF TRIGONOMETRIC FUNCTIONS

It is often possible to transform an integral into one of the forms

fsin" u du, fcos"u du, Jtan"u du, etc.

These integrals can be evaluated by means of reduction formulas, which express the
integral of the nth power of a trigonometric function in terms of the (n — 2)nd power.
The easiest reduction formulas to prove are those for the tangent and cotangent, so
we shall give them first.

THEOREM 1

Letn # 1. Then

n—1

tan X

(i) Jtan”x dx = — f tan"" 2 x dx.

n—1

.. cot” 1 x
(ii) fcot"x dx = — -1 " jcot"‘zx dx.
n—

PROOF We recall that

tan®x = sec?x — 1, d(tanx) = sec®x dx.
Then ftan"x dx = J-tan"#zx tan?x dx = ftan"‘zx (sec’x — 1)dx
= j tan" " *xsec?x dx — j tan" "% x dx
= ftan”_zx d(tanx) — f tan" " 2 x dx
tan" " !x

= ftan"’zxdx.
n—1

These reduction formulas are true for any rational number n # 1. They are
most useful, however, when n is a positive integer.

tanx

EXAMPLE 1 Jtanzx dx = — ftanoxdx =tanx — x + C.

tan®x tan’®x

EXAMPLE 2 ftan“x dx = — jtanz,\‘ dx = —tanx+x+ C.

tan®x
EXAMPLE 3 ftan3xdx= 5 —ftanxdx.

We will evaluate | tanx dx in the next chapter.
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Each time we use the reduction formula the exponent in the integral goes
down by two. By repeated use of the reduction formulas we can integrate any even
power of tanx or cotx. We can also work the integral of any odd power of tanx or
cotx down to an expression involving [ tanx or { cot x.

The reduction formulas for the other trigonometric functions are obtained
by using integration by parts.

THEOREM 2

Let n # 0. Then

. . 1,
(i) J.sm“x dx = — —sin" 'xcosx +

.. 1 o
(1) fcos"x dx = ~cos" 'xsinx +

n—1

J sin”~ % x dx.

n n

n—1

f cos" ™ 2 x dx.

n n

PROOF (i) Break the term sin"x dx into two parts,

sin”x dx = sin"~ ! x(sin x dx).

We shall let u = sin" 'x, = —COSX,

n—2

du = (n — 1)sin"~*x cosx dx, dv = sinx dx,

and use integration by parts. Then

~[sin”xdx = Judu= uy — fudu

= —sin""!xcosx — f(n — 1)(—cosx)sin"~ ?x cosx dx
= —sin" 'xcosx + (n — I)J. sin" "2 x(1 — sin®x) dx

= —sin" !xcosx + (n — 1)f sin" ?xdx — (n — I)J sin” x dx.

We find that {sin"x dx appears on both sides of the equation, and we solve

for it,

nf sin"xdx = —sin" " txcosx + (n — l)f sin"~ 2x dx,

\ 1. n—1 )
Jsm"x dx = — —sin""'xcosx + —— | sin" " 2xdx.
H 4]

We already know the integrals

fsinx dx = —cosx + C, fcosx dx = sinx + C.

We can use the reduction formulas to integrate any positive power of sinx or cosx.
Again, the formulas are true where n is any rational number, # # 0.
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EXAMPLE 4 J-sinzx dx = —Lsinxcosx + %j dx = —isinxcosx + ix + C.

fcoszxdx = fcosxsinx + %f dx = Jcosxsinx + ix + C.

EXAMPLE 5 ~fcos3x dx = Jcos’xsinx + %f cosx dx

= {cos’xsinx + 4sinx + C.

THEOREM 3

Let m # 1. Then

1 . m—2
(i) ~[sec’"x dx = sec™ ! xsinx + Jsec’"‘zx ax.
m-—1 m—1
. 1 -2
(1) J cscxdx = — csc™ tx cosx + e Jcsc""zx dx.
m—1 m—1

PROOF (ii) This can be done by integration by parts, but it is easier to use
Theorem 2. Let n = 2 — m. For m # 2, n # 0 and Theorem 2 gives

) 1 Lo 1 —m .
jsmz‘"‘x dx = — sin! "™xcosx + —— | sin""xdx,
2—m 2—m
_ 1 m— 1
f cse™ Zx dx = csc™ " lx cosx + csc™x dx,
m—2 m—2
1 m—2
whence jcsc"‘x dx = — 1c:sc""lxcosx + 1jcsc"’*zx dx.
m— m —

For m = 2 the formula is already known,

fcsczx dx = —cotx + C = —cscxcosx + C.

These reduction formulas can be used to integrate any even power of secx or
cscx, and to get the integral of any odd power of secx or cscx in terms of | secx or
[ escx. We shall find [ secx and [ cscx in the next chapter.

EXAMPLE 6 Jsec-”x dx = Lsec’xsinx + %f secx dx.

EXAMPLE 7 f sec*x dx = {sec®xsinx + %f sec? x dx

= IsecPxsinx + %tanx + C.

By using the identity sin? x + cos® x = 1 we can evaluate any integral of the
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form | sin™ x cos" x dx where m and n are positive integers. If either m or n is odd we
let u = sin x or v = cos x and transform the integral into a polynomial in u.

EXAMPLE 8 fsin“x cos®x dx. Let u = sinx, du = cosx dx.
Jsin“x cosdxdx = ju“(l — u¥)du

=hd -5+ C

= Lsin®x — 4sin”x + C.

This method also works for an odd power of sinx times any power of cosx,
and vice versa.

EXAMPLE 9 j‘\/cosx sin®x dx. Let u = cosx,du = —sinxdx.

Jm sin®x dx = fva(l — ) (=1)du
= f —u'? 3t du = 5+ 3+ C

= —%cosx)*? + 4(cosx)”? + C.

EXAMPLE 10 fsinsxd.\‘. Let u = cosx, du = —sinx dx.

fsinSx dx = f(l —uH(=Ddu

= —f(l -2 +utdu = —u+ 3 - L+ C

= —cosx + 3cos’x — Lcos’x + C.

If m and n are both even, the integral | sin™x cos”x dx can be transformed
into the integral of a sum of even powers of sin x. Then the reduction formula can

be used.
EXAMPLE 11 ~I‘sin“x cos*xdx = jsin“‘.\'(l — sin?x)% dx
4 L6 S B gL
= fsm x — 2sin®x + sin®xdx,

We can also evaluate integrals of the form

f tan™ x sec” x dx,

¢
_J cot™x ¢csc”x dx.
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EXAMPLE 12 When m is even use tan’x = sec®x — 1.
f tan*x secx dx = j (sec? x — 1)% sec x dx
= fsecsx — 2sec’x + secx dx.

Now the reduction formula for secx can be used.

EXAMPLE 13 When m is odd use the new variable ¥ = secx or u = —cscx.

f cot’x cscdx dx = f cot? x csc? x (cot x cscx dx)

5 3
=f(u2—1)u2du=%—%+(:

csc’x escix

= — + + C.
5 3
PROBLEMS FOR SECTION 7.5
Evaluate the integrals in Problems 1-32.
13
1 f Sl 2 f sin?(2r) dt
cos?t
3 j cot? x dx 4 f sin®(5u) du
4. 1
5 cos*x dx 6 ——dx
sin® x
7 f tan®xsec*xdx 8 j tan® g do
9 J.sinzxcosax dx 10 fcot@ csc? 0 do
11 f cot?0csc? 9 do 12 f sin x(cos x)%% dx
13 f(tanx)”2 sectx dx 14 J sec*(3u — 1) du
fen 2
15 f sec?f csc? 0 df 16 f S0
1 — cost
—_ /2
17 J‘l.#sedﬂ 18 j sin®x cosx dx
sin” 6 0
/3 72 I
19 f tan36 sec 40 20 f \/cosx sinx dx
0 1]

n/d w2
21 J tan*x dx 22 f tan? x dx

4] o
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23 f" sin* 6 df 24 f sin®(2u) cos? (2u) du
25 JCOS \ 26 j.\‘ tan(x?) sec?(x2) dx
27 J-xsin3x dx 28 fxtan%c sec?x dx
29 J x sin? x cos x dx 30 J. sin®0 cos® 0 d0

31 f tan* 0 sec® 0 df 32 f sin? x cos? x dx

In Problems 33-39, express the given integral in terms of

f tan x dx, J‘ cotx dx, f secx dx, f cscx dx.

33 sec3 x dx 34 Jcotaxdx

35 tan® x secx dx 36 f csc’ x dx

sinx + cosx

37 fcot x cse? x dx 38 ftan“x secx dx

39 Sin x cos x

40 Check the reduction formula for { sin”x dx by differentiating both sides of the equation.
Do the same for [ tan"x dx and [ sec”x dx.

41 Find a reduction formula for [ x"sin x dx using integration by paris.

42 Find the volume of the solid generated by rotating the region under the curve y = sin?x,

0 < x < =n, about (a) the x-axis, (b) the y-axis.

43 Find the volume of the solid generated by rotating the region under the curve
y =sinxcosx, 0 < x < 7/2, about (a) the x-axis, (b) the y-axis.

TRIGONOMETRIC SUBSTITUTIONS

Integrals containing one of the terms

a® + x2, Jat — X2, or x2 — 4%
can often be integrated by a trigonometric substitution. The idea is to take x, @, and the
square root as the three sides of a right triangle and use one of its acute angles as a
new variable 0. The three kinds of trigonometric substitutions are shown in Figure
7.6.1. These figures do not have to be memorized. Just remember that the sides must
be labeled so that

(opposite)? + (adjacent)? = (hypotenuse)?.

These substitutions frequently give an integral of powers of trigonometric functions
discussed in the preceding section.
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: ) /‘\/xz——a_z
2y 0\

a /a2_x2

x=atan @ x=asin @ x=asecl
Figure 7.6.1

EXAMPLE 1 Find [ (a® + x?) 732 dx.
Let 0 = arctan(x/a). Then from Figure 7.6.2,

X = atané, dx = asec?0d0, Ja* + x* = asech.
So

J‘(a2 + x%) 732 dx = f(a sect)™ 3 asec?6 do

1 1
=?J(se09)“d9=;fcos9d6

1 1 tanf@ X
_lsno+c=—B 0o X ¢

az_sm + a® secl @’ Jat + x*

EXAMPLE 2 Find [/x* — a®dx.

Let 6 = arcsec (x/a) (Figure 7.6.3), so
x =asec, dx = atan0sechdo, Vx? — a® = atané.

So
J. x? —ag?dx = Jatan@atan@ secHdf = aZJ. tan2 0 sec do

= azj (sec? 6 — 1)secH do

azf sec30do — azj secO do

(%az sec20sinf + %azf secl dB) - azj secd do

1% sec?Osinf — %azj sech df

— %xm - %aZJ. sec d0.

This is as far as we can go on this problem until we find out how to integrate
{ sec df in the next chapter.

x /X2—£12

Figure 7.6.2 Figure 7.6.3 a
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dx. Let 8 = arcsin(x/a) (Figure 7.6.4). Then

EXAMPLE 3 f S S5
X3 Ja? — x?
;

X = asin0, dx = acosf db, N a? — x? = qcos0.
1 1 1
——dx = | 55— 0d0 = | —————d0o
f_\l a2 — x2 dx Jaz sin*Gacosd - Jaz sin? 6"
1 {
7Jcsczé)(19 = ——cotl + C
a a

12
_ 1\/(1\’,\+C‘

a*

2 2
EXAMPLE 4 f\/\ Fad.\‘. Put 8 = arcsec (x/a) (Figure 7.6.5). Then
X

X = asech, dx = atanBsecldo, VX2 = a* = atanb.
2 2
J‘\/‘\ ¢ dx=JataneataneseCOdezaftanZH(ZH
X asecl

= afseczedﬁ - afd@ =gatan0 —al + C

= /x* — a® — aarcsec(x/a) + C.

X x? — g2

a— x? a
Figure 7.6.4 Figure 7.6.5

To keep track of a trigonometric substitution, it is a good idea to actually
draw the triangle and label the sides.

EXAMPLE 5 The basic integrals:

1
(a) f?_zdx = arcsinx + C,
V1 =x
"odx
(b) J T dx = arctanx + C,
d'.
(c) —,_;af = arcsecy + C, x> 1
X/ xt -1

can be evaluated very easily by a trigonometric substitution.

[
(a) = dx.
J— .\T"

J 7
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x2—

b

V11— x? 1 1

Figure 7.6.6 Figure 7.6.7 Figure 7.6.8

Let 0 = arcsinx (Figure 7.6.6). Then x = sinf, dx = cosfd0, ./1 — x* =

cosf.
f—l—dx=fcosed6:JdG=H+C,
1 — x? cosf
1 .
J——dx = arcsinx + C.
1 — x?
dx
(b) 1+ x?

Let § = arctan x (Figure 7.6.7). Then x = tan 0, dx = sec* 0d0, /1 + x* =
sec 0.

dx sec?
1+x2_fse29d0—Jd9 0+ C,
dx

T2 = arctanx + C.
X

(© J‘d—x
x/x* — 1

x> 1.

Let 6 = arcsecx (Figure 7.6.8). Then x = secf, dx = tan0secfdo,

2 _ 1 =tan¥.

tan @ secf

dx
J.x\[v"——f B fsecﬂtan@
dx
—————— = arcsecx + C, x> 1.
J-x\/xz +1

d6=jd6=9+C,

1

It is therefore more important to remember the method of trigonometric
substitution than to remember the integration formulas (a), (b), (c).

PROBLEMS FOR SECTION 7.6

Draw the appropriate triangle and evaluate using trigonometric substitutions.

1

d‘.
J‘ﬁ 2 J:/az—xzdx
f x3dx 4 j,/.\‘zvld\’
V9 + x? X _
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5 f(4 — x%)7 32 dx 6 [(1 2312 dx
; sinf do g f dx
V2 —cos*0 f\/j’:
dx
o J.xz(l + x?) 1o 9 + x2
2 . /0 _ A2
no = & 12 fv_u v
VA= x ~
13 f.rz\ﬂ_— x*dx 14 f\/;‘\/l — xdx
15 f S — xPdx 16 f dx
N 1 —x
SR 18
R Y [
Jax? -1 x3/x? =3
3
19 f—x“d,\- 20 fo [+ a’x? dx
Jat —x?
fF
21 f—'\\‘——ld,\' 22 Jx,/l — x*dx
P 2
[ S—' 5 4 — -2 y
23 J(az I dx 24 L i x*dx
X 4 dx
s e
5 J‘—l,/l — x? * 2% L © +X2)3/2
Ee 4 L2
27 f _dx 8 f NN
Jo ©+ ) I
x 2 __ 5 € 3
29 J NESERFN 30 f X
2 X o /1 + x?
31 f xarcsinx dx 32 j x arccosx dx
33 (-xz arcsinx dx kY| fx3 arctanx dx
35 f x~3arcsinx dx 36 j x~3arctanx dx
37 Find the surface area generated by rotating the ellipse x> + 4y? = 1 about the x-axis.

7.7 POLAR COORDINATES

The position of a point in the plane can be described by its distance and direction
from the origin. In measuring direction we take the x-axis as the starting point. Let X
be the point (1, 0) on the x-axis and let P be a point in the plane as in Figure 7.7.1.

P(r, 8)

Figure 7.7.1 o X
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A pair of polar coordinates of P is given by (r, 8) where r is the distance from the
origin to P and 0 is the angle XOP.

Each pair of real numbers (r, ) determines a point P in polar coordinates.
To find P we first rotate the line OX through an angle 0, forming a new line OX’,
and then go out a distance r along the line O X’. If 6 is negative then the rotation is in
the negative, or clockwise direction. If r is negative the distance is measured along
the line O X" in the direction away from X' (see Figure 7.7.2).

XI
(0] ]
X
o«
P(r, ) P(r, 0)
9 negative r negative

Figure 7.7.2

EXAMPLE 1 Plot the following points in polar coordinates.

(25 7T/4), (— 1: 7t/4)’ (3, 37:/4)3 (25 - 77:/4), ( - 4a - 77:/4)
The solution is shown in Figure 7.7.3.

Each point P has infinitely many different polar coordinate pairs. We see in
Figure 7.7.4 that the point P(3, n/2) has all the coordinates
(3, /2 + 2nn),

(—3,37/2 + 2n7t),}n an integer.

—4, %
«5\ )
(3. 3T
\\(\3 7))
. z
\\\ //P (2)4)
\\ /,
\\ /,l
\\J, .
N 1,0
[ 4 \\
-1,% \
Figure 7.7.3
l
s
m ¥is m
3,2 $(=33) b (3,7 +2n)
1
I
I
!
3 ™
: % —{‘ 12r+21r
0 0] -

Figure 7.7.4
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5=
=
5 @
N
[
(] ~

X =rcost

Figure 7.7.5
Any coordinate pair (0, 8) with r = 0 determines the origin. As we see in

Figure 7.7.5, the coordinates of a point P in rectangular and in polar coordinates are
related by the equations

X = rcosé, )y = rsiné.

The graph, or locus in polar coordinates of a system of formulas in the variables r, 6
is the set of all points P(r, 8) for which the formulas are true.

EXAMPLE 2 The graph of the equation r = a is the circle of radius « centered at the
origin (Figure 7.7.6(a)). The graph of the equation 8 = b is a straight line
through the origin (Figure 7.7.6(b)).

EXAMPLE 3 The graph of the system of formulas
r=0, 0<8

is the spiral of Archimedes formed by moving a pencil along the line 0X
while the line is rotating, with the pencil moving at the same speed as the
point X. The graph is shown in Figure 7.7.6(c).

An equation in rectangular coordinates can readily be transformed into an
equation in polar coordinates with the same graph by using x = rcosé, y = r sin0.

(m, m)

/ b =b (©)

Figure 7.7.6
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Here are the polar equations for various types of straight lines. Examples of
their graphs are shown in Figure 7.7.7.

(1) Line through the origin (not vertical).

Rectangular equation: y = mx.
Polar equation: rsinf = mr cos0,
or: tanf = m.
(2) Horizontal line (not through origin).
Rectangular equation: y=h.
Polar equation: rsinf = b,
or: r = bcsch.
(3) Vertical line (not through origin).
Rectangular equation: X = a.
Polar equation: rcosf = g,
or: r = asech.
(4) Vertical line through origin.
Rectangular equation: x = 0.
Polar equation: rcosf = 0,
or: 0 = =n/2.
(5) Other lines.
Rectangular equation: y=mx + b.
Polar equation: rsinf = mrcos 6 + b,
or: - = b
' "7 Sing — mcosf’
y y
¥
b r
9 9\
X X
y=mx,tan 8 = m y=b,r=bcsct
y y

f A
a x / x

b

x=a,r=asech y=mx+br=——"—-——
sin ) — mcos 0

Figure 7.7.7
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EXAMPLE 4 The parabola y = x? has the polar equation

. sinf
rsinf = (rcos6)?, or r=-—-=tan0secl.
cos“f

EXAMPLE 5 The curve y = 1/x has the polar equation

1

, or r?=secHcsch.
rcosf

rsinf =

The graph is shown in Figure 7.7.8.

Figure 7.7.8

Some curves have much simpler equations in polar coordinates than in

rectangular coordinates.

EXAMPLE 6 The graph of the equation

1= qasinf

is the circle one of whose diameters is the line from the origin to a point a

above the origin,

This can be seen from Figure 7.7.9, if we remember that a diameter and a

point on the circle form a right triangle.

As 0 increases, the point (a sinf, 8) goes around this circle once for every &

radians.

(r, 0

) F=asin 8

Figure 7.7.9
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(x, y)=(r, 0

= n)

=

w

D >

&=

>

0
\ x=f(0)cos b
Figure 7.7.10 /

An equation r = f(8) in polar coordinates has the same graph as the pair of
parametric equations

x = f(B)cosb, y = f(0)sinf

in rectangular coordinates. This can be seen from Figure 7.7.10.

EXAMPLE 7
(a) The spiral r =  has the parametric equations
x = @ cosb, y = 0sinf.
(b) The circle r = asin# has the parametric equations

x =asinfcosh, y = asin®6.

PROBLEMS FOR SECTION 7.7

1 Plot the following points in polar coordinates:
(@ (2,7/3) (b) (=3,7/2) © (1,4n/3)
d (=2, —7/4) () (m) ) (0,3n/2)

In Problems 2-12, find an equation in polar coordinates which has the same graph as the given
equation in rectangular coordinates.

2 v =3x 3 r=5x + 2
4 y=—4 5 x=2

6 xy?=1 7 y=x>+1
8 x2+y2=5 9 y = 3x% — 2x
10 y=x3 11 y=x%+)?
12 y =sinx

In Problems 13-20, sketch the given curve in polar coordinates.
13 r = cosf 14 r= —secl
15 ¥ =sin(@ + n/4) 16 r=0, 0<0
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1
17 =1 0% /m? 1 = -
! o 8 ! sinf + cosf
19 r = cotcsch 20 r? = —2sect csc

In Problems 21-24, find rectangular parametric equations for the given curves.

21 r = sin(36) 22 1 = secl cscl
23 =02 24 r=tan(
25 Prove that if f(8) = f(— 0) then the curver = f(0)is symmetric about the x-axis. That is,

if (x, y) is on the curve then so is (x, — y).

26 Prove that if f(0) = f(= + 0) then the curve r = f(0) is symmetric about the origin.
That is, if (x, y') is on the curve so is (—x, —y).

27 Prove that if f(0) = f{r — 0) then the curve r = f(0) is symmetric aboul the y-axis.

SLOPES AND CURVE SKETCHING IN POLAR COORDINATES

Derivatives can be used to measure direction in polar as well as in rectangular
coordinates. We begin with two theorems, one about the direction of a curve at the
origin (an unusual point in polar coordinates) and the other about the direction of a
curve elsewhere. Then we shall use these theorems for sketching curves.

THEOREM 1

At any value 0, where the curve r = f(0) passes through the origin, the curve
is tangent to the line 8 = 0.

More precisely, if r = 0 at 8 = 8, but r £ 0 for all 8 # 6, in some neighbor-
hood of 04, then

. Ay . Ax
lim — = tan§,, lim — = cot#d,.
000 AX 9-80 Ay

PROOF Suppose cos (), # 0. so tan 0, exists. Let AU be a nonzero infinitesimal. Then
Ar # 0 and r changes from 0 to Ar. We compute Ay/Ax.
Ay = (0 + Ar)sin(8, + AB) — Osind,
= Arsin(f, + A0),
Ax = Arcos(6, + Af),
Ay  Arsin(0, + AD)

=792 " — tan(¥ AG).
A~ Arcos(0, + AG) a0l + 40)

Taking standard parts,

. Ay
lim — = tan f,.
gl"r(r)]o AX an 0
Similarly, when sind, # 0,
Ax
lim — = cotd,.
ean}o Ay cotbo
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Both limits were given in the theorem to cover the case where the curve is

vertical and tan 8, is undefined.
The theorem tells us that if » = 0 at 8,, the curve must approach the origin
from the 8, direction. Figure 7.8.1 shows two cases.

(@) If r has a local maximum or minimum at 6,, then r has the same sign
on both sides of ;. In this case the curve has a cusp at §,,.

(b) If r has no local maximum or minimum at 8,, then r is positive on one
side of 8, and negative on the other side. In this case the curve crosses the
origin at 6.

r>0
r>0
0
& /o)
0
r <0

(a) (b)
Figure 7.8.1

We now consider points other than the origin. In rectangular coordinates,
the slope ofa curve y = f(x)at a point Pisdy/dx = tan¢ where ¢ is the angle between
the x-axis and the line tangent to the curve at P as shown in Figure 7.8.2.

y

Figure 7.8.2

When r # 0 in polar coordinates, a useful measure of the direction of the
curve at a point P is tanyy, where 1 is the angle between the radius OP and the tangent
line at P (see Figure 7.8.3).

Figure 7.8.3

413
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The following theorem gives a simple formula for tany when r # 0.

THEOREM 2

Suppose r = [(0) is a curve in polar coordinates and dr/dO exists at a point P
where r # 0. Let L be the line tangent to the curve at P and let ¢ be the angle
between OP and L. Then

1 dr

t = ——.

coty rdo

.
1f drjd # O, tan y = ——
f drfdo = any = e

it
(0]

Figure 7.8.4

The formula can be seen intuitively in Figure 7.8.4.

Af is infinitesimal. As we move from the point P(r,0) to the point
Q(r + Ar, 0 + AD) on the curve, the change in the direction perpendicular to OP will
be very close to r A0, so we have

Ar 1 dr
— =~ cot - = :
rap S O g = o
We shall postpone the proof to the end of this section.
We can use Theorem 2 in curve sketching as follows.

(a) In an interval where tany > 0, the curve is going away from the origin
as 0 increases because dr/d@ has the same sign as r.

(b) Where tany < 0, the curve is going toward the origin as 0 increases
because dr/df has the opposite sign as r.

(c) Where r has either a local maximum or minimum and dr/d6 exists, the
curve is going in a direction perpendicular to the radius. This is because
dr/df = 0 so cotiy = 0.

Each of these cases is shown in Figure 7.8.5.

Polar coordinates are best suited for trigonometric functions, which have
the property that f(6) = f(6 + 2n). We shall therefore concentrate on the interval
0<8<2n

Suppose that the function r = f(8) is differentiable for 0 < 8 < 2n. The
following steps may be used in sketching the curve.
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r r r
/B b 6
(@) (b) (c)
Figure 7.8.5

Step 1 Compute dr/db.
Step 2 Find all points where r = 0 or dr/df = 0.

Step 3 Sketch y = f(x) in rectangular coordinates. (A method for doing this is
given in Section 3.9.)

Step 4 Computer, dr/df, and tan i = r(dr/d8) at the points wherer = Q or dr/df = 0
and at least one point between. Make a table, and test for local maxima or
minima.

Step 5 Draw a smooth curve using the rectangular graph of step three and the table
of step four.

EXAMPLE 1 Sketch the curve r =1 + cos®.

Step 1 dr/df = —sind.

Step2 r=0when 6 == dr/d0 = 0when8 =0, .
Step 3 See Figure 7.8.6.

y
o 'z 2+ ¥ 2 X
Figure 7.8.6
Step 4 6 r=14cosf | dr/df tany | Comments
0 2 0 — max
/2 1 -1 -1 { |#| decreasing
7 0 | 0 — } min, cuspat0
3n/2 1 | 1 1 | |r|increasing
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SIE]

Sy

Figure 7.8.7

Step 5 Wedraw the curvein Figure 7.8.7. The curve is called a cardioid because of its
heart shape.

EXAMPLE 2 Sketch the curve » = sin26.
Step 1 dr/df = 2 cos?28.

s 3 n 3n Snm In

2 r=0atf=0,-n,—. dr/dd =0atl=-—,—,—,—.

Step ! a '3 b4 5 1/ a a4 4

Step 3 See Figure 7.8.8.
y
0 5=; 6r 71T X
T rulry AL
y =sin 2x

Figure 7.8.8

. . . . .
Step 4 We take values at intervals ofg beginning at f = 0. We can save some time

by observing that the values from n to 27 are the same as those from O to 7.

0 ;= sin20 drjd@ | tany | Comments
Oandn ‘ 0 2 [ 0 crosses origin
7/8 and 97/8 | V22 V2 1/2 || increasing
27n/8 and 10n/8 L 0 , — max
3n/8and 11m/8 | /272 -2 ‘ —1/2 . || decreasing
4n/8 and 127/8 | 0 -2 0 crosses origin
57/8 and 13n/8 -\/2/2 —\/2 L 12 [#] increasing
6n/8 and 14n/8 —1 0o — min
Tn/8and 15n/8 | - /272 J2 | ~112 /| decreasing

Step 5 We plot the points and trace out the curve as 8 increases from 0 to 2.
Figure 7.8.9 shows the curve at various stages of development. The graph
looks like a four-leaf clover.

If ¥ approaches oc as 6 approaches 0 or x, the curve may have a horizontal
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o<o<3r 0<o<r 0<0<2n

Figure 7.8.9

asymptote which can be found by computing the limit of y. At § = =/2 or 3n/2 there
may be vertical asymptotes. The method is illustrated in the following example.

EXAMPLE 3 Sketch r = tan(0).
Step 1 dr/dd = §sec®(36).
y = rsinf = sinif sinfH/cosid
= sin30(2 sini6 cosif)/cosi0 = 2 sin?(3H).

Step2 r=0atd=0.
 is undefined at 0 = =n.
dr/d0 is never 0.

Step 3 See Figure 7.8.10.

y
|
|
|
|
i
! e
0 ﬂ}T 2T x
|
I
1
|'
Figure 7.8.10 |
Step 4 7} ror limr limy | dr/df | tany | Comments
0 0 | 1/2 crosses origin
/2 1 1 1 |F| increasing
f—-n" el 2 asymptote y = 2
0—-n* ) 2 asymptote y = 2
3n/2 —1 1 —1 [r| decreasing
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Step 5 The curve crosses itself at the point x = 0, y = 1, because this point has both
polar coordinates

(r=1,0=n2),0=—10=13n2).

Figure 7.8.11 shows the graph for various stages of development,

Figure 7.8.11

PROOF OF THEOREM 2
dx # 0. Since

Assume the curve is not vertical at the point P, that is,

X = rcosé, v = rsind,

he (L) _dy/d6  rcosf + (dr/d0)sin0
we have dx  dx/d0  —rsin0 + (dr/df)cos0
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Figure 7.8.12 a B‘ﬁ

By the definition of the tangent line L (see Figure 7.8.12),

d_y __changein yalong L sin(0 + y)
dx ~ changein x along L~ cos(0 + ¢)’

Using the addition formulas,

dy _sinfcosy + cosd siny
dx  cosfcosy — sin@siny’

Thus rcosf + (dr/d0)sinf  siny cosO + cosy sind
—rsin@ + (dr/df)cos®  —siny sinf + cosy cos@’

Multiplying out and canceling, we get
. dr . .
r cosy(sin? 0 + cos?@) = d_’95m Y(sin?0 + cos?0),

1 dr

dr
h . = —si - = .
whence ¥ cosy 70 siny, 0 coty
If the curve is vertical at P we may use the same proof but with dx/dy instead
of dy/dx.

PROBLEMS FOR SECTION 7.8

In Problems 1-6, find tan y, where  is the angle between a line through the origin and the curve.

1 =10 2 r = sinf
3 r = cosf 4 I = secd
5 r=1+ cosf 6 r = sin(20)

In Problems 7-25, sketch the given curve in polar coordinates by the method described in the
text; 0 < H < 27 unless stated otherwise.

7 r = sinf + cos0 8 r=2+ 2sing
9 r =14 + sin® 10 r =2+ cosf
11 r =%+ cosb 12 r=cos(lf), 0<8<dn

13 r=sin(3f), 0<0<6n 14 r = sin?8
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15 r =1+ 3cos?(20) 16 r = sin?(30)
17 r = tan® 18 r=sec(#0), 0<0 <4dn
1
19 r=1+4 secl 20 ’zlicos()
1
21 r= T sind 22 r = cot(20)
23 F=n/0, 0<0<x 24 r=14+n/0, 0<0<x
25 r=/nfb, 0<6<ax
In Problems 26-29, find the points where x and y have maxima and minima.
26 r=1+ cos0 27 r =1+ sin?0
28 r = sin (20) 29 r =32+ cost
30 Find all points where the curves r = 1 + cos@ and r == 3 cos§ intersect.
31 Find all points where the curves r = § and r = sin(20) intersect. Warning: The points

(r, 8) and (—r, n + 0) are the same.

32 Find all points where the curves » = cosf and r = sin(26) intersect.

7.9 AREA IN POLAR COORDINATES

In this section we derive a formula for the area of a region in polar coordinates.
Section 6.3 on the length of a curve in rectangular coordinates should be studied
before this and the following section.

Our starting point for areas in rectangular coordinates was the formula for
the area of a rectangle. In polar coordinates our starting point is the formula for the
area of a sector of a circle.

THEOREM 1

A sector of a circle with radius r and central angle 6 has area
A = 3r20.
An arc of a circle with radius r and central angle 8 has length
s =rb.

PROOF Consider a sector POQ shown in Figure 7.9.1. To simplify notation let O
be the origin, and put the sector POQ in the first quadrant with P on the

y

rsin @

o rcos 8 ¥ X

Figure 7.9.1
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x-axis. Then
P = (r,0), Q = (rcos0,rsinb).
The arc QP has the equation

y = /r? —x2, rcosh < x <r.

We see from the figure that

¥

A = %r?sinf cos + S — x2 dx.

r cosd

Integrating by the trigonometric substitution x = rsin¢, we get

¥
f S — x?dx = 4?0 — 4r? sin6 cos¥.
r

cos@

Therefore A = 4r%6. By definition, A = irs, so

The next theorem gives the formula for area in polar coordinates.

THEOREM 2

Let v = f(B) be continuous and r = 0 for a < 0 < b, where b < a + 2=
Then the region R bounded by the curve r = f(0) and the lines 8 = a and

0 = b has area

A =%fbf(6)2 .

Discussion Imagine a point P moving along the curver = f(0) from 0 = ato 6 = b.
The line OP will sweep out the region R in Figure 7.9.2. Since b < a + 2,
the line will complete at most one revolution, so no point of R will be counted

more than once.

o 7))

S

Figure 7.9.2 Figure 7.9.3

The formula for area can be seen intuitively by considering an infinitely
small wedge A4 of R between  and 6 + A6. (Figure 7.9.3). The wedge is almost a sector
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422 7 TRIGONOMETRIC FUNCTIONS

of a circle of radius f(0) with central angle Af, so
AA = $f(0)* AO (compared to Af)).

By the Infinite Sum Theorem,

b
A=3 f 1(0)? do.

The actual proof follows this intuitive idea but the area of A4 must be
computed more carefully.

PROOF Let AO be positive infinitesimal and let & be a hyperreal number between
aand b — Af. Consider the wedge of R with area AA between 6 and ¢ + Af.
Since f(#) is continuous, it has a minimum value m and maximum value M
between 6 and 6 + A0, and furthermore,

m = f(8), M =~ f(0).

The sector between 8 and A8 of radius m is inscribed in A4 while the sector
of radius M is circumscribed about AA.

P

Figure 7.9.4 l

(Figure 7.9.4 shows the inscribed and circumscribed sectors for real Ag and
infinitesimal A0.) By Theorem 1, the two sectors have areas im? A0 and
1M? AD. Moreover, AA is between those two areas,
Im? A0 < AA < iM? AD,
im? < AA/AD < M2

Taking standard parts;
31100 < st(AAJAD) < 31(0)%
Therefore AAJAG = 5 [(6)?,

and by the Infinite Sum Theorem,

b
A= %J 1(6)* db.

Theorem [ is also true in the case that » = f(0) is continuous and r < 0.

b b
Since A =1 f 102 do = %f (—1(0)) do,



7.9 AREAINPOLAR COORDINATES

the region R bounded by the curve r = f(0) has the same area as the region § bounded
by the curve r = —f(6). Both areas are positive. As we can see from Figure 7.9.5,
S looks exactly like R but is on the opposite side of the origin.

r=f{6)

r=—f)
Figure 7.9.5 Figure 7.9.6

EXAMPLE 1 Find the area of one loop of the “four-leaf clover” r = sin26. From
Figure 7.9.6, we see that one loop is traced out when 6 goes from 0 to n/2.
Therefore the area is

ni2 T
A= %f sin?(20) d6 = %f 1sin?¢ dop

0 o]
= %f sin®¢ dp = {(—3sind cos + %fl'))] = 3T
0]
0
As one would expect, all four loops have the same area.

On the loop from 6 = 7/2 to 8 = =, the value of r = sin 20 is negative. How-
ever, the area is again

-1 J sin? (20)d0 = 1x.

n/2

Our next example shows why the hypothesis that r has the same sign for
a < 8 < bis needed in Theorem 2~

EXAMPLE 2 Find the area of the region inside the circle r = sin# (Figure 7.9.7).

The point (r, §) goes around the circle once when 0 < # < 7 with r positive,
and again when n < 0 < 27 with r negative. The theorem says that we will
get the correct area if we take either O and =, or = and 2, as the limits of

¥ =sin 0

Figure 7.9.7
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integration. Thus
4
A= J Lsin?0 dO) = $(—4sin0 cost + é())] = i(n — 0) = n/4.
0
0

Alternatively,
I 2n
A= J 1sin? 0 dO = 4(—1sin0 cosf + %0)j| =12n — n) = n/4.

Since the curve is a circle of radius &, our answer n/4 agrees with the usual
formula 4 = mr?.

Integrating from 0 to 2z would count the area twice and give the wrong
answer.

EXAMPLE 3 Find the area of the region inside both the circles r = sin0 and
r = cos{.
The first thing to do is draw the graphs of both curves. The graphs are shown
in Figure 7.9.8,

F=sin 8

SN

\_/

r=cos §

Figure 7.9.8

We see that the two circles intersect at the origin and at = n/4. The region
is divided into two parts, one bounded by r = sinf for 0 < 8 < n/4 and the
other bounded by r = cosf for n/4 < 8 < n/2. Thus

n.4-1 n,21
A= f Ssinl()a’O + f Ecoszé)d()

0 i

Y incoso+ 2ol 7+ Ylsinocoso+ o) [
= —2Sln COS 2 , 2 2Sl 2 v

Al b i

PROBLEMS FOR SECTION 7.9

+

In Problems 1-13, find the area of the regions bounded by the following curves in polar co-

ordinates.
1 r = 2acosf 2 r =1+ cosl
3 r= \m 4 r =2+ cosf
5 The loop in r = tan (30} 6 One loop of r = cos(3M
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7 One loop of r = sin?6 8 The large loop of r = § + cos0

The small loop of r =  + cosé 10 One loop of 72 = cos(20)

11 0=0, 8=m/3, r=cost 12 0=mn/6, 0=mn/3, r=-secl

13 r=tanf, r= \/%csc()

14 Find the area of the region inside the curve r = 2 cosf and outside the curve r = 1.

15 Find the area of the region inside the curve r = 2 sin# and above the line r = 3 ¢csc0.

16 Find the area of the region inside the spiral r = 6,0 < 0 < 2=.

17 Find the area of the region inside the spiral r = \/5, 0 <8< 2nm

18 Find the area of the region inside both of the curves r = \/3 cosf, r = sinf.

19 Find the area of the region inside both of the curves r = 1 — cos8, r = cos0.

20 The center of a circle of radius one is on the circumference of a circle of radius two.
Find the area of the region inside both circles.

21 Find a formula for the area of the region between the curves r = f(6) and r = g(0),

a<0=<b when0 =< f(0) < g0).

7.10 LENGTH OF A CURVE IN POLAR COORDINATES

Consider a curve

r=f0), a<0<b
in polar coordinates. The curve is called smooth if f'(0) is continuous for 0 between
a and b. In Chapter 6 we obtained a formula for the length of a smooth parametric
curve in rectangular coordinates. We may now apply this to get a formula for the
length of a smooth curve in polai coordinates.

THEOREM

The length of a smooth curve
r = f(0), a<0<b

in polar coordinates which does not retrace itself is

b
s = f JTOF + 705 do,
ab
or equivalently s = J 12+ (drjd0)y? do.

Discussion The formula can be seen intuitively as follows. We see from Figure

7.10.1 that
«/(; AOY? + Ar? = \/1? + (Ar/AO? AD

2 4 (dr/d6)*> AO (compared to AG).

By the Infinite Sum Theorem,

5= fb Jr? + (dr/d0)? de.
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Figure 7.10.1

The length of a curve has already been defined using rectangular coordinates,
and the theorem states that the new formula will give the same number for the length.
PROOF The curve is given in rectangular coordinates by the parametric equation

x = f(B)cos O, y = f(0)sin 0.

The derivatives are

dx
0= —f(@)sin 6 + () cos b,

[TJQ’ = f(0) cos @ + f'(0)sin 0.

Since f(6) and f7(8) are continuous, dx/df and dy/d0 are continuous. Recall
the length formula for parametric equations:

We compute

(%)2 + (%)2 — [(6)sin26 — 2/(6) £(6) sinB cos O + £'(6) cos?0

+£(6)* cos?6 + 2f(0) f'(6) sinO cos O + f'(0)* sin? @
= f(0)*(sin*8 + cos?) + f'(6)*(cos?8 + sin?0)
=10 + [(6)%.

The desired formula now follows by substitution.

EXAMPLE 1 Find the length of the spiral » = 0% from § = = to § = 4n, shown in
Figure 7.10.2.

4n
s = 17+ (dr/dO)* do

n

47 4n
-——j 94+492d8=f \/92-{-49(19.
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0 =4r

Figure 7.10.2

Letu = 02 + 4, du = 20 d0. Then

“J16n?+4

16n2+4
e J
T

2+4 n2+4

= J(16n? + 4)*?% — (n? + 4)%?),

N

EXAMPLE 2 Find the length of the curve r = sind from 8 =  to 6 = f, shown in
Figure 7.10.3. di/d0 = cos#, so

B B
s=f \/sin26+00329d6:J. df = g — o.

Figure 7.10.3 o

The graph of r =sin 8 is a circle of radius 3 which passes through O.
Example 2 proves that the length of an arc of the circle is equal to the angle formed
by the ends of the arc and the origin. Note that if we take o = 0 and B = 2n we get
an arc length of 2z, which is twice the circumference of the circle. This is because the
point (r, 8) goes around the circle twice, once from 6 = 0 to 8 = = and once from
0 =mntof =2n

PROBLEMS FOR SECTION 7.10

In Problems 1-10, find the length in polar coordinates.

1 r=17 0<0<2n 2 r=cosf, n/d<0<n/3

3 r=secl, —m/4<6<mn/d 4 r=60%, 0<0<./5

5 r=0% 0<6<1 6 r=asinf +bcosh, 0<O0<n
7 r=1-—cosh, 0<O<n 8 r=2+2cosf), 0<0<2n
9 r=sin’@39), 0<0<2n 10 r=sin>(30), 0<0 <3z

In Problems 11-14, set up an integral for the length of the curve.
11 r=sin(20), 0<0 <2n 12 r=tanf, 0<6 <rx/d
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13 r=0 0<86<b 14 r=6" 0<0<b

O 15 Show that the surface area generated by rotating the curve r = f(f), a < 0 < b, about
the y-axis is

b
A= J 2nr cos B /r? + (dr/d0)* do (about y-axis).

(Assume 0 < a < b < ©/2.) Show that the corresponding formula for a rotation about
the x-axis is

b
A= f 2nrsind./r® + (dr/d6)* df  (about x-axis).

In Problems 16-21, find the surface area generated by rotating the curve about the given axis.

16 r=sinf, 0<6<mn3, about)-axis

17 r=asinf + bcost, 0 <6 < rn/2, about y-axis
18 r=1+cosf, 0<0<n/2, about x-axis

19 r= \ﬁo/sm), 0 <8 < nf4, about y-axis

20 r=./cos (T), 0 <8 <mn/4, aboutx-axis

21 r = cos*({0), 0 < 6 < n/2, about x-axis

EXTRA PROBLEMS FOR CHAPTER 7

1 Find dy/dx where y = x + sinx, 2 Find dy/dx where y = sin{1/x).

3 Find dy/df where y = /0 cos6. 4 Find dy/d® where y = sin(tand).

5 Evaluate lim M 6 Evaluate lim COS(&#.

2-0 sin(36) — u

7 Evaluate f cos{cosB)sinf db. 8 Evaluate f 3./sinx cosx dx
w2 w2

9 Evaluate f 4 cos 0 do. 10 Evaluate f tan x secx dx.
—n/2 (4]

11 An airplane travels in a straight line at 600 mph at an altitude of 4 miles. Find the rate

of change of the angle of elevation one minute after the airplane passes directly over an
observer on the ground.

12 A 40 ft ladder is to be propped up against a 15 ft wall as shown in the figure. What
angle should the ladder make with the ground if the horizontal distance the ladder
extends beyond the wall is to be a maximum?

40
15
[
13 Find dy/dx where y = arccos \/;c. 14 Find dy/dx where y = arcsec \/{
15 Find du/dr where u = arctant — t. 16 Find du/dr where u = arcsin(1/1).
. arctanx dr
17 Evaluate 119:1) - 18 Evaluate J' m{ .



19

20

21

22

23

24

25

26

27

29

In Problems 31-34, sketch the given function in (a) rectangular coordinates, (b) polar coordinates.

31

33

35
36
37
38

39

40
41

42

43

EXTRA PROBLEMS FOR CHAPTER 7

Evaluate {L x> 2
J (x—l),/xz—Zx, ’ '
sec? x
Evaluate

J‘de.
1 —tan”x
x3

Evaluate .[ ———

Jxt 41

Evaluate f x sin(3x) dx.

dx in two ways, by change of variables and by parts.

1
Evaluate J cos\/é de.
(4]

Find the volume of the solid formed by rotating the region under the curve y = x. /sinx,
0 < x < 7, about the x-axis.

Find the volume of the solid generated by rotating the region under the curve y = tanx,
0 < x < w/4, about the x-axis.

Evaluate f cot* 0 de.

Evaluate j tan® 0 sec® 4 d6. 28 Evaluate j (2x? — 1)732 gx.

/2 x2?
Evaluate J‘)Z_’\ dx. 30 Evaluate f ;22 dx.
x 1+ x%)

Let0 < 0 < 2m.

r=1-—cosf 32 r = cos(30)
1 2

r = m 34 = COS(29)

Find the area of the polar region bounded by r = 1 + sin#.
Find the area of the polar region bounded by r = sinf + cos8.
Find the area of the polar region inside both the curvesr = 1 — cos@andr = 1 + cos0.
Find the length in polar coordinates of the curve
r=sin*}0), 0<0<m

Find the surface area generated by rotating the polar curve

r=1— cosf, 0<8<m/2,
about the x-axis.
Use the Intermediate Value Theorem to prove that arctany has domain (— cc, o).

Use the Intermediate Value Theorem to prove that the domain of arcsecy is the set of
allysuchthaty < —lory> 1.

Prove that if £ is a differentiable function of x then
f £ dx = xf(x) — f () dx.
If u and v are differentiable functions of x then

J-uz dv = v — 2J. uv du.

Show that if f” and g are differentiable for all x then
j g)g'(x) f"(glxD dx = f(glx)g(x) — f(glx) +C.
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O 47

0O 49

O 50
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Use integration by parts to prove the reduction formula

dx 1 X dx
_[(1 )T (1 + \2)’" ( Zm) (1 + x™
. 1 2
Hint: W = m - a4+ x ),,.H

Suppose v = f(x), a < x < b and x = g(y), ¢ < y < d are inverse functions and are
strictly increasing. Let ¥4 = f{x,). Prove that:

(a) Iff is continuous at x4, g is continuous at y.
(b) If f(x,) exists and f"(x,) # 0, then g'(y,) exists.

Justify the following formula for the area of the polar region bounded by the continuous
curves

0= f(r), 0 = g(r), a<r<b,
where 0 < f{(r) < g(r) < 2m.

A= f Hglr) — f(r) di

Justify the following formula for the mass of an object in the polar region 0 < r < f(0),
a < 0 < b, with density p(0) per unit area.

b
m = f 1p(0)(f(6) do.

Justify the following formulas for the centroid of the polar region 0 < r < f(6),
a<0<b

b b
f 1 cos O/ (6))° db f Lsin6(f(8))? d6

N =

s

b )
f 1O do f L0072 do0

Hint: The centroid of a triangle is located on a median % of the way from a vertex to the
opposite side.
Find the centroid of the sector0 <r <c,a < 0 < b.

Find the centroid of the region bounded by the cardioid r = I + cos®.



