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INFINITE SERIES

SEQUENCES

DEFINITION

An infinite sequence is da real function whose domain is the set of all positive
integers.

A sequence ¢ can be displayed in the form
all), a(2),...,an),....

The value a(n) is called the nth term of the sequence and is usually written a,. The
whole sequence is denoted by

{a,y = dy,layee ey lyyen..

Hyperintegers, which were introduced in Section 3.8, are a basic tool in this chapter.
Since a, is defined for every positive integer n, ay is defined for every positive infinite
hyperinteger H.

EXAMPLE 1 If the sequence is simple enough one can look at the first few terms and
guess the general rule for computing the nth term. For instance:

LLLLL, ... a, =1
—1,0,1,2,3,... a,=n-—2.
-2, -4, —6, =8, —10,... a, = —2n
-1 =11, a,=(—1)n"!
SRR ol
2°3'4°5 " on

The graph of a sequence will look like a collection of dots whose x-coordinates
are spaced one apart. Some examples of graphs of sequences are shown in Figure 9.1.1.
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Figure 9.1.1

EXAMPLE 2 The sequence
3.1, 3.14, 3.141, 3.1415, 3.14159, . ..
is defined by the rule
a, = m to n decimal places,

m - <m +1
10" — o

) m . .
that is, a, = where m is the integer such that

On

EXAMPLE 3 The number n!, read n factorial, is defined as the product of the first n

positive integers;
nt=1:2+...0n
{n!> is an important sequence. Its first few terms are
1,2, 6,24,120,720,....
By convention, 0! is defined by 0! = 1.

DEFINITION

An infinite sequence {a,y is said to converge t0 a real number L if ay is infinitely
close to L for all positive infinite hyperintegers H (Figure 9.1.2). L is called the

limit of the sequence and is written

L = lim a,.

n—x
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A sequence which does not converge to any real number is said to diverge. If
ay Is positive infinite for all positive infinite hyperintegers H, the sequence is
said to diverge to «c, and we write

lim a, = .

H= o

Sequences can diverge to — oo, and also diverge without diverging to oo or
to — o,

Throughout this chapter, H and K will always be used for positive infinite
hyperintegers. One can often determine whether or not a sequence converges by
examining the values of ay for infinite H. The definition gives us some convenient
working rules.

(1} If ay is infinitely close to L for all H, the sequence converges to L.

(2) 1If we can find ay and ag which are not infinitely close to each other, the
sequence diverges.

(3) If at least one ay is infinite, the sequence diverges.

(4) If all the ay, are positive infinite, the sequence diverges to cc.

EXAMPLE 1 (Continued)
lim 1 =1, converges, because ay = 1 for all H.
n—a0

lim n — 2 = oo, diverges, because H — 2 is positive infinite for all H.

H—= oo
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lim (—2n) = —co, diverges, because —2H is negative infinite for all H.
lim (—1)"isundefined, diverges, because(—1)*! =1but(—1)2#+1= —1.

.1 1
lim S = 0, converges, because 7 has standard part zero.
EXAMPLE 2 (Continued) The sequence
3.1, 3.14, 3.141, 3.1415, 3.14159, . . ., a,, ...
where a, = (n to n decimal places), converges to 7. That is,

lim a, = .

n—oo

PROOF Let H be positive infinite. For some K,

R S
107 = 107

K
Then aH=10—H, aHSﬂSaH‘FI—OH“.
But 1/107 is infinitesimal, so a, ~ 7.
EXAMPLE 3 (Continued) lim n! = co.
n—-ow
PROOF For any n > 1, we have
n—1D!>1, al=nen— ) >n

Therefore for positive infinite H, H! > H is positive infinite.

Given a function f(x) defined for all x > 1, we can form the sequence

S, f(2),..., f(),....

The graph of the sequence < f(n)) is the collection of dots on the curve y = f(x) where
the x-coordinate is a positive integer (Figure 9.1.3).

If lim f(x) = L, then lim f(n) = L because f(H)=~ L for any positive

X w0 n—=>w

infinite H.

4?41 Co4xP 41
EXAMPLE 4 lim ————— = lim -5 =4
nmw N 4+ 30 xowXx® 4 3x

Similarly, if lim f(x) = oo then lim f(n) = co.

b o]

EXAMPLE 5 [im In(n) = lim In(x) = co.

n—=w X
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lim f(x)=L,
X200

n—oo

f(H—1)" f(H) '\/‘(H+1)/

Figure 9.1.3

If lim f(x) = L,then lim f(1/n) = L.If H is positive infinite, then¢ = 1/H is

x=0* n—x

infinitesimal and

J(/H) = f(e) = L.

EXAMPLE 6 lim ¢ = lim ¢¥=¢% = 1, if¢ > 0.

n—x x=0"*
EXAMPLE 7 Evaluate the limits

1 "
(a) lim (1 + ;) where ¢ > 0,

n=x

B—= o

1 [
(b) lim (1 + —) where ¢ > 0,
n

(c) lim (1 + I) n.
n

n—oc

The answers are

n= o

1\
(a) lim (I +C) = lim

(b) lim (1 + 1)C = lim (1 + x) = L.

n— o I

(¢) lim (1 +1)" = lim (1 +l)x = e

n- o n
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The limit lim,, (I + 1/n)" = e is closely related to compound interest.
Suppose a bank pays interest on one dollar at the rate of 1009 per year. If the
interest is compounded » times per year the dollar will grow to (1 + 1/n) after
1/n years, to (1 + 1/n)* after k/n years, and thus to (1 + 1/n)" after one year. Since
lim,, . (1 + 1/n)" = e, one dollar will grow to e dollars if the interest is compounded
continuously for one year, and to ¢' dollars after t years.

More generally, suppose the account initially has a dollars and the bank
pays interest at the rate of b9, per year. If the interest is compounded n times per
year, the account will grow as follows:

0 years a

1 b 1
. years a(l + 100-5)
Eyears a(l +i-l)k
n 100 n

b 1
1 year a(1+1—®-;

If the interest is compounded continuously the account will grow in one year to

fmalt + 2L
o AT 100 H)

. 0 b
We can evaluate this limit by setting x = ——n, n = ——x.
b 100
b 1 n ] 1 bx/100 .
i ) =1 14 = — 100,
Y a(l * 100 n) st “( x) “

Thus the account grows to ae®!°° dollars after one year and to ae?/'°° dollars after
t years.

Sometimes we may wish to know how rapidly a sequence grows. If two
sequences approach oo and their quotient also approaches oo,

. . .4,
lim a, = oo, lim b, = oo, lim — = oo,

n—>ow n—w n—=*w n

the sequence <a,> is said to grow faster than the sequence ¢b,>. For each infinite H,
both ay and by are infinite. But ay/by is still infinite, so ay is infinite even compared
to by.

THEOREM 1

Each of the following sequences approaches 0.

lim n! = oo,
n—
lim b" = oo ifb>1,
n— o
lim »° = o ifc >0,
[ ndle )

lim In(n) = oo.

=0
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Moreover, each sequence in the list grows faster than the next one,

(i) lim Z— =%  (b>1),
. . bn
(1) hm’?:x b>1 ¢>0),
ne
v — 0.
) m = >0

PROOF Let H be positive infinite. We already know that In H is positive infinite. We
must show that each of the following are also positive infinite.
H! b# H*
" HY  InH’

It is easier to show that their logarithms are positive infinite. We need the
fact that. by I'Hospital’s rule for s/,
Inx X

lim — = lim— =0,
x—so X [ |

InK . .
SO n? ~ 0 for all infinite K.

H!
] s Let m > b. Then

H!
ln(ﬁ) =Inl+ - +Inm—-1)+Inm+--+InH — Hinb

> (H —m)lnm — Hinb = H(lnm — Inb) — mInm.
Since m > b.Inm > Inb, and In(H/b") is positive infinite.
bH
T
b InH

a) =HInb—-¢InH = H(lnb — C——‘).
H

In
H(‘

InHd . . . .
Since b> 1, Inb > 0. —HH— is infinitesimal. Therefore In(b"/H¢) is

positive infinite.

¢

.Let K = InH.
(lll) i t InH
H¢ InK
In =c¢lnH — In(lnH) = K{¢c — ——|.

Since ¢ > 0, K is infinite, and (In K)/K is infinitesimal, In(H/In H)) is
positive infinite.

Note: For n=1, the term n/(Inn) is undefined, so we should start the
sequence with n = 2.
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ExampPLE 8 From Theorem 1, the following sequences all approach <.

NN

In2’In3 Ind’”" " Clnm)

21 22 23 24 o
W,F,W,F,.-.,W,...
iy 21 3t 41 n!

100" 1002 100%* 100** """ 100" """

If lim a, = =, then lim 1l/a, = 0 because 1/ay will be infinitesimal.

n— L n—=>x

COROLLARY

() imb"=0 ifb>1.

R xC

(i) limr =0 ifc>0.

n—=oxc

Like other types of limits, limits of sequences have an ¢, N condition. It will
be used later to prove theorems on series.

THEOREM 2 (&, NV Condition for Limits of Sequences)

lima,=L

n—+w
if and only if for every real number ¢ > Q there is a positive integer N such that
the numbers
AN ONa 15 ANt 2o o s AN« o -

are all within € of L.

The proof is similar to that of the &, condition for limits of functions. The
g, N condition says intuitively that a, gets close to L as the integer n gets large.
A similar condition can be formulated for lim a, = .

n—x n

THEOREM 3 (&, NV Condition for Infinite Limits)

lima, = =«

h— oo

if and only if for every real number B, there is a positive integer N such that the
numbers

aN5aN+laaN+2’~"saN+ma"'

are all greater than B.

We conclude this section with another useful criterion for convergence.

499
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CAUCHY CONVERGENCE TEST FOR SEQUENCES

()

A sequence {a,y converges if and only if

ay & ay for all infinite H and K.

PROOF First suppose {a,> converges, say lim, , . a, = L. Then for all infinite H and

Case 1

Case 2

Case 3

Ki
ay =L ~ ag.

Now assume Equation 1 and let H be infinite. There are three cases to
consider.

ay is finite. Then for all infinite K,
st(ay) = st(ay),

so the sequence converges to st(agy).

integers {1,2,...,H — 1}, there must be a largest element M such that
ay = ay + 1. But this largest M cannot be finite, and since ay; % ay, M

ay 1s positive infinite. For each finite m, ay > a,, + 1. Among the hyper-
cannot be infinite. Therefore Case 2 cannot arise.

agy is negative infinite. By a similar argument this case cannot arise.
Therefore, only Case 1 is possible, whence {a,) converges.

PROBLEMS FOR SECTION 91

In Problems [-8, find the nth term of the sequence.

1

3
5
7

3k b Te 2 TR T S5 AT

—1,2, 3,4, —5,6,... 4 2,5,10,17,26,37,...
L1, 1212, 6 1,3,6,10,15,...

2. 4,16, 256, ... 8 0.6, 0.61, 0.616, 0.6161, ...

Determine whether the following sequences converge, and find the limits when they exist.

9

11

13

15

17

19

21

- 2
a, = /n 10 a, = niz
n
2
n
= — 1 — 1y
a, =n —— 2 a, = n{—1)
— I Ul !
a, = ( ﬁ) 14 a, = ”—3
Jh n
n .
d, = (1]‘1(”))2 16 a, = \/n
a, = In(ln(n)) 18 a, = \/”2 +n—n
n— 1" 3n —2n + 4
S 20 = 2
o ( n ) R Y
24 32
a, = ”3 h 22 a, ="

n? + 4 "R 4S
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B 2n + 3n

23 a"—m 24 a,,=2"—n2
nl+2
=n! — 107 = 7
25 a, =nl — 10 26 a, Y
In(n) .
= 28 = (n})'m
27 a4 =i In () a, = (nh)
(n+ 1)
29 Ay =5
30 Formulate an ¢, N condition for lim,_, ,, a, = — x.
31 Show that if lim,, . @, = L and lim,, , b, = M then lim,_ . (a, + b,) = L+ M.
32 Show that if lim,_, . @, = L then lim,,_, . ca, = cL.
SERIES
The sum of finitely many real numbers a,, a,,...,q, is again a real number

a, + a, + -+ + a,. Sometimes we wish to form the sum of an infinite sequence of
real numbers,

ay+ay+ ot a,+

For example, if a man walks halfway across a room of unit width, then half of the
remaining distance, then half the remaining distance again, and so forth, the total
distance he will travel is an infinite sum

1 1 1 1 1

E+z+§+ﬁ+"'+§;+"'.

1 .
In n steps he will travel 1 — o units,

1+1+1+___+1_1 1
2 4 38 o o

Thus he will get closer and closer to the other side of the room, and we have the limit

li 1+1+1+ +1 1
imloe o2 o2 =1
a2 278 2"
It is natural to call this limit the infinite sum,
RO S S P
BRI T »

We can go from this example to the general notion of an infinite sum. When
we wish to find the sum of an infinite sequence {a,» we call it an infinite series and
write it in the form

ay +a; + - +a,+ 0
Given an infinite sequence <{a,), each finite sum

a4 +“'+an

501



502 9 INFINITE SERIES
is defined. This sum is called the nth partial sum of the series. Thus, with each infinite
series

ay +ay + 4+ a,+ 0,
there are associated two sequences, the sequence of terms,
Uiy QayeeesQyyen s
and the sequence of partial sums,
Si:85, .., 8, ... where S, =a, + -+ + a,.
For each positive hyperreal number H, the infinite partial sum
Sp=a;+ -+ ay

is also defined, by the Extension Principle.

The sum of an infinite series will be a real number which is close to the nth
partial sum for large #, and infinitely close to the infinite partial sums. Before stating
the definition precisely, let us examine some infinite series and their partial sum
sequences, and guess at their sums.

Table 9.2.1 -

Series Partial sums Sum
1+ 0.1+ 001+ 0001 + --- 1, 1.1, 1.11, 1.111, 13
I+3+a+s+ds+ L3, 13, 13, 1453, 2
l -1+l —1+1T=14-- 1,0,1,0,1,0,... ?
T+1+1+1+14--- 1,2,3,4,5, %
L bstidss L3, %8 13, %50 ?
3401 + 0.04 4+ 0.001 + - 3,3.1,3.14, 3.141, Fis

DEFINITION

The sum of an infinite series is defined as the limit of the sequence of partial
sums if the limit exists,

ay+a,+ - +a,+-=lim@a +- -+ a,)

H o
The series is said to converge to a real number S, diverge, or diverge to ., if

the sequence of partial sums converges to S, diverges, or diverges to oo, respec-
tively.

The sum of an infinite series can often be found by looking at the infinite
partial sums a, + - + ay. Corresponding to our working rules for limits of
sequences, we have the following rules for sums of series,

(1) If the value of every infinite partial sum is finite with standard part S,
then the series converges to S,

a, + - +a,+ =8

(2) If there are two infinite partial sums which are not infinitely close to
each other, the series diverges.
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(3) If there is an infinite partial sum whose value is infinite, then the series
diverges.

(4) If all infinite partial sums have positive infinite values, the series
diverges to co,

a; + - +a,+ = co.

Given an infinite series, we often wish to answer two questions. Does the
series converge? What is the sum of the series? Our next theorem gives a formula for
the sum of an important kind of series, the geometric series.

For each constant ¢, the series

l+c+c+ 4"+

is called the geometric series for c.

THEOREM 1

If |c] < 1, the geometric series converges and

l+ec+c+- -+ + =

PROOF For each n we have

-l +c+c+-+c"
=(1+C+C2+"'—|—c")—(c+c2+...+cn+cn+1)
n+1

=1-c

The nth partial sum is therefore

1 — n+1
l+c+c?+ 4= ¢
1—¢
The infinite partial sum up to H is
1 — H+1
l+e+ -+ = <
1—-c¢
Since || < 1, ¢+ is infinitesimal, so
. 1
l+c+ -+ = .
1—c¢
EXAMPLE 1 1+ 0.1+ 001 + 0001 4 --- = ! —11
' ‘ ‘ T1-1/100 79
| 1+1 1+_'___ 1 2
2 4 8 1 —(=1/2 3

EXAMPLE 2 Every sequence 51:85,85, ., 8, ..
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is the partial sum sequence of an infinite series, namely

St+H S =S+ =S+ +(Spe = S)+ .

For example, 1,

is the partial sum sequence of

11+
3 2

or [— -2 _

1
1 z—1
+(;

The Cauchy Convergence Test from the preceding section takes on the
following form for series.

CAUCHY CONVERGENCE TEST FOR SERIES
ay +a, + -+ a, + - converges if and only if
(1 Jor all infinite H < K, ay oy + ayey + - + ag = 0.

DISCUSSION  The sum in (1) is just the difference in partial sums,
(1H+l + [£31 ) + aK =SK_SH‘
A very important consequence of the Cauchy Convergence Criterion is that

all the infinite terms of a convergent series must be infinitesimal. We state this
consequence as a corollary, which is illustrated in Figure 9.2.1.

— A

All series

Series with

lim a,=0
n—0o0

Convergent
series

Figure 9.2.1 \ J/

COROLLARY

If the seriesa, + a, + *+* + a, + - converges, then lim,_ . a, = 0. That is,
ax = 0 for every infinite K.

PROOF Thisistrue by the Cauchy Criterion,with K = H + 1.

Warning: The converse of this corollary is false. It is possible for a sequence
to have lim, ., a, = 0 and yet diverge. We shall give an example later (Example 3).

The Cauchy Convergence Criterion and its corollary can often be used to
show that a series diverges. Table 9.2.2 sums up the various possibilities. In this
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table it is understood that
al +a2+--- +an+..-

is an infinite series and H, K are positive infinite hyperintegers with H < K.

Table 9.2.2 Cauchy Convergence and
Divergence Tests

Hypothesis Conclusion
allag,; +---+axg=0 Converges
allagy = 0 none
someday,, + -+ ag %0 Diverges
some ag# 0 Diverges

We shall give many other convergence tests later on in this chapter. For
convenience there is a summary of all these tests at the end of Section 9.6.

THEOREM 2

() If lc| > 1 the geometric series 1 + ¢ + ¢* + -+ + ¢" + -+ - diverges.

.. , . 1 1 1
(11) The harmonic series 1 + 3 + 3 + 0 4+ =+ - - diverges.
n
PROOF (i) For infinite H the term c¥ is not infinitesimal, so the series diverges.
(i) Intuitively this can be seen by writing
I+3+G++G+s+5+9+ -
214+3+G+D+G+Hs+5+D+

=l4+3+3+3+4+ =00

Instead we can use the Cauchy Test. We see that for each n,
! +—1 + o 4+ ! >2" L]
241 2"+ 2 PARE AR

Therefore for infinite H,

LN SRPROR S
2H 41 2842 24+1 = 97

Since the above sum is not infinitesimal the series diverges.

EXAMPLE 3 The harmonic series

prtp oy ]
2 3 n

is the example promised in our warning. It has the property that

1
lim g, = lim - =0

n—oo n—w N

+...

and yet the series diverges.
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PROBLEMS FOR SECTION 9.2

In Problems 1-13 find the nth partial sum, determine whether the series converges, and find the
sum when it exists.

1

AW W

¥

10

11

12

13

T+d+8+-+@+
o4t (=
l+3+5+ -+ +

1-2+4-84 -+ (=2)"+--
2t tle T m PR

(ay — ay) + (ay —ay) + -+ + (1, — a,+,) + ---where lim,_, . a, = 0. This is called a
telescoping series.

1 1 1 . 1 1 1
m+2‘3+'”+n(n+l)+'“' Hlm;l1(n+1):72—n+1'
lnl+ln7+]n§+~-+ln .

2 3 4 n+ 1
=243 —4 4 +n=1y""+...

1 1 1 I
3T et sttt

3 2n+1 2n + 1 1 1

Hint

5
2ot gt et Rar R R et 1)

ln&+]n2+lnL6+---+111L+~--

3 8 15 n? — 1

1 +L+L.+...+*__l—;+...
1+3 3.5 5.7 2n—-D2n+1)

In Problems 14-19, show that the series diverges.

14

15

16

17

18
19

20

21

22

23

TP L
2 3 4 n+1
12,3 4 D7
3 57 9 2n + 1
1 1 I
1+§+§+ -+r1_1+'
1 1 1 1
I BT wors S

T+ 24+ 3+ 4 Unt -
Inl + In2+mIn3+---+Inn+---

A ball bounces along a street. On each bounce it goes % as far as it did on the previous
bounce. If the first bounce is one foot long, how far will the ball go before it stops
bouncing?

Two students are sharing a loaf of bread. Student A4 eats half of the loaf, then student B
eats half of what’s left, then A eats half of what’s left, and so on. How much of the loaf
will each student eat?

In the Problem 21, how much will each student eat if only £ of the remaining loaf is eaten
at each turn?

Three students A, B, C take turns eating a loaf of bread, taking 4 of the remaining loal
at each turn. How much will each student eat?



9.3 PROPERTIES OF INFINITE SERIES 507

9.3 PROPERTIES OF INFINITE SERIES

It is convenient to use capital sigmas, ) , for partial sums and infinite series, as we did
for finite and infinite Riemann sums. We write

m
sz Z an=a1+a2+”'+am
for the mth partial sum,
H
Su= ) a,=a, +a,+ " +ay
n=1
for an infinite partial sum, and
@
S: Z an=a1+a2+...+an+...
n=1
for the infinite series. Thus S is the standard part of Sy,
H
a, = st( Y a,l).
n=1

Sometimes we start counting from zero instead of one. For example, the
formula for the sum of a geometric series can be written

s

n=1

it 1
Y ot=——, where || < 1.
n=0 1 — ¢

Infinite series are similar to definite integrals. Table 9.3.1 compares and
contrasts the two notions.

Table 9.3.1
Infinite series Definite integral
o] b
> a, [ ro0ax
n=1 a
Finite partial sum Finite Riemann sum

m b
Y oa =ay+ -+ ay, Y fx)Ax = f(x) Ax + - + f(x,) Ax
n=1

a

Infinite partial sum Infinite Riemann sum

- b
Y a,=a, + -+ ag Y fx)dx = f(e)dx + - + fxy)dx
n=1 a

i a,,:st(z a,,) be(x)dx=st(if(x)dx)

e m b b
Z a, = lim (":1 a,,) L f)dx = Aiijr(}+ (§ﬂx) Ax)

The difference between them is that the infisiite series is formed by adding
up the terms of an infinite sequence, while the definite integral is formed by adding
up the values of f(x)dx for x between a and b. The definite integral of a continuous
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function always exists. But the problem of whether an improper integral converges
is similar to the problem of whether an infinite series converges.

Here are some basic theorems about infinite series which are like theorems
about integrals.

THEOREM 1

Suppose Z”_l a, and Z,_l are convergent.

x*
n=1

(i) Constant Rule For any constant ¢, Y ™| cd, = ¢y,
(i) Sum Rule Y (a,+ b) =) a,+ 2", by

(iii) Inequality Rule If a, < b, for allnthen Y * a, <> b,

n=1

4]

n*

PROOF To illustrate we prove (ii). For any H,
(a; + b))+ +(ag + by) = (a, + -+ ay) + by + -+ by).

Taking standard parts we get the Sum Rule.

EXAMPLE 1 For any constant b, and any |c] < 1,
b+be+bc*+ - 4+b"+ =bl+c+cr+ "t

b
1 —c

The next theorem corresponds to the Addition Property for integrals,

J: f(x)ydx = f: f(x)dx + J: f(x) dx.

DEFINITION
The series Z ay = Uy + Ayt 2 + 0+ Qpyon 4+ ..
n=m+1i
is defined as S by=b+by+ o+ b+

n=1

where b, = a,,,,. This series is called a tail of the original series ) *

n=1 a,-

THEOREM 2

A series anl a, converges if and only if its tail Z:: m+ 1 @y CONVErgeES for any m.
The sum of a convergent series is equal to the mth partial sum plus the remaining
tail,

m

xr
Yoa,= > a,+ Z a,,

n=1 n=1 n=m+1

or

a +'“+an+'”:(al +”'+am)+(am+l +"'+am+n+"')'
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PROOF First assume the tail converges. For any infinite H, we have
al+"'+aH=(a1+"'+am)+(am+1+"'+aH)’
H m H
or Yoa, =Y a+ Y a,.
n=1 n= n=m+1
Taking standard parts,
H m ax
st( > a,,) =Y a+ > a,
n=1 n=1 n=m+1

Therefore the series converges and

ool Hi a
Z an = Z an =+ Z an'
n=1 n=1 n=m+1
If we assume the series converges we can prove the tail converges in a similar
way.
. 1 1 1 (1"
EXAMPLE 2 The series Statms o= s
5 5 5 noa \5

is a tail of the geometric series

Sl

Its sum can be found in two ways.
x 1\ 30 1\ 2 1\ 1 1 ’ 1 1
- = - - - = —(l+-+ =) =—=.
@ 2 (5) 2z (5) z (5) ! ( s 25) 100

< (1\" 1 & (1" 1 1 I 5 1
(b) ,,;(s) :?,Eo(g) “T5TT—1 712574 100

COROLLARY 1

x©
n=m

lim (‘Z a,,) =0

m2>L \p=m

If Y., a, converges, then the tailsy, =, a, approach zero as m approaches ,

PROOF If H is infinite, then

e} e H
$0 Y a,=) a,— > a,=0.
H+ - -

COROLLARY 2

If a series Z;": | 4, converges, then it remains convergent if finitely many terms
are added, deleted, or changed.
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PROOF If a,, is the last term changed, then the tail

e

>,

n=m+1

is left unchanged, so it still converges.

Warning:  Although the convergence properties of a series are not affected
by changing finitely many terms, the value of the sum, if finite, is affected.

EXAMPLE 3 Here is a convergent geometric series,

S PR N QY.
50T 5T T 52 T g3 g4 T ss I Y

[

The following series still converges by Corollary 2. Find its sum.

1 1
3-8+ 5—3‘ + EZ + § +
We have
1 I 1 1 /1 1 1
3—8+§+;@+?+"':3—8+§ ?'f’;‘i‘?‘i‘
5 1
=(3-8)+=-= —
( ) 53 4 100
= —4.99,
PROBLEMS FOR SECTION 9.3
Find the sum of the following series.
TS N S S PR V. I P
7P ok T IR TR TR
3 I+ +G+H 4G+ + +B3"+5 4
x 2 " xX
4 2 (—f) 5 Y 5.4
n=0 7 n=3
6 TR I .
sTETE Tttt
7 6246+ 1 +67" 624 o+ 674
s 3"+4ll
8 -
n=0 5"
9 888888...=8+8: 107" +8.1072 4+ ... 4 8.107" + .-
10 236666... =23 +61072 461073 +6-107% 4 ...
11 5434343 ... =5+43.1007" +43.10072 +43.10073 + ...
12 0.286286286 . .. 13 492.315041041041041 ...
14 Prove the Constant Rule ) ", ca, =¢) " a,.

15 Prove that the repeating decimal 0.142857142857142857 .. . is a rational number.
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9.4 SERIES WITH POSITIVE TERMS

By a positive term series, we mean a series in which every term is greater than zero.
For example, the geometric series

l+c+ct+--+c"+-

is a positive term series if ¢ > 0 but not if ¢ < 0. We call a sequence S,,S,,...,S,,...
increasing if S,, < S, whenever m < n. It is easy to see that

a1+a2+..-+an+...

is a positive term series if and only if its partial sum sequence is increasing. We are
going to give several tests for the convergence of a positive term series. The starting
point is the following theorem.

THEOREM 1
An increasing sequence S,y either converges or diverges to oo.
Geometrically, this says that, as n gets large, the graph of the sequence either

levels out at a limit L or the value of S, gets large (Figure 9.4.1). We omit the proof.
(The proof is given in the Epilogue at the end of the book.)

Sn Sn
Ly—=======—~ AL .
[ J
L
[ ]
[ ] [
L]
n .ﬁ n
hd [ ]
[
° [ ]
lim §,=L lim §,=00
n—oc n—oo
Figure 9.4.1

Theorem 1 has an equivalent form for positive term series because the partial
sum sequence of a positive term series is increasing.

THEOREM 1 (Second Form)

A positive term series either converges or diverges to oo.

EXAMPLE 1 The harmonic series diverges to oo,
AU I S S
23 4 n -

This is because it is a positive term series and we have shown that it diverges.
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EXAMPLE 2 If0 < « the geometric series
l+a+a’+-+d+

is a positive term series. It converges when a < | and diverges to «c when
a=1,

Remark Theorem | shows that to determine whether a positive term series converges,

we need only look at one infinite partial sum. If it is finite the series converges
and if it is infinite the series diverges to <c.

COMPARISON TEST

Let ¢ be a positive constant. Suppose Y ., a, and ) ", b, are positive term

:1=1
series and a, < c¢b, for all n.

(i) If )., b, converges then ) *° | a, converges.
(i) If Y= | a,diverges then ) * | b, diverges.

PROOF (i) Suppose Y ™ , b,converges to S. The Constant Rule givescS =) " ¢
Each finite partial sum of ) | a, is less than ¢S,

nt m

> oa,< Y ¢b, <cS.

n=1 n=1

Therefore, an infinite partial sum Zf=1 a, is less than ¢S and hence finite.
It follows that ) ”_ | a, converges.

(i) If) 7 a,diverges then ) “ , b, cannot converge by part (i).

To use the Comparison Test we compare a series whose convergence or
divergence is unknown with one which is known.

EXAMPLE 3 Test the series ) * | 6"/(7" — 5") for convergence. Intuitively, the 7”
should overcome the —5" so we shall compare with 6"/7". The simplest
approach is to factor out 7". We have

6[1 _ 6)1 < 6" _ z g n
— 5T = (57 T T 2\7

The geometric series )~ | (6/7)" is convergent, so the given series converges.

EXAMPLE 4 Test for convergence: y . n*/(n® + 1). Wehaven® + 1 < 2n°,
n* n*

I 1
-——‘Z———=—-—'
w4+l 20 2 on

The harmonic series ) | 1/n diverges, whence the given series diverges.

Sometimes the following comparison test is easier to use.
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LIMIT COMPARISON TEST
Let Y=, a,and Y ° , b, be positive term series and ¢ a positive real number.

Suppose that
ag < chy for all infinite K.

Then:
(i) If Y™, b, converges then ) | a, converges.
(ii) If Y.°_, a, diverges then ) *., b, diverges.

PROOF Assume Y ® b, converges. Let H and K be infinite. By the Cauchy Con-
vergence Test (Section 9.2),
byi1 + bgia + -+ b= 0.
Hence O0<ag,;+ - +ag=<chyy + - +cbg
=clbys, + -+ b)) =0
It follows that agi1+ -+ ag=0

and ) | a, converges.

1 . ..
EXAMPLE 5 Test z,‘,’iz W where p is a positive constant.
nn

We compare this series with the divergent series
1

@ —
n=2 .,°

n
Let H be positive infinite. Then by Theorem 1 in Section 9.1,
InH < H'?,
(inHY < H,

11
(nHY ~ H'

By the Limit Comparison Test, the given series . , 1/(Inn)” diverges.

For our last test we need another theorem which is similar to Theorem 1.

THEOREM 2
If the function F(x) increases for x = 1, then lim,_, ,, F(x) either exists or is
infinite.

This says that the curve y = F(x) is either asymptotic to some horizontal line
y = L or increases indefinitely, as illustrated in Figure 9.4.2.
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F(x) F(x)
Lopmmmmmmm -

lim F(x)= L lim F(x) = o0

X0 x—e0

Figure 9.4.2

INTEGRAL TEST

Suppose f is a continuous decreasing function and f(x) > 0 for all x = 1.
Then the improper integral

j S(x)dx
1
and the infinite series
LG
n=1
either both converge or both diverge to oo,

Discussion  Figure 9.4.3 suggests that

S 1) < f T rwde < Y 1o
n=2 1 n=1

so the series and the integral should both converge or both diverge to oc.
The Integral Test shows that the integral | f(x) dx and the series ) * | f(n)
have the same convergence properties, However, their values, when finite,
are different. In fact, we can see from Figure 9.4.3(c) that the integral is less
than the series sum,

f T rwdx < S 1o,
1 n=1

PROOF As we can see from Figure 9.4.3, for each m we have

m m—1

PCE f:nf(X) < T S0
The improper integral is defined by
on f(x)dx = lim Juf(x) dx.
1 umw gy
Since f(x) is always positive, the function F(u) = [% f(x) dx is increasing, so

by Theorem 2, the limit either exists or is infinite. Hence the improper
integral either converges or diverges to .
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fx)
)
Q) fQ2)
®) 3
T s 7o TN @
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(a) (b) ()

Figure 9.4.3 The Integral Test

Case 1 j‘f f(x)dx = S converges. For infinite H we have

Y, f < j f(x)dx =

thus the infinite partial sum is finite. Hence the tail ) ® , f(n) and the series

Y x| f(n) converge.

Case 2 |y f(x)dx diverges to co. Since {¥ f(x)dx < Y ¥~ f(n), the infinite partial

sum has infinite value, whence the series ) © _, f(n) diverges to co.

The series Y © | 1/n®, where p is constant, is called the p series.

COROLLARY

The p series Z;f;l 1/nP converges if p > 1 and diverges if p < 1.

PROOF
Case 7 p=1. The pseriesisjust ) ® , 1/n = co.
Case 2 p > 1. The improper integral converges,

feel 1 . U

J. —dx = lim | x ?dx
x? U=
1 1
ut=r — 1 1

= li S
o 1—p 1= p

Therefore the p series converges.

Case 3 p < 1. The improper integral diverges to o0, [ (1/xP)dx = lim,.,

Jix7Pdx =lim, @' 77 — DII ~ p) = .
Therefore the p series diverges to co.

ool
EXAMPLE 6 The p series Zl .
n

n n

515
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converges because 4/3 > 1. The p series ) *, 1/\/71 diverges to » because
1/2 < 1.

The p series is often used in the Comparison Tests.

= Inn

EXAMPLE 7 Test the series ~ 2

for convergence.
If H is positive infinite then by Theorem 1 in Section 9.1,

InH < HS,

InH H* 1
T < et for real ¢ > 0.

Now take ¢ so that 0 < ¢ < 1. Then 2 — ¢ > 1 so the p series Z”"':l ljn?"c
converges. By the Limit Comparison Test, the given series ) ™ (In nyn?

n=1
converges.

EXAMPLE 8 Use the Integral Test to test the improper integral |7 ((Inx)/x>) dx for
convergence.

By Example 7 the series ) * , (Inn)/n* converges. For x > | the function
J(x) = (In x)jx? is continuous, positive, and has derivative

fx)y=x"31 - 2Inx).

Thus for x >\..;, J'(x) < 0 and f(x) is decreasing. Therefore the Integral
Test applies and the improper integral converges.

PROBLEMS FOR SECTION 9.4

Test the following series for convergence.

X n = 2

L Yy L Y g
3 ngl ””t : 4 ,,:0 nzn+ 2
, . . |
> ,,go m+ Dn+ 5) 6 ,,g m
. 3 .
U e T T
> Laiiuad 1 L : n\l/;
1 ZO S+ 1= n 12 "2 &i—‘/ﬁ
R WL
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15

17

19

21

23

25

27

29

31

33

Use the Integral Test to determine whether the following improper integrals converge or diverge.

34

36

38

40

41
42

=

|
E

=

DMs ID1s
=
w
+

El
1l
—

%]
=
=
[N}
=

18

£
W
—
—~
=

8
<z

-
=

= 3
| ]
[agk
Q@ -
+
(o))
B3

™8

[oe}

E
+
~

=
]
(=]

s
:(5

£
Il
-

™8

W= nlnn
i 1
,,Zz n(lnn)*

= 1

w=s In{nt)

* dx

J, ins
* 1

J-z x~}-1nxd)L
*Inx dx

L x\/Q

f x"Fdx
i

Prove that if each a, is positive and 3 |

Using Theorem 1 (page 539), prove that a negative term series either converges or

diverges to — ¢

ALTERNATING SERIES

An alternating series is a series in which the odd numbered terms are positive and the
even numbered terms are negative, or vice versa. An example is the geometric series

20
> @

n=1

Given any positive term series

16

18

20

22

26

28

30

32

35

37

39

a, converges, then ) ’

9.6 ALTERNATING SERIES

Jn
woo3n + 2
1

178
N2
=

-
=

E]

I
Ar-1s

1

<z N2
=

=
=

8 w18
[ 8]

v
=

=

I

(=]
w
k-
-+
A

El

8 118
-
+
g

=
=

£
|
—
=
=

lln(n +1)

iMs 7?Ma

T
— — arctann

J"' dx

2 X2+ln.\'

* x4+ 1
=T dx

fl Crer 1

0
—x2
fe"dx
o]

n=1

a<0.

Y ay=a;+a;+as+ta,+--,

n=1

a2 converges.

517
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the series Y (=1)""lta,=a; —ay +ay —ag +
a=1

and Y (=Da,=—a, +a, —as + ag —

n=1

are alternating series. Here is a test for convergence of alternating series.

ALTERNATING SERIES TEST

Assume that
(i) >, (=1)*""a,is an alternating series.
(i) The terms a, are decreasing, a; > d, > -+ > @, > -+
(ili) The terms approach zero, lim, . a, = 0.

Then the series converges to a sum y * (=1 " a, = S. Moreover, the sum S

n=1

is between any two consecutive partial sums,
Son < S < Sot-

Discussion We see from the graph in Figure 9.5.1 that the partial sums S, alternately
increase and decrease, but the change is less each time. The value of S,
““vibrates” back and forth and the vibration damps down around the limit S.

PROOF The sequence of even partial sums is increasing.

S, <8y <o <8y, <,
because S, =S, + (a3 — ay), Se =S4 + (as — ag), ctc.
The sequence of odd partial sums is decreasing,
S;>83>85>++,

for Sy =8, — (4, — a3), Ss =83 — (a4 — as), etc.

Figure 9.5.1
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It follows that each even partial sum is less than S,
Si>8;—a,=395,, §.> 83 —a, =S, S; > 85 —ag =8¢, etc

Theorem 1 (Section 9.4) shows that the increasing sequence of even partial
sums converges,

lim S,, = S.

n—o
Given any infinite H, a,5,, * 0 and S, = §, so
Som+1 = S2u + dapge1 X S.

Therefore the sequence of all partial sums converges to S, and

H— 00

> (—1y*lg,=lim S, = S.
n=1
Finally, since the even partial sums are increasing and the odd partial sums
are decreasing, we have the estimate
S2n <SS < S2n+1'

Figure 9.5.2 shows a graph of the partial sums.

Figure 9.5.2
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EXAMPLE 1 The alternating harmonic series

. : 1. . .
converges by the Alternating Series Test, because — is decreasing and
n

approaches zero as n — <. The partial sums are

1_ 5 7 47 37
3226212560060 -

or 60 30 50 35 47 37

60> 60> 60605 60> 60+

The sum S is between any two consecutive partial sums, for example

37 47
T)<S<ﬁ

EXAMPLE 2 The alternating series

3 4 5 6 n+1
2_7 _ __ = . —1”+1—
2 + 3 4 * 5 +(=1) 7 *
diverges. The terms (n + 1)/n are decreasing, but their limit is one instead of
Ze10,
1
im T <,
n—x n

The Cauchy Test for Divergence in Section 9.2 shows that if the terms g, do
not converge to zero the series diverges.

We have now built up quite a long list of convergence tests. The next section
contains one more important test, the Ratio Test. At the end of that section is a
summary of all the convergence tests with hints on when to use them.

PROBLEMS FOR SECTION 9.5

Test the following alternating series for convergence.

- « —_ 1yt
1 Y (=1 \/n 2 ( 1),,
n=1 n=1 /)l
3 _1 n+ 1 h - n \/n
3 ,,Zl ) 10n + 5 4 Z 2 n+1
5 Z (_1):1"—2 6 Z ( ~1 /3
n=1 =
. - o0 )n
1yt
7 ,,; (=113 8 g_ Inn
« ”( 1)n+1 x .,
? Zzi Inn 10 Z -1
= (_1)”+1nl kS )n+12n
11 Z‘OT 12 Z
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9.6 ABSOLUTE AND CONDITIONAL CONVERGENCE

13 Y (=1 14 Y Sl
n=3 In(Inn) n=2 \'/;;
15 5 cos(n) 16 S (—1p* (1 —1)
n=1 n n=1 n
o . ﬁ « » 4
17 S (=1y(/n+ 1 — /n) 18 Y (-5
A=l n=0 -
< n 271— z + 1 < n+ 1 1 o
19 ";0(‘1) 73 15 20 ngl(—l) 1 +H
21 Approximate the series ) 2, (—1)"**n"2 to two decimal places.
22 Approximate the series 1 — & + 135 — 195 + - - - to four decimal places.
23 Approximate ) *  (—1)"/n! to two decimal places.
24 Approximate Z;”: , (—n)"" to three decimal places.

ABSOLUTE AND CONDITIONAL CONVERGENCE

Consider a series ) ® | a, which has both positive and negative terms. We may form

a new series ) ©  |a,] whose terms are the absolute values of the terms of the given

series. If all the terms g, are nonzero, then |a,| > 0s0 Y’ | |a,| is a positive term series.

If Y* , a,is already a positive term series, then |a,| = a, and the series is
identical to its absolute value series Y | [a,l.

Sometimes it is simpler to study the convergence of the absolute value series

“_, la,| than of the given series ) | a,. This is because we have at our disposal all

the convergence tests for positive term series from the preceding sections.

DEFINITION

A series Y ®_ | a, is said to be absolutely convergent if its absolute value series
=, la,| is convergent. A series which is convergent but not absolutely con-
vergent is called conditionally convergent.

THEOREM 1

Every absolutely convergent series is convergent. That is, if the absolute value
o7 ee) . ee) .
series Zn: . la,| converges, then Z,,: | @, converges.

Discussion This theorem shows that if a positive term series Y 2, b, is convergent,
then it remains convergent if we make some or all of the terms b, negative,
because the new series will still be absolutely convergent.

Given an arbitrary series Zf: | @y, the theorem shows that exactly one of the
following three things can happen:
The series is absolutely convergent.

The series is gonditionally convergent.
The series is divergent.

521
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PROOF OF THEQOREM 1 We use the Sum Rule. Assume z:;l |a,| converges and
let

b, = a, + Ianl'

n

Then a, = b, — |a,| and

b = 2la,) ifa, >0,
"0 if a, < 0.

(See Figure 9.6.1). Both >.*_, |a,| and D,=, b, have nonnegative terms.
Moreover, Z:‘:I la,| converges and b, < 2|a,|. By the Comparison Test,

> | b, converges. Then using the Sum and Constant Rules,

Z a" = Z bn - Z lanl

n=1 n=1 n=1

converges.

H

Figure 9.6.1

EXAMPLE 1 The alternating series
1 1 1 1
Tt Te T
is absolutely convergent, because its absolute value series
1 1

1
1+?+?+Z§+’”

is convergent.

EXAMPLE 2 The alternating harmonic series
R Bl R
is conditionally convergent. It converges by the Alternating Series Test. But
its absolute value series

[+3+5+a+s5+

diverges.

Given a series

ay +a, +ay+ag + - +a+ -0,
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one can form a new series by listing the terms in a different order, for example
a +az;+a,+as+a,+ .

Such a series is called a rearrangement of Y ™ . a,. The difference between absolute

n=1

convergence and conditional convergence is shown emphatically by the following
pair of theorems.

THEOREM 2
A. Every rearrangement of an absolutely convergent series is also convergent
and has the same sum.
B. Let) > . a,bea conditionally convergent series.
(i) The series has a rearrangement which diverges to co.
(il) The series has another rearrangement which diverges to — 0.

(iii) For each real number r, the series has a rearrangement which con-
verges to r.

We shall not prove these theorems. Instead we give a pair of rearrangements
of the conditionally convergent series

I—3+5-%+,

one diverging to oo and the other converging to —1.
The alternating series

Rk I S

conditionally converges to a number between 5 and 1.
To get a rearrangement which diverges to co, we write down terms in the

following order:

Ist positive term, 1st negative term,

next 2 positive terms, 2nd negative term,

next 4 positive terms, 3rd negative term,
next 2™ positive terms, mth negative term,

We thus obtain the series
L=3+d+d—d+i+s+ii+is—et

Each block of 2" positive terms adds up to at least Z,

1=4,
j+iz2xg =3,
PHsrH B zexis =1,
s+ F =8 x5 =14,

However, all the negative terms except —5 and —% have absolute value <. Hence
after the mth negative term the partial sum is more than

523
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~
™
[
N
=)
B

Therefore the partial sums, and hence the series, diverge to «c.

To get a rearrangement which converges conditionally to — 1 we proceed as
follows

Write down negative terms until the partial sum is below —1, then positive
terms until the partial sum is above — 1, then negative terms until the partial sum is
below —1, and so on.

The mth time the partial sum goes above — 1, it must be between —1 and
— 1 4 (1/m). The mth time it goes below — 1 it must be between —1 and —1 — (I/m).
Therefore the series converges to — I.

The comparison tests for positive term series give us tests for absolute con-
vergence.

COMPARISON TEST

x‘

Ifla,| < clb,)and Y 7_, b, is absolutely convergent then ) *_ | a, is absolutely

convergent.

LIMIT COMPARISON TEST

Let ¢ be a positive real number. If
lag] < clbgl Sor all infinite K

and Z"";I b, is absolutely convergent then ) ' a, is absolutely convergent.

PA
n=1

The above tests do not help to distinguish between conditional convergence
and divergence. Theorem 2 in Section 9.2 is often useful as a test for divergence.

There is another test which can be used either to show that a series is abso-
lutely convergent or that a series is divergent.

RATIO TEST

Suppose the limit of the ratio |a,, ,|/\a,| exists or is o,

Ilm )an+ 1] —
n— |a,,|

(iy If L < 1, the series Z:‘:I a, converges absolutely.
(i) If L> 1,0r L= w, the series diverges.
(iiiy If L=1, the test gives no information and the series may converge
absolutely. converge conditionally, or diverge.

PROOF (i) Choose b with L < b < 1. By the ¢, N condition, there is an N such that
all the ratios

[yl laysl [an + 41

laxl ’Ial\’+]”.”’ |Gy 4l T

are less than b, Therefore with ¢ = |ay],
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lay+ | < cb, Azl < b2 ... laye,l <cb®....

The geometric series ) *_, b" converges, so by the Comparison Test, the
tail > *_,la,| converges. Therefore the absolute value series Y lal
converges.

(i) By the &, N condition there is an N such that the ratios

lan 11l lan 40+l
lay! ’ ’ lay +ul

PR

are all greater than one. Therefore
layl <layiil <o <layg l <.
It follows that the terms 4, do not converge to zero, so the series ) v, a,

diverges.

The Ratio Test is useful even for positive term series, and is often effective for
series involving n! and a”".

. 1
EXAMPLE 3 Test the series )22, —.
n!
!
liml/(n-{-l).___ . 1 0,
n—w l/ﬂl n-w B+ 1

so by the Ratio Test the series converges.

EXAMPLE 4 Test i (_ﬂ
n=1 n!
nt 1 1! Dy 1n
lim (_"M = lim (n+1) =lim{1+3) =e
n— o n”/n! n—+w n n—ow n

e is greater than one, so by the Ratio Test the series diverges.

ExaMPLE 5 The Ratio Test does not apply to either of the series

© 1 > 1
nzl ;7.\, MZI P,

2
fim YDy Ve 1

-1
n— o0 l/n n—w 1/n2

since

SUMMARY OF SERIES CONVERGENCE TESTS

A. Particular Series
(1) Geometric Series

Y= ¢ converges to il <1,

diverges if |¢| = 1.
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Harmonic Series

!
=1y diverges.

(3) p Series

1
p=1 5 Converges ifp>1,

dlverges ifp< 1.

B.  Tests for Positive and Alternating Series

In the tests below, assume «, = 0 for all a.

(1)

2)

(3)

(4)

Convergence versus Divergence to «o
Let H be infinite.

a, converges if Y 7 4, is finite,

n“l n=1

diverges to co if ) *_ a, is infinite.
Comparison Test
Suppose a, < cb, for all n.
If > = | b, converges then ) *_, a, converges.
If Y | a,diverges then ) ™ b, diverges.

Hint : Often a series can be compared with one of the particular series
above: a geometric, harmonic, or p series.

Limit Comparison Test

Suppose ay < cby for all infinite K.
If = | b, converges then )
If Y=, a, diverges then ) = | b, diverges.

*_, @, CONVerges.

Hint: Try this test if the Comparison Test almost works.

Integral Test

Suppose f is continuous, decreasing, and positive for x = 1.

If j“ x) dx converges, then ) | f(n) converges.

If [ f(x) dx diverges, then ) *_, f(n diverges.

Hint: Thls test may be useful if g, comes from a continuous function f(x).
Alternating Series Test

(— D"a, converges if the a, are decreasing and approach 0.

n=1
Hint: This is usually the simplest test if you see a (— 1) in the expression,

C. Tests for General Series

(1)

2)

Deﬁnition of Convergence

. a, converges if and only if the partial sum series ) *_, a, = S,
converges
Cauchy Convergence Test

>, a, converges if for all infinite / and K > H,

aH+1 +"'+aK~O,
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diverges if for some infinite H and K > H,
gyt +oag#0,

diverges if lim,, , a, # 0.
Hint : This test is useful for showing a series diverges.
Constant and Sum Rules
Sums and constant multiples of convergent series converge.
Tail Rule

®_ a, converges if and only if > ® 4, converges.
Absolute Convergence
If > * | la,| converges then ) ™ | a, converges.

Hint: Remember that ) ™ , [a,[ is a positive term series. Thus tests in

a0
n=1

group B may be applicd to ) *__ |a,.

Ratio Test

Suppose lim [l _
o [ani

>  a,converges absolutely if L < 1,

diverges if L > 1.

Hint : This is useful if g, involves a factorial. Watch for (n *

n— o n n—r

ratio because lim (n + 1) = lim (1 + l) = e
n

If the limit L is one, try another test because the Ratio Test gives no

information.

PROBLEMS FOR SECTION 9.6

Problems 1-20: For each of the first 20 problems in Section 9.5, determine whether the alternating

series is absolutely convergent, conditionally convergent, or divergent.

Problems 21-44: Apply the Ratio Test to the given series. Possible answers are “convergent,”

“divergent,” or ‘““‘Ratio Test gives no information.”

21

23

25

27

29

Y 3 22 Y
n=1 n=1 2
G 1 x
— 24 n?
ngl \/ n ngl
o« 2" o 1
ngl m 26 ngl n—3
ksl 57! x 5:1
ngl 3n 4 4r 28 nzl 6n _ 5
w ‘ a n
L 30 y 2t

-
=
£
I
-
—
[
=
Rl

1",
)mthe

527
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33

35
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9 INFINITE SERIES

< ()
n=0(2”)!
= e"(n!)
ot

n=1 (3'1)'

POWER SERIES

So far we have studied series of constants,

One can also form a series of functions

Such a series will converge for some values of x and diverge for others. The sum of the

h=

axL

32

36

38

40

42

o= (Inny’
ki 1
11;3 (ln (h’l n))"
X 1e3+5+ . +(2n — 1)
(nh?

Bl

s a1

ﬂ_M"' [
31

Yoay=dogta; + -+t
=0

2SN = folx) + i)+ o+ S+

n=0

series is a new function

which is defined at each point x, where the series converges. We shall concentrate on
a particular kind of series of functions called a power series. Its importance will be
evident in the next section where we show that many familiar functions are sums of

power series.

DEFINITION

S = X A0

A power series in x is a series of functions of the form

x*

n=

The nth finite partial sum of a power series is just a polynomial of degree n,

n

a,x" =g + a;x + ax* + o+ ax" + .
0

Soaxt =ay +ax + -+ ax"

k=0
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The infinite partial sums are polynomials of infinite degree,
H
> oax"=ag + a;x + - + agx™.
n=0
At x = 0 every power series converges absolutely,

Y oax"=ag+ a0+ a0+ =a,.
n=0

(In a power series we use the convention agx® = a,.) If a power series converges
absolutely at x = u, it also converges absolutely at x = —u, because the absolute
value series Y ®  la,u"l and 3 |a,(—u)"| are the same.

Intuitively, the smaller the absolute value |x|, the more likely the power series
is to converge at x. This intuition is borne out in the following theorem.

THEOREM 1

(i) If a power series

e
Yoax"=a,+a;x+ -+ ax" + -
n=0

converges when x = u, then it converges absolutely whenever |x| < |ul.

(ii) If a power series diverges when x = v, then it diverges whenever [x| > [v].

PROOF (i) Suppose the series ) a,u" converges. Then for any positive infinite H,
ayu® is infinitesimal. Let {v| < [u|. The ratio b = [v|/ju| is then less than
one. It follows that:

(1) The positive term geometric series ) * , b” converges,

afo\"
agu| -
u

Now by the Limit Comparison Test, Z;O: o 0" converges absolutely.

(i) This follows trivially from (i). Let ) ®  av" diverge and |u > |v].
a0 dui" cannot converge because if it did ) * , a," would converge

absolutely. Therefore Y = a,u" diverges.

= |amuf|p? < b7,

@) lagt®l =

Theorem 1 shows that if a power series converges at x = « and at x = p, then
it converges absolutely at every point strictly between u and v. We conclude that the
set of points where the power series converges is an interval, called the interval of
convergence. (A rigorous proof that the set is an interval is given in the Epilogue.)
The next corollary summarizes what we know about the interval of convergence.

COROLLARY
For each power series Y . a,x", one of the following happens.

(i) The series converges absolutely at x = 0 and diverges everywhere else.

(i) The series converges absolutely on the whole real line (— oo, o).
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(iti) The series converges absolutely at every point in an open interval
(—r, 1) and diverges at every point outside the closed interval [—r,r).
At the endpoints —r and r the series may converge or diverge, so the
interval of convergence is one of the sets

(—=r 1), [=r® (—=rr [—r71)

Figure 9.7.1 illustrates part (iii} of the Corollary. The number 1 is called the
radius of convergence of the power series. In case (i) the radius of convergence is zero,
and in case (ii) it is oo. Once the radius of convergence is determined, we need only

test the series at x = r and x = —# to find the interval of convergence.
—r 0 r
~— A N -
diverges converges diverges
absolutely
Figure 9.7.1

EXAMPLE 1 Find the interval of convergence of the power series

€xL

> b'x", where b > 0.

n=0
This is just the geometric series
1+ bx 4+ (bx)> + -+ + (bx)" + - --.

x| < 1/b, and diverges when |bx| > 1,

It converges absolutely when |bx| < 1,

|x|] > 1/b. So the radius of convergence is » = 1/b. At x =rand at x = —r
the series diverges, because b"" = 1. Thus the interval of convergence is
(—1/b, 1/b).

The Ratio Test can often be used to find the radius of convergence of a power
series.

EXAMPLE 2 Find the interval of convergence of

We compute the limit

g B £ 1)

. n
- = x| lim ——— = |x|.
n—w |X /nl n—ow R

+ 1
By the Ratio Test the series converges for |x| < 1 and diverges for |x| > 1, s0
the radius of convergence is r = 1.

At x = 1 the series is

11
L4+ ++

I | =
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which is divergent. At x = —1 the series is

11 1 (— 1)
SR LT e

which converges by the Alternating Series Test. The interval of convergence
is[—1,1).

EXAMPLE 3 Find the interval of convergence of

0y x2 x3 X"
Y=l
weoh! 2 6 n!

For all x we have

n+1 1
h'm]x_M: ﬁmM:O_
n—o |x"/n!l n—w N

Therefore by the Ratio Test the series converges for all x. It has radius of
convergence oo, and interval of convergence (— oo, o0).

EXAMPLE 4 Find the radius of convergence of
[=¢)
YonIx"=1+x+2x* +6x> 4 ...
n=0

1| n+1
For x # 0, lim DT ] = oo

n—cwo In' x"[ n— o

By the Ratio Test the series diverges for x # 0 and the radius of convergence
isr =0,

If we replace x by x — ¢ we obtain a power series in x — c,

Y oafx — ) =ao + ay(x — ) + ay(x — c)® + -
n=0

The power series ), a,(x — ¢)* has the same radius of convergence as Y ©_, a,x",
and the interval of convergence is simply moved over so that its center is ¢ instead of 0.

For example, if Y ®  a,x" has interval of convergence (—r, r], then
[
Y afx — )"
n=0

has interval of convergence (¢ — r, ¢ + r), illustrated in Figure 9.7.2.

—r 0 r c—F c ctr
N ~ J . v J
converges absolutely converges absolutely

0 o0
2 auxn 2 a(x—c)r
n=0 n=0

Figure 9.7.2
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EXAMPLE 5 Find the interval of convergence of

o (T’l'.)z ) . 1 ) (2])2 ‘ R
,,go(zn)z(" F = L S S
We have
i | 07+ D10+ D+ Sy 20+ 2)!
n () H{x + 5)/(2n)!
g [ DA | Rt S
wea | 204+ D20+ 2)| 4

By the Ratio Test the series converges for |x + 5 < 4 and diverges for
[x 4+ 5| > 4. The radius of convergence is r = 4, and the interval of con-
vergence is centered at — 5. We note that

LS U 2 U N S LU L L\
k! 123 4 Cn—12n"\2 2] {4/
Therefore at [x + 5| = 4,
(n)? t\”
X n —) 4" = )
'(2”)!(3\4-5) >3 1
Thusat x + 5 = 4and x + 5 = —4 the terms do not approach zero and the

series diverges. The interval of convergence is (—9, —1).

PROBLEMS FOR SECTION 9.7

In Problems 1-25, find the radius of convergence.

1

11

15

17

19

* Ed

Y 5x 2 2 \T
n=0 n=0 3
Z X" 4 > \7; X!
n=1 n=1
~ n! Zoa"
en 6 Ty
n=1 " ,,zl ”! X
ks nln x (3}1)1
X" 8 x"
Lot PRI
i I—1 X" 10 i 1+1_"\.n
n=1 h n=1 n ’
A x" =) x"
1 o
w2 Inn 2 W= (Inn)"
s’ ”"'\.ll s ,\'”
- 14 _
w= (Inn)" .= (In{Inn))”
ol ed T In+ 1 ’ !
( n ).\,, 16 Z _-n‘ X"
"o n! o le3¢50 0 2n+1)
s Xn s ,V"
HZO 3“12) 18 n=0 g‘;’
o x” ES -\,"
- 20 —
ngo 5nn Z "
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In Problems 2645, find the interval of convergence.

n

= nlx"
21
n=1 \/f;”
] x3n
23 "; 5
25 f L
n=1 Tl!
O xll
26 P
28 Z n3"x"
n=Q
W0 X"
30
ngl 6./n
oo (_ 1)le"
32 ngl 3
Z {x+2)
34
Lol
36 Z ni(x — 3y
=0
18 Z (x +,. 8}
n=0 2
40 Z (3" + 4M x"
n=0
42 Y 3P
n=0
© en(x _ 4)2n
44 > EELE

B
—_

22

24

27

29

31

33

35

37

39

41

43

45

z 3nX2n
n=1

%G x6n

,,;1 n!

> 2x"

n=0

0 X"
n; (1)
LV
w—s Inn

0 (_ l)nxn
ng(] n!

= (= 1(x 2
Z 4
n=1

G (X _ 5)n
ngo H'

s 1
S0
s} 4" \
PN TR
] x2n
,,;1 15"

w xZn
,,go n!

DERIVATIVES AND INTEGRALS OF POWER SERIES

In the last section we concentrated on the problem of finding the interval of conver-
gence of a power series. We shall now find the sums of some important power series.

Our general plan will be as foliows.
First, find the sums of two basic power series:

1

1 —x

Then, starting with these basic power series, find the sums of other power

Il

il

T+x+x2+-+x"+

2

n

P X
I+ x4+ 4+ =+

2!

n!

series by differentiation and integration. (Based on Theorem 1.)

An especially useful property of power series is that they can be differentiated
and integrated like polynomials. If we have a power series for a function f(x), we can
use Theorem 1 to immediately write down the power series for the derivative f'(x) and

integral {3 f(r) dt.

533
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THEOREM 1

Suppose f(x) is the sum of a power series
s
J(x) =) ax"
n=0

with radius of convergence v > 0, and let —r < x < r. Then:
(i) [ has the derivative
o
> na,x"!
n=1

(i1)  f has the integral

1 ” n+1
fj () dt = *4_ P

(iii) The power series in (i) and (i1) both have radius of convergence r.

Discussion This theorem says that a power series can be differentiated and inte-
grated term by term. Also, the radius of convergence remains the same. To
differentiate or integrate each term of a power series we simply use the
Power Rule.

nth term of f(x) = a,x

derivative {na,,,\ ! n#£0
rivative =
0 n=20
. a
integral = —#—x"*!
g n+1

We postpone the proof of Theorem 1 until later.

EXAMPLE 1 Differentiate and integrate the power series ) *_  n’x", and find the

radii of convergence.
By the Ratio Test this power series has radius of convergence r = 1, for

(n + 12 x""Y . (n+ 1)?
— s =x =

lim = li =
n—r o« In2¢ “| ' |n—'oc 1’12 | I
x®L uw
Derivative : ( 2 7 x") =Y ¥x"t=3% (m+ 1)°x"
d n=1 m=0
' [ =  on? ~ (m— 1)?
Integral : J Y nzt") dt = =y (—‘)x'”
0 \n=0 =01 + 1 m=1 m

For convenience we rewrote the derivative as a power series in x™ where
m = n — 1, and the integral as a power series in x” where m = n + 1. Both
the derivative and integral also have radius of convergence r = 1.

We are now ready to prove the power series formulas for 1/(1 — x) and e*.
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THEOREM 2
. 1
(1) I——)c‘=1+x+x2+"'+x"+"', r=1.
) x? x"
(i) ef=1+x+ 5+ --4+=+-, r=oc0
2! n!

PROOF (i) is just the geometric series for x. We proved in Section 9.2 that it converges
to 1/(1 — x) for |[x] < 1 and diverges for |x]| > 1.

(i) Let
y=§0z—n!= 1+x+§+---+;i’;+---.
At x = 0 we have y = 1. We can find dy/dx by Theorem 1.
d = px! ®  x"? © XM
%:n; n! =,,=1(n — 1 :mzoﬁ =
The radius of convergence is oo, so for all x,
dy
ax y
The general solution of this differential equation (see Section 8.6) is
y = Ce*.

Atx =0,1 = Ce® = C. Therefore y = ¢~

We shall now get several new power series formulas starting from the power
series for 1/(1 — x). We shall use the following methods:

Differentiate a power series.

Integrate a power series.

Substitute bu for x.

Substitute u? for x.

Multiply a power series by a constant.
Multiply a power series by x?.

Add two power series.

EEgO® >

Methods C, D, and G may change the radius of convergence.
We start with

1
(1) ——=1l4tx+x*+-+x"+-, r=1L
1—x
Substitute —u for x in Equation 1.
1

-1 2 _ ., U - = 1.
T u—+u + (=D + -, r=1

2

The radius of convergence is still » = 1 because when | —u| < 1, |u| < 1. Let us instead
substitute 2u for x in Equation 1 and see what happens to the radius of convergence.

1
3 1—2u:1+2u+22u2+---+2"u"+---, ro=

1
5
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The radius of convergence in Equation 3 is = 3 because when [2u| < 1, ju] < }. For
convenience we rewrite Equations 2 and 3 with x’s instead of u’s. Thus

{
@) o=l e (SN e =
&) ! =142x +22x2+ -+ 2'X" 4+ - .- ]
1 —2x ’ ° Ty

By integrating 1/(1 — x) and multiplying by — [ we get a power series for In (I — x).

X 1
L - tdt = —In(l — x).

@ n(l=-x)= ~x— o — > 2 =

We next use the power series Equation 2 for 1/(1 + x). Substitute x* for x in Equation
2.

1
1 + x?

(5) =1—X2+X4—"-+(—1)"X2“+"', ).:1_

ris still 1 because if |x?| < 1, |x] < 1. We obtain a power series for arctan x by inte-
grating (5).

X l
f 3dt = arctan x.
[+t

0
X3 '\,5 (—])“X2"+1
6 arctanx =y — — 4+ — ...4 2~ o C—
© px=x— + 5 * 2n + 1 ’ ’
Finally let us differentiate the series (1) for 1/(1 — x).
{71 1 B 1
dx\1 — x| ~ (1 — x)*
|
(7) (T—)z=1+2x+3x2+---+(n+1)x”+---, F=1,
~ X
Let us begin again, this time with
. xZ xn o
8) €=1+X+j+"'+ﬁ+"', = 0.
Substitute —x for x in Equation 8,
3 2 —1yx"
9 e_"'=1-x+i—'~+( Ix , F= 0.
2! n!
Using the formulas
eX + e % X — ¥
hx=——, inhx = ———
cosh x 5 sinh x 5

we can obtain power series for cosh x and sinh x, This is our first chance to use the
method of adding power series.

2 4

X X x2"
(10) coshx=1+5+ﬂ+---+(2n)l

+o, r= .
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3 xS x2n+1

. x

(11) smhx—x+3!+5!+ +(2n+1)!+' .,
Notice that the odd terms cancel out for cosh x and the even terms cancel out for
sinh x.

In Section 9.11 we shall obtain power series for sin x and cos x by another
method.

We can easily get new power series by multiplying by x?. For example,
starting with the power series for In (1 — x), we obtain

xr X3
In(I—x)=_x__2__?_..., ,=1,
3 4
xln(1~x)=_x2_%_f3_____, "=1,
4 5
x*In(l - x) = ~x3—§2~—%~-.., r=1,

and so on. Since the series for In (1 — x) has no constant term, we may also divide by
x to get a new power series. To cover the case x = 0, we let

In{ — xj .
10 = . ifx#0,
-1 if x = 0.
x x* X
:_1__“_______... = .
Then f(X) ) 3 4 3 ! 1

We can often get a power series formula for an indefinite integral which
cannot be evaluated in other ways. For example, the integral

* 2
J e~ dr
0

is of central importance in probability theory. It is the area under the normal (bell-
shaped) curve y = e~ *. This integral is not an elementary function at all, so the
methods of integration in Chapter 9 will fail. However, we can easily find a power
series for this integral. First substitute x* for x in Equation 9.

. 4 6 n..2n
e , X b (—=1yx . o
12) e =1-—x +§—3~!+---+———n! + e r=o0.
Then integrate.
X ) x3 X5 x7 (_1)n+1x2n+1
13 g - — I S A AN - = 0.
( )Le =Xt Tt T T e r=®

PROOF OF THEOREM 71 It is easiest to prove (iii), then (ii), and finally (i).

(i) The series Y  na,x"" ! and Y2  (a,/(n + 1)x"*"' have radius of
convergence F.
Let |x] < r. We may choose ¢ with |x| < ¢ < r. Then > a,c" converges

absolutely. For positive infinite H, Theorem [ in Section 9.1 (page 526)
shows that |c/x|%/H is positive infinite, so H|x/c|" =~ 0. Therefore



538

(14)

9 INFINITE SERIES

1
—vapc?

X

C

H-1 = H .

<

Hayx age’

Then by the Limit Comparison Test, Y “ , na,x"~ ' converges absolutely.

n=1
Similarly >, (a,/(n + 1))x"*! converges absolutely.
Now let |x| > r. Using the same test we can show that ) | na,x"" ! and
Y r_ola,/(n + 1)x"*! diverge. Therefore both series have 1ad1us of conver-

gence 1.

ox

(ii) f rwdi= Y e
0 i

Ton+ 1

Let 0 < ¢ < r. Our proof has three main steps. First, get an error estimate
for the difference between (¢} and the mth partial sum. Second, show that
f(t) is continuous for —¢ < t < ¢. Third, show that f(¢) has the required
integral.

The series ) *., a,c" converges absolutely. Let E,, be the tail

@w

E,= ) lalc"

n=m+1

Then lim E,, = 0.

m— o

Moreover, for —c¢ <1 <g¢,

Ed

Z a" t”

n=m+1

xL
< Z Iantnl = Em'

n=m+1

Therefore E,, is an error estimate for f(t) minus the partial sum,

m

m

n
m _' Z aﬂt _ "l

We now prove [ is continuous on [—c, ¢]. Since ¢ was chosen arbitrarily
between 0 and r, it will follow that f is continuous on (—#, ). Let ¢t ~ u in
[ —¢, c]. For each finite m,

—E

m

If(t)— Z a,t"

n=0

I?l *

{ m m

W0 — z a lz )
m
Z a,,ll" - f(ll)
n=0

Therefore stlfty — fw)| < E,+ 0+ E,.

Since the E,;’s approach zero, it follows that f(r) ~ f(u). Hence f'is continuous
on[—e¢c]

To prove the integral formula we integrate both sides of Equation 14 from
Otox Let0 < x.

m

* a
—-Ex < ) dt — —-x""' < E
L f( ) ":ZO n + 1 mx

Again since E,, approaches zero, we conclude that
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«€°

J.xf(f) dt — Z a, xn+ 1‘

aoh + 1

The case x < 0 is similar.

i) f(x) =20 nax""
Let g(t) = Z na, "1,

Integrating term by term,
f g(t)dt = Z a,x".
0 n=1
Thus [ etde = 169 ~ a0 = 51 = 500,
0

By the Fundamental Theorem of Calculus, g(x) = f'(x).

In part (i) of the proof we needed part (iii) to be sure that the series for g(z)
converges for —r < t < r, and part (ii) to justify the term by term integration.

PROBLEMS FOR SECTION 9.8

In Problems 1-10 find power series for f*(x) and for ¥ f (1) dr.

1 fx) = i 107" 2 =3 nny
n=1
_3 _ [=o] x"
3 flx) = Z n 4 fx) = "ZZ o
5 flx) = Z _;IX" 6 fx) = i\/;;,/n+1x”
n=1 n=1
7 S Y e 8§ fw=3 (-yttle
n=1 n”? =0 3
s 73 a0 1
9 fx)= Z 10 fx) = Y S5x*

ne el ]

In Problems 11-34 find a power series for the given function and determine its radius of conver-
gence.

= 2 W=

13 ()= arctan(dx?) 14 f()=m(l - 3x?

15 f(g=xIn(l + 2x) 16 1(x) = arc?nx ifx # 0, f(0) = 1
17 f(x)=e** 18 f(x) = x%e*

19 f(x) = sinh(3x) 20 f(x) = cosh(x?)

A f)= f “In(l + 2% de 2 S = fo arctan(®) dt

23 f(x) = f edt 24 flx) = J:sinh(tz) dt
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X X 2
f(x):f tIn(l — 1)dr 26 f(x)=f ﬁdt
0 0

“ln(1 Te —
f(x) = fo M(u 8 [ =f — L
0
. 2x . _d —1
f(X):m Hmf-f(x)—al_l_xz-
0= e
J(x) = i 42_);4 Hint: f(x) = %arctan (x%).
1
fx)= =P

S{x) = arctan x + arctan (2x)
J(x) = sinh x + x cosh x

Check the formulas d(sinh x)/dx = cosh x, d(cosh x)/dx = sinh x by differentiating the
power series.

Prove that if the power series f(x) = 3™ a,x" has finite radius of convergence r, then
the power series

4

JBx) = Y abxy

n=0
has radius of convergence #/b (b > 0).

Prove that if f{x) = Y *_,a,x" has finite radius of convergence r, then

has radius of convergence \/7‘.
Prove that if

ES

JW =3 ax g =3 b

n=0 n=0
have radii of convergence r and s respectively and r < s, then f(x) + g(x) has a radius of
convergence of at least r.

Show that if f(x) = Zf:o a,x" has radius of convergence r, then for any positive integer p,

s
'\’pf(x) = Z anxn+p
n=0

has radius of convergence r.

Evaluate nx" |x| < 1, using the derivative of the power series fo:o X",

n=1

Evaluate *_, n’x", |x| < 1, using the first and second derivatives of Y *  x".
n=1 n=0

APPROXIMATIONS BY POWER SERIES

Power series are one of the most important methods of approximation in math-
ematics. Consider a power series

Jx)=a,+ax +ax*+ - +ax"+---.

The partial sums give approximate values for the function,

f(x) ~ag + a;x + ax* + -+ + a,x",
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and the tails E, give the error in the approximation,
fx)=ay + a;x + (12x2 + - +ax"+E,.

If we can estimate the error E, we can compute approximate values for f(x) to any
desired degree of accuracy.

In this section we shall give two simple methods of estimating the error.
A more general method will be given in the next section. Our first method is to use the
Alternating Series Test. It can be applied whenever a power series is alternating.

EXAMPLE 1 Approximate In (13) within 0.01.
We use the power series for In(1 — x),

2 3 a 5
ln(l—X)=—x—%-%—xz_%_..., r=1.
Setting 1 — x = 14, x = —4,
In(ll —l__l_.}_i_;_l_L_“_
2 2 2.4 3.8 4.16 5.32
This is an alternating series. The last term shown is less than 0.01,
"5—.1—32=%~0.006.

By the Alternating Series Test, the error in each partial sum is less than the
next term. So

1 11 ! ! + L ! error < !
nl|lz) ~=— —_—— < —,
2] 72724738 4016 )
or In (13) ~ 0.401, error < 0.006.
The actual value is In (11) ~ 0.405.
EXAMPLE 2 Approximate arctan 1 within 0.001.
The power series for arctan x is
x> X x X
t —_ _ —_— —_— s e - .
arctan x = x 3+5 7+9 , r=1

Setting x = 1,

272 3.8 5.32 7.128 9.512 ’

This an an alternating series. The last term is less than 0.001,

o5 ™ 0.0002.

Therefore

1 1 1 1
arctan — ~ error < 0.0002.

2727387532 7028
Adding up, arctan3 ~ 0.4635,  error < 0.0002.
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The series
7

3 5
X X X
P=1

arctanx = x — — + — — = 4
3 5 7

can be used to approximate n. We start with

tanE = i arctani = z
6 /3 J3 6

|

Setting x = I/ﬁ in the series,
n 1 {(1)3+1(l)5 1 1)7
o 3 33 slal s ’
3 _ 1{1 +1 1 1 3 171 4_
of 6 "= 733 "53] T7l3) ol
This is an alternating series, so
\/g + ! : -i—L error < il
6" 45 189 T 729 =113/

1
9
én ~ 09072,  error < 0.0004.

Dividing everything by \/5/6 we get
n ~ 3.1426, error < 0.0013.

EXAMPLE 3 Approximate e”! within 0.001.

The power series for e* is
x2 X3 ,x“ x5
E—]+X+~—+? 57+"‘, : 90,

Setting x = —1,
1
% — 126 + 730 — 5040 +

The series alternates and the last term is less than 0.001, so
error < g ~ 0.0002.

Pel -1+ =3+ 95 — 150 + 7
Adding up, 1+ 0.36806, error < 0.0002.

The actual valueis e™ ! ~ 0.36788

Our second method of approximation is to start with a known error estimate
for the geometric series and carefully keep track of the error each time we make a

new series.
We recall the formula for the partial sum of a geometric series
1 — \,n+1 1 xn+1

= I—x 1 —x

14+ x4+ x2+ .. .
1 —x
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n+1

1
Thus ——=1l+x+x*+---+x"+E, E, = i
1 —x 1 —x

This formula is valid for all x, but the error E, approaches zero only when x is within
the interval of convergence (—1, 1).

EXAMPLE 4 Approximate 1/(1 — 0.02) to six decimal places. Take x = 0.02.

1

[ — 2 3
T ogg = |t 002+ (002 + (002 + E,

=14 0.02 + 0.0004 + 0.000008 + E,
= 1.020408 + E,.
The error E, after four terms is

~ (0.02*  0.00000016 - 0.00000016
T 1-002" 098 0.8

So 1/(1 — 0.02) ~ 1.020408 to six places.

E, = 0.00000020.

Suppose we wish to approximate In $ within 0.01. If in the series

x2 x> Xt
1 1_ —_ . ':1
n( x) x 5 3 ) , i
weset ] — x =4, x =1, we get
1 1 1 1 1

We know this series converges, but to be sure of an approximation within 0.01 we'
need an error estimate. The next example shows how to get such an error estimate.

EXAMPLE 5 Given a constant ¢ where —1 < ¢ < 1, find a simple error estimate for
the power series

x> x3 x"
ln(l—x)=—x—7—§—---—;—---
valid for —1 < x <.
We start with the equation
1) ;=(l+t+t2+---+t”)+E,,, Enztn+1
11—t 1 -t
For —1 <t < ¢ we have
o

l—t>1—¢ |E|<

1—-c¢

Integrating Equation 1 from O to x we have

x2 x3 xn+1 x
— — = — +— ... E dt
2) In(1 —x) x+2+3+ +n+1)+f0 .

543
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X n+1
Tt |x
< i dt =

L T B S Rt R Y Y

Multiplying Equation 2 by —1 and setting m = n + 1 we have the following
error estimate for In (1 — x), valid for —1 < x < ¢.

|u + 2
and

X X X
3 )~ —x - o =1,
) In (1 ¥) ( X 2 3 m
I.\,|m+1
error <

(I —e)m+ 1)

EXAMPLE 6 Use Example 5 to approximate In$ within 0.01. We set ¢ = x = 1 in
Equation 3.

| 1 1 1 1 1
n 27 2.4 3.8 4-16 e
]2m+1 1
lerror}] < i /2)

Hm + 1) - (m + 1)2™

Table 9.9.1 shows approximate values and error estimates.

Table 9.9.1
Approximate value for In § Error estimate
L ot L _
" hrs 2" 2 2.4 e 2" (m + 1)2™
1 0.5000 —0.5000 0.2500
2 0.1250 —0.6250 0.0833
3 0.04167 —0.6667 0.0313
4 0.01563 —~0.6823 0.0125
5 0.00625 —0.6886 0.0052

We see that the error estimate drops below 0.01 when m = 5.
So In$ ~ —0.689, error < 0.01.
Since In4 = —1In 2, we also have

In2 ~ 0.689, error < 0.01.

A more rapidly converging series for In 2 can be obtained in the following
way. Any number ¢ > 1 can be put in the form

l X
a=j~\. 0<x <.
| — x
We simply tak o4t
sim ake X = .
¢ Pty a+ 1

By the rules of logarithms,

1 + x

Inf——=
Rl

) =In(l + x}) —In(l — x).

We can subtract two series by the Sum Rule, whence
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x2 x3 x4 x5
I +x)=x— g X X =
n(l +x)=x 2-{—3 4+5 , r=1,
x2 x¥ xt X
1H(]—X)~"—X—'?’—?—Z—?'—, r=1,
1 3 5
In( +x)=2x+2%+2—§—+---, r=1

This power series is convenient because half of the terms are zero.

EXAMPLE 7 Find an error estimate for the power series for In((1 + x)/(1 — x))
valid for —¢ < x < ¢. Use it to approximate In 2 within 0.00001.

From Example 5 we have the following error estimates for in(1 + x) and
—In(l — x)validfor —¢c < x < ¢

xl x3 m
ln(l+x)~x_-+»__,_,+(_1)m+1x_’
273 m
erro < lxlm+1
rorfs —m——.
(1 —cm+1)
2 x3 X
—In(l —xX)~x+ =+ =+ -+,
( ) 23 m
’xlm+1
error <

(1 —c)m+ 1)

We add the two sums and error estimates,

In ] + x 2 + 2.X3 4 2x5 2X2m—1
—Xx 3 5 2m— 1’
2|x|2m+1
error <

1-—0a2m+ 1y

We wish to choose x so that (1 + x)/(1 — x) = 2. Solving for x we get x = 1.
Now set ¢ = 4 and x = §. The error estimate for x = § is

2lx12m+l B 1
(1—=0o2m+1) (2m+ )32

Table 9.9.2
Approximate value for In 2 Error estimate
m —2- —2— + L + + —2—— !
(2m — 1)32m~1 1.3 3.27 (2m — 1)32m-1 (2m + 1)3"

1 0.666667 0.666667 0.037037

2 0.024691 0.691358 0.002469

3 0.001646 0.693004 0.000196

4 0.000131 0.693134 0.000017

5 0.000011 0.693146 0.000002

The error estimate drops below 0.00001 when m = 5. Thus
In2 ~ 0.693146, error < 0.00001.
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EXAMPLE 8 Find the sum of the alternating harmonic series

-4 +5-4+

Our first guess is to set x = —1 in the power series
2 3 4
X X X
In(l-x)=—x——F—————, r=1
( ) 2 3 4

This suggests to us the sum
m2=1-3+35—-%4+--.

We know the series converges to something by the Alternating Series Test.
For —1 < x < 1 the series converges to In (1 — x). But x = —1 is an end-
point of the interval of convergence and the general theorem on integrating
a power series does not apply. So we must go back to the beginning and use
the equation

1 l"+1
— =0+t +--+ 1 .
= ( + o+ )+1_t

Fort <0, "Y1 — o) < "}, whence

1
U+ E BN,

Integrating from 0 to x,

2 \,n+1

X b
“In(l —x)=|{x+=—+ ...
n( x) \'+2+ +n+1

\(n+2

n+ 2l

+h,  El=

This holds for all x < 0.

Now we set x = —1 and see that the error term |F,| < 1/(n + 2) approaches
zero. This proves that In2 really is the sum of the alternating harmonic
series,

m2=1—-3+45—5+--.

The alternating harmonic series converges very slowly, because after n terms
the error estimate is only 1/(n + 1).

PROBLEMS FOR SECTION 9.9

Problems [-12 below are to be done using a power series with an error estimate. Ifa hand calculator
is available they can be worked with the errors reduced by an additional factor of 1000.
Approximate In (1.2) within 0.01.
Approximate arctan (7%5) within 1077,
Approximate e~ ' within 0.00001.

1

4 Awmmmfeﬁmmmwm.

0

1/2 1
5 Approximate j ——5 dt within 0.0001.
o 1+t

1/2

6 Approximate'[ In (1 + t?) dr within 0.001.

[
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1/3
7 Approximate J‘ %arctan (£) dt within 0.0001.
: 0
12
8 Approximate j arctan (*} dt within 0.00001.
V]
9 Approximate 1/(1 — 0.003) within 0.0001.
10 Approximate In 3 within 0.1 by the method of Example6. Hint: In3 = —In(1 ~ x)
where x = 2.
11 Approximate In 3 within 0.001 by the method of Example 7.
12 (a) Approximate In (13) within 0.00001 by the method of Example 7.

(b) Approximate In 3 within 0.00002 using the formula In3 = In 2 + In(13).

In Problems 13-18 find a power series approximation with an error estimate for f(x) valid for
—4 < x < 4. Then approximate f(3) within 0.01.

13 flx)= 14 f(x):j In(1 — ¢)dt
1—x o
5 )= e
VEIRE A RS
Hint: x? = L when x = 4.
*In(l — 1) * 2
17 f(x):f ‘—t—dt 18 f(x):f In(l — %) dt
[4] 4]
O 19 Using the power series for arctan x at x = 1, show that
E—l_l_},l_l_;_l_i_}.. .
4 35 779 11
0o 20 Using the power series for [3In(1 + 7)dt at x = 1, show that
711 PPNLIN I S SR

127 33%3.24 45755

9.10 TAYLOR'S FORMULA

If we wish to express f(x) as a power series in x — ¢, we need two things:

(1) A sequence of polynomials which approximate f(x) near x = ¢,

1) g, do +a(x —¢)o.yag +ax —c)+ -+ alx—o)r....
(2) An estimate for the error E, between f(x) and the nth polynomial,
2) ) =as+a(x—c)+ -+ alx—c)+E,.

In the last section the formula

1 n+1
_=1+x+...+x"+Em Enz
1 —x

was used to obtain power series approximations. A much more general formula of
this type is Taylor’s Formula. In Taylor’s Formula the nth polynomial P,(x) is chosen
so that its value and first » derivatives agree with f(x) at x = ¢.

The tangent line at x = ¢,

Blx) = (o) + f'(Ox — o),

has the same value and first derivative as f(x) at x = ¢. A polynomial of degree two
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with the same value and first two derivatives as f(x) at ¢ is

P) = 10) + 10~ 0 + L1 — o

P,(x) and P,(x) are the first and second Taylor polynomials of f(x) (see Figure 9.10.1).

/

7
/ / *
//
4 Pi(x)
/

Figure 9.10.1 First and Second Taylor Polynomials

To continue the procedure we need a formula for the nth derivative of a
polynomial.

LEMMA 1

Let P(x) be a polynomial in x — ¢ of degree n.
Px)y=as+a(x —a)+ay(x —)+ -+ a,x — o).

For each m < n, the mth derivative of P(x) at x = ¢ divided by m! is equal to
the coefficient a,,,

P(m)(C)

m!

= d,,-

PROOF Consider one term a,{x — ¢)¥. Its mth derivative is

kk — 1) (k —m + Dafx — ey ifm <k,
- ifm=k,
0 ifm >k

mla

At x = ¢, the mth derivative of a,(x — ¢)f is:

Oifm < k, mba, ifm=k, 0ifm > k.

m

It follows that P"c) = m!'a

m:*

This lemma shows us how to find a polynomial P(x) whose value and first
n derivatives agree with f(x) at x = ¢. The mth coefficient of P(x) must be

/)

m!

m
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Let f(x) have derivatives of all orders at x = c. The nth Taylor polynomial of

f(x) at x = c is the polynomial

P9 = J& + 10— & + L1 — e 4 -

(n
-+ —f—)l(c—)(x — o).
n!

By Lemma 1, P(x) is the unique polynomial of degree n whose value and first n

derivatives at x = ¢ agree with f(x),

Pfc) = flo), Py = [(c),..... B"(e) = f™e).

The difference between f(x) and the nth Taylor polynomial is called the nth

Taylor remainder,

R, (x} = f(x) — P(x).

Thus

S0

&) =1 + [()x — ) + =

EXAMPLE 1
out in Table 9.10.1.

(x—cf+--+

(n)
L — o + R0

Find the first five Taylor polynomials of sin x at x = 0. We work them

SA0)

Table 9.10.1

k S¥(x)

0 sin x 0
1 cos X i
2 —sin x 0
3 —COos X -1
4 sin x 0
5 Ccos X 1

Py (x)
0
X
X
x — x*/3!
x — x*/3!

x — x3/3! + x%/5!

Since the even degree terms are zero, the 2nth Taylor polynomial is the same
as the (2n — 1)st. Figure 9.10.2 compares the first and third Taylor poly-

nomials with sinx.

. y
i s
x
\ e
[ /
\ s
\ Z
—-————
N
\‘\ \\‘
\\‘~ -7 \ \ )
- \
Z \\
// \ sin x
Y
v 1
/ 1 x3
/ \ X — 57

Figure 9.10.2
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We can easily find the Taylor polynomials of f(x) by differentiating. Let us
now try to find a formula for the Taylor remainders. The Mean Value Theorem gives
a formula for the Taylor remainder, Ry(x).

MEAN VALUE THEOREM (Repeated)

Suppose [(1) is differentiable at all t between ¢ and d. Then

e
Fig) = 9=

d—c¢

Jor some point ty strictly between ¢ and d.
When we replace d by x, this gives the formula

J(x) = [lc) + Rolx). Ro(x) = ["(t){x — ).

Taylor’s Formula is a generalization of the Mean Value Theorem which gives the
nth Taylor remainder.

TAYLOR'S FORMULA

Suppose the (n + 1)st derivative [T 1) exisis for all t between ¢ and x.

Then
e e,
Jx)=fle) + fleyx —¢) + fj(ff)(.\‘ -+t L”‘(()(A\‘ — ¢y + R, (x)
4 L A/'(n+l)([”) ‘ o
where R (x) = D) (x — ¢

for some point t, strictly between ¢ and X.

Notice that the remainder term looks just like the (n + 1)st term of a Taylor
polynomial except that /" )¢) is replaced by f®* (1)

When ¢ = 0 Taylor’s Formula is sometimes called MacLaurin’s Formula.

Taylor’s Formula can be used to get an estimate of the error R,(x) between
f(x) and the Taylor polynomial P(x). For example if

I./-(”+ l)([)l S j\/jn+ 1
for all ¢+ between ¢ and x. then we obtain the error estimate
1\411 +1
(n + D!

Taylor polynomials with the error estimate are of great practical value in obtaining
approximations. In the next example we use Taylor’s Formula to approximate the
value of e.

n+1

IRN(X)I = I'\‘ - Cl .

EXAMPLE 2 Find MacLaurin's Formula for f(x) = ¢*.
The nth derivative is ["(x) = ¢, f"(0) = I. MacLaurin’s Formula is
X \ \An +1

+ o+ 4 =+ R(x) R(x) = e~
! ! ) al ¢ (n+ 1!
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for some 1, between 0 and x. For 7 between 0 and x the value of ¢ is always
less than or equal to 3™, for

e < el < 3l

We therefore have the formula

2 n ,X,"+ 1

3) =X bt }% Y R(x),  R(x) < 3.

2! (n+

The formula (3) can be used to approximate e®. Let us set x = | and approxi-
mate e. The error estimate is now
lxln+ 1 3

b, 70—
3 m+ D! @+ DY

; Approximate value for e Error estimate
1 1 1 3
! e — A

n I/n! l+1+2!+3!+ +”! I
2 0.500000 2.500000 0.500000
3 0.166667 2.666667 0.125000
4 0.041667 2.708333 0.025000
5 0.008333 2.716667 0.004167
6 0.001389 2.718056 0.000594
7 0.000198 2.718254 0.000075
8 0.000025

This compares with e = 2.718282.

EXAMPLE 3 Find MacLaurin’s Formula for f(x) = sin x. The derivatives are
f(x) =sinx =0
f(x) = cos x S0y =1
f"(x) = —sin x " =0
f3x) = —cos x B0y = —1
f¥(x) = sin x F90) =0
F¥x) = cos x SO0 =1

MacLaurin’s Formula for 2n terms is

¥3 xS X7 2n—1
. - o A _ln—l_— R x),
Sinx = x — 23+ o7~ o+ + (-1 (2’1_1)!'*‘ 2u(X)
2n+1
R2n(x) =('—1) CcOos tm.

For all ¢, |cos t| < 1, so we have the error estimate

Ix,2n+1

IR3,(x)| < T
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MacLaurin’s Formula can be used to approximate sin x (with x in radians)
when x is close to zero. We approximate sin (18°) as follows.

x = 18° = 110 ~ 0.31415927 radians.

S2n— 1

. | Error estimate
n (=1 ! (*2*”4_7)[ ! Approximate value of P,,(x) | fx)2" 20 4 1)

1 J 0.31415927 0.31415927 0.00516771
2 | —0.00516771 0.30899156 0.00002550
3] ~0.00002550 0.30901706 0.00000006

Thus sin (18°) ~ 0.3090171 to seven places.

The proof of Taylor’s Formula uses the following generalized form of the
Mean Value Theorem.

GENERALIZED MEAN VALUE THEOREM

Suppose f and g are differentiable at all t between ¢ and d, and that g'(t) # 0
Jor t strictly between ¢ and d. Then

flte)  f(d) = f(0)

glte)  gld) — glo)

or some point t, strictly berween ¢ and d.
) /2 to ¥

This theorem can be illustrated graphically by plotting the parametric
equations x = g(t), y = f(t) in the (x, y) plane, as in Figure 9.10.3,

If f(c) = 0 and g(c¢) = 0, the formula in the theorem takes on the simpler
form

Sto) _ f(d)
glto)  gd)’

This is the form which will be used in the proof of Taylor’s Formula.

y

Sd) ~f(o)

|

t=c¢

P—‘g(d) - g(C)-*,

x=g(), y=1(1)

Figure 9.10.3
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PROOF OF THE GENERALIZED MEAN VALUE THEOREM Introduce the new
function

h(t) = f(e)(g(d) — g(c)) — g(O(f(d) — f(c))

Then k(1) is also differentiable at all points between ¢ and d. Furthermore, at
the endpoints ¢ and d we have

= f(c)g(d) — fld)glc) = h(d).

We may therefore apply Rolle’s Theorem, whence there is a point ¢, strictly
between ¢ and d such that #'(t,) = 0. Differentiating h(t), we get

H(t) = f(t)(g(d) — glc)) — gO)(f(d) — f(c).
Therefore at t = ¢,
0= f'(to)(gld) — gl)) — gt)(f(d) — f(c)).

2'(t) is never zero. Also, g(c) # g(d) because otherwise Rolle’s Theorem would
give a ¢ with g'(r) = 0. We may therefore divide out and obtain the desired
formula

['(to) _ S(d) = f(o)
glto)  gld) —gle)

PROOF OF TAYLOR'S FORMULA Let F(x) = R,(x), G(x) = (x — o)"" L.

Then F(x) = f(x) — P(x). f(x) and the nth Taylor polynomial P,(x) have the
same value and first n derivatives at x = c. Therefore

Fle)=F(¢)=F'(¢c)=-- = F"c) = 0.
We also see that
Gle)=GCG()=GCG"c)=--=G"c)= 0.
Using the Generalized Mean Value Theorem n + 1 times, we have
Filty) f(_x)

for some ¢, strictly between ¢ and x;

G'lto)  G(x)
F(ty) _ F(t)

—— = for some ¢, strictly between c and ¢,;
G'(t)  Glto) ’

F(n+ 1)([71) _ F(“)(tn—l)

G0y T G for some ¢, strictly between c and ¢, _,

F(n+ 1)(1,") B _F@

It follows that m = G(x)

Either
X<lg<typ<--<t,<c OF X>tg>1 > >1,>¢
so t, is strictly between ¢ and x. The (n + 1)st derivatives of F(t) and G(r) are

F(,,+])(t) — _f(n+1)(t) _ O, G(n+1)(t) — (n + ])'
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Substituting, we have

S R

n+ 1! (x=ontv

and Taylor's Formula follows at once.

PROBLEMS FOR SECTION 9.10

In Problems [-8. find MacLaurin's Formula for f(x). and use it to approximate f(3) within 0.01.
(If a hand calculator is available, the approximations should be found within 0.0001.)

1

~ U W

J{x) = cos x 2 J(x) = sinh x
f(x) = sin(2x) f(x) = 100e”
f(x) = sin x cos x fix)= \/T::
S0 = (4 4 x)772 S = (1 = x)'73

[--I - N 'S

In Problems 9-18 find the first two nonzero terms in MacLaurin’s Formula and use it to approxi-
mate [ (3).

9
11
13

15

17

19
20
21

22

f(x)=tanx 10 f(x) =secx
f(x) = arcsin x 12 f(x) = sin (e%)
() = In(1 + sin x) 14 f) = J/x + 1
f o di 16 f sin (12) dt
0 0
f “sin(In (1 + 1) di 18 f " aresin (¢2) dr
(4] (]

Find Taylor’s Formula'for f(x) = ¢* in powers of x — 2.
Find Taylor’s Formula for f{x) = In x in powers of x — 10.

Find Taylor’s Formula for f{x) = x* in powers of x — 1, where p is a constant real
number.

Find Taylor’s Formula for f(x) = sin x in powers of x — n.

TAYLOR SERIES

DEFINITION

If we continue the Taylor polynomial (by adding three dots at the end) we
obtain a power series

’ (m)
SO+ 110 -+ % ey %fﬂ(x e
I
:ZO HI ( - C) '

This series is called the Taylor series for the function f(x) about the point
X =
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The Taylor series about the point x = 0 is called the MacLaurin series,

" )
fO) + (0 +%)—)x2 + -+ I#

X" 4

At x = ¢ the Taylor series about the point ¢ converges to f(c). But we have
no assurance that the Taylor series converges to f(x) at any other point x. There are
three possibilities and all of them arise:

(1) The Taylor series diverges at x.

(2) The Taylor series converges but to a value different than f(x). (For an
example, see Problem 28 at the end of this section.)

(3) The Taylor series converges to f(x); i.e., f(x) is equal to the sum of its
Taylor series.

Theorem 1 shows that if we already know a function f(x) is the sum of a power
series, then that power series must be the Taylor series of f(x).

THEOREM 1

Suppose f(x) is equal to the sum of a power series with radius of convergence
r>0,

o

fx) = afx — o
n=0
Then the power series is the same as the Taylor series for f about c. In other
words, a,, is just f™(c)/n! forn =0,1,2,....

Discussion A function which is equal to the sum of a power series in x — ¢ (with
nonzero radius of convergence) is called analytic at ¢. The theorem shows that
every analytic function is equal to the sum of its Taylor series.

PROOF Since power series can be differentiated term by term within its interval of
convergence, all the nth derivatives f™(c) exist. Let us compute f*(x) and

set x = c.
S0 = 3 afx = o, 1) = 4,
S = ¥ nas— ey, 10 = a
700 = Z nn — Dayx — o2, =2,
Fr0) = 3w — 1n — 2ayfx ~ o, £7(@) = 3ay

W

g 0

f(k)(x) — Z n(n _ 1) .. (n —k + I)a,,(x — c)"_k, f(k)(c) = k!ak.

n=k

Thus for each n,

a, = f*(c)/n!,
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and the original power series is the same as the Taylor series of f{(x),

i afx — cf = i )

n=0 n=0 7!

(x — o).

EXAMPLE 1 Let f(x) be a polynomial in x — ¢,
J(X) = g + @,(x = &) + oo + a,x — ¢

This is just a power series with all but the first n + 1 coefficients equal to
zero. So by Theorem 1, the Taylor series of the polynomial is just the poly-
nomial itself followed by infinitely many zeros,

ag+a(x —o)+ -+ ax—c"+0+0+ .
We can also see this directly from Lemma 1 of the last section, namely

)

m!

= a, for m < n.

Here is a review of the power series obtained ecarlier in this chapter. By
Theorem 1, they are all MacLaurin series.

|
@ TR e S TR &
1 2 3, .4
(2) 1+x=1—x+x - x4 X" - x| <1
1
3) 1_2x:1+2x+22x2+23x3+24x4+..., X <3
.2 3 4
@ (1 —x)=-x-2 -5 - %, X<l
1
®) 1+\'2:1_x2+x4_x6+x8“"', x| <1
XXt X7 X
6 tanx =x — — 4+ — — 4 — ...
) arctan x X 3+S 7+9 , |X|<1
1
) (I~x)2=1+2X+3x2+4x3+5x4+..., Ix] < 1
23 4
®) =l b X b b b
2! 4!
s x2 x3 x*
® e :1—X+E—§+4-!_m
Xz x4 x6 x8
(10) coshx:l+a+m+a+a+...
. x3 x5 x7 X9
an smhx=,\+§+g—!+ﬁ+a+...
4 6 .8
1z) PR G B A N
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x ) x3 xS x7 xg
13 At =x - — — ...
) Le S TS TR PE TR PP Y
1+ x 2x3 2x5 2x7T 2x°
14 = L) - —_— —_— - 1
(14) ln(_)2V+3+5+7+9+,|x|<v
At the end of this section we shall add three important power series to our
list :
. x* x* X7 x°
1s) sinx =x -+ -GG
¥ x* x5 8
(16) cosx=1—5+m._a+§_
-1 - p -2
I B R R R

where p is constant.

The last series is called the binomial series.
It is interesting to observe that the derivatives of an analytic function at

zero can be read directly from the MacLaurin series. Sometimes it is quite hard to
compute the derivative directly but easy to take it from the MacLaurin series.

EXAMPLE 2 Find the sixth derivative of f(x) = 1/(1 + x*) at x = 0.

If we try to differentiate directly we will be hopelessly bogged down at about
the third derivative. But from the MacLaurin series we see that

1
1+x2=1—x2+x4—x6+---,
(6)0

f6l()x6=_x6’
190 q
6!

O0) = —6! = —720.

Suppose we are given a function f(x) and a point ¢, and we wish to represent
f(x) as the sum of a power series in x — ¢. This will be possible for some functions
(the analytic functions), but not for all. Theorem 1 shows that if there is such a power
series it is the Taylor series for f(x). Thus we use the following steps to represent
f(x) as a power series.
Step 1 Compute all the derivatives f“c),n = 0,1,2,.... If these derivatives do
not all exist, f(x) is not the sum of a power series in powers of x — c.

Step 2 Write down the Taylor series of f(x) at x = ¢ and find its radius of con-
vergence i

Step 3 If possible, show that f(x) is equal to the sum of its Taylor series for
c—r<x<c+Hr.
We shall now use Steps 1-3 to obtain the power series for sin x, cos x, and

(I + x)P.
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THE POWER SERIES FORsinx
Step 17 This step was carried out in the preceding section. The values of f*(0) for
n=2012 .. are

0,1.0, - 1,0, 1,0, —1,....

Step 2 'The MacLaurin series for sin x is

X3 . .\'5 '\,7 N ,\'9 N ( 1)”71 ',211*1 N
\ —_— —_—_- —— — e J— — PR
! 51 7! 9! 2n = 1)!
\.211—1
Leth, =(—1)""1— . We use the Ratio Test,
2n — 1)
" o
lim |2 i
n->x [ b” ‘ H— % 2”(21‘[ + 1)

Therefore the series converges for all x and has radius of convergence .

Step 3 We use MacLaurin’s Formula,

X3 XS X7 #,2nf1
sinx = x — s Tttt (—1)"‘1m + R, (x),
20+
IRy (x) < (5’\7':_ 11)!
Let us show that the remainders approach zero. We have
Iimﬂzo lim R,,(x) =0
w20+ 1! T e '

Since the even terms are zero, R,,  ;(x) = R,,(x). Therefore

lim R,(x) = 0.
n—=>x
Conclusion: Since the remainders approach zero, the MaclLaurin poly-
nomials approach sin x. So for all x,
) XX X X
sinx =x — — + ST

31051 71 91

THE POWER SERIES FOR cos x

This power series can be found by the same method as was used for sin x. However,
it is simpler to differentiate the power series for sin x.

d(sin x)
L = cos x.
dx
o 3x% 5yt A% OxB
e TR TR TR TH
g X2 oxt x% N8
COS X — j + E ) + Yl

THE BINOMIAL SERIES FOR (1+ x)?

Let us first consider the case where p is a nonnegative integer m, whence (I + x)"isa



9.11 TAYLOR SERIES 559

polynomial. The Binomial Theorem states that for nonnegative integers m,

m(m — 1)
2!
mm —1)---(m — k + 1)

k!

(Cl + b)m = q" + Wl(lm_lb + am—ZbZ

am—kbk + oo+ bm.

Setting @ = 1 and b = x we obtain a finite power series for (1 + x)™,

mim — 1) ,
2
N m(m — 1) -];fm —k+ l)x" N

I+ xy"=14+mx+

. + xm

When p < 0,and when p > 0 but p is not an integer, we shall see that (1 4 x)?

is the sum of a similar power series but with infinitely many terms. Let g(x) = (1 + x)*.

Step 1

Step 2

Step 3

By differentiation we see that
g'() = p(l +xp 1,
g"(x) = plp — (1 + x)"~2,
g"x)=pp = 1)---(p—n+ DA+ xy"
Thus at x = 0, g0) =1,
g'(0) = p,
g"0)=plp — 1),
g0y =plp—1)-(p—n+1)

The MacLaurin series is

pp —1) . y = Dp =t D),

JO) =14 px + =, + - . AT
We use the Ratio Test.
Guts] _ ’p(p -1 (p — n)fn + D ] = p — nlIXI
a, plp —1)---(p — n + L)n! n+1""
tim| % = im lp =l ix] = |x].
n—x<| a, now N4 1

Therefore the series converges for |x| < 1, diverges for |x| > 1, and has
radius of convergence r = 1. We denote the sum by f(x).

We wish to show that the sum f(x)isequalto (1 + x)”for | x| < 1. Inthis case,
the MacLaurin Formula does not give the needed information (see Problem
27 at the end of this section). Instead we show that the quotient f(x)/(1 + x)?
has derivative zero for |x| < 1. We have .
d_. - S0 + x) = pf(x)
il 1 =2 T WA
L0+ )77 TR

It suffices to show that
S+ x)=pf(x) or [f(x)+ x'(x) = pf(x).
Let us compute f(x) and xf'(x).
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f(x)=p+plp — Dx + sz

+ pp — 1)(1)37 2)(p — 3)'\,3

4o

xf'(x) = px + plp — Dx* + p(p—_%p;za),ﬁ +

Adding the power series, we have

S+ 50 = p - pllp — )+ 1+ P2 D1 2y 4 e
+ W[Q) 34+ 3]+
:pl:] +pX+MX2 +M—_2')x3 + jl
21 31
— 0
This L)+ = o0, U+ 0= 0

We conclude that for some constant C,
J( + x)77 = C.

Atx =0, f(x) =1= (1 + x)7?. Hence C = . This shows that (I + x)? =
fx)for |x] < L.
Thus we have the binomial series

p—1 —Dp -2
(1+x)”=1+px+p—(pT)x @%—),\3—%--, x| < 1.

EXAMPLE 3 Find the power series for arcsin x.
Recall that for |x| < 1,

arcsin x = J f (1 — )~ 4r
\/1 - t2

We start with the binomial series with p = —4 and obtain the following
power series by substitution and integration. They are valid for |x| < 1.

1 1 3V
—-1/2 X )
(1 + X) 2= 1 - 5,\ + (—2)(—2) 2—!,‘\2 —

1e3eoe(2n—1)
x

+(—1y .
(=1 2! +
_y | 3 130 2n — 1)
1 — x I/2=1 oy 7/2 o
( & +2l+8\ * * 2! o
_ 1 3 1 3 ..... (2”_1)
1—,2 1/2:1 _y2 x4 2n .
( x?) toxt x4 i +
. | 3 1 e (20 — 1
arcsmx=x+fx3+_x5+...+___¢’zn+1+_“

6 40 2'm12n 4+ 1)



PROBLEMS FOR SECTION 9.11

AN U R W N =

In Problems 7-24, find a power series converging to f(x) and determine the radius of convergence.

Find 7®(0) where f(x) = 1/(1 — 2x?).

Find fY0) where f(x) = x/(1 + x?).

Find 1X0) where f(x) = xe*.

Find £®Y(0) where f(x) = cos (x?).

Find f(0) where f(x) = x*In (1 + x).

Find f©X0) where f(x) = (arctan x)/x if x 0, and f(0) = 1.

EXTRAPROBLEMS FOR CHAPTER 9

7 flx) =e?

9 o0 =J/1+2x

1 f(x) = COS\/;

13 f(x)=s’i-2'E ifx#£0, f0)=1

14 f()<)=1—_x[’;isf ifx#0, f(0)=3.
1s [ =1-x

17 f(x)= J: sin (£%) dt

19 f(x) = jxt'z sinh (t?) dt

0

21 fx)= J.:(l + )13 dr

X 7 t z4

23 1) =f gn—dz 2 1) =f arcsin (1) dt
0 0

25 Find the Tayior series for In x in powers of x — 1.

26 Find the Taylor series for sin x in powers of x ~ w/4.

0 27 Use Taylor’s Formula to prove that the binomial series converges to (I + x)? when
~4 < x < 1. (The proof in the text shows that it actually converges to (1 + x)? for
-l<x<l1)

O 28 Let

Show that f*(0) = 0 for all integers n; so for x # 0 the MacLaurin series converges but
to zero instead of to f(x).

EXTRA PROBLEMS FOR CHAPTER 9

8 f(x) = x2e*
10 f) =1 — a7
12 f(x) = arcsin (x*)
x
16 fx) = m{

18 f(x)=f t~tsintdt
4}

20 f(x):jxln(1+t2)dt
0

2 Fx) = f JT—dt
0

if x #0,

0 ifx=0,
f(x) ={e_1/xz

Determine whether the sequences 1-5 converge and find the limits when they exist.

1)1
1 a,,=(l+?)

3 a, = (1 + n)ti

2 an=(1+L)
N
4 a,=n!— 10"

O 5 a, = n"/m! (Hint: Show thata,,, = 2a,)

561
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Determine whether the series 6-12 converge and find the sums when they exist.

6 l+24+F+ - +6)+-
7 I — 11+ L1t — 1111 + L1t — -+
8 TR [N i I W o
g 8§ 27 27 64 (413
9 64+19+3+5+ 55 tes+ -+ @+
Ky L 75
10 11 —
n=0 5” ,,go 6"
z 2n—3
2 —
1 ,,;05n+6

Test the series 13-23 for convergence.

z 3n—=17 - 5
14 S N
2o 10 + 9 ,,; 6n* +n—1

xL \/; w
15 =Y - 16 ne™"
,,21 L+ 2/n+3n Z

13

17 Z (In ()™ 18 Z “lna

19 > Inapt 20 Z 1"/ In n
n=2 =

21 Z (_ 1)"(1 _ %) 22 Z n —I/n
n=1 =

o€ 1/n

23 S (-1t
n=1 n

24 Test the integral fcfe“/‘;dx for convergence.

25 Test the 1'ntegralj§L (In x)7* dx for convergence.

26 Approximate the series Y * | (—1)"(1/n?) to three decimal places.

Test the series 27-30 by the Ratio Test.

=z at = 2"(n!)
— 28
27 nZl ()? ‘)2 IIZI nn
n" x 100" (n!)y?
30
29 Z n; Gn)!
Find the radius of convergence of the power series in Problems 31-35.
31 Z 2m3x" 32 Y onT
n=1
33 i X 34 i x"/nl/n"
azy () S
& nl
3 —., 2n
5 nZl ”” Y
36 Find the interval of convergence of Zn";z {x + 10y"/(In n).
37 Find the power series and radius of convergence for f(x) and {3 f (1) dt where

f(x) = i n(n + 1)P2nx",

n=1

38 Find a power series for f(x) = 1/1 + 2x°) and determine its radius of convergence.



39

40

41
42
43

45

50
51

0O

EXTRA PROBLEMS FOR CHAPTER 9

Find a power series for
* arctan (t°
1o = [y
0]

and determine its radius of convergence.

172 arctan (tH

Approximate J dt within 0.0001.

(0]

Approximate |1 rIn(I — ) dt within 0.001.

Approximate e'/* within 1077,

Approximate {1/> &' dr within 0.01.

Find a power series for (1 + x>)~ 3?2 and give its radius of convergence.

Find a power series for {3 (1 + 2:%)~ %3 di and determine its radius of convergence.

Prove that any repeating decimal
0.b,by...0,0,b,...0,bb,...b,...

(where each of by, ..., b, isa digit from the set {0, 1,...,9})is equal to a rational number.
Approximately how many terms of the harmonic series 1 + 5 + 3+ -+ I/n + -+
are needed to reach a partial sum of at least 50?7 Hint: Compare with j'" (1/6) dr.
Suppose y . | @, = o and ) 7. b, iseither finite or c0. Prove that ) ”  (a, + b,) = .
Suppose Z;‘f: ; @, 18 a convergent positive term series and anl b,isa rearrangement of
Z;O: | a4, Prove that Z“C b, converges and has the same sum. Hint: Show that each
finite partial sum of ) * . a, is less than or equal to each infinite partial sum of 3 * , b,
and vice versa.
Give a rearrangement of the series I — % + 4 — % + - which diverges to — =%
Suppose Zj‘f:l a, =) b,=8anda, <c, < b, forall n. Prove that Z,’ftl c, = S.
Prove the following result using the Limit Comparison Test.
Let Z” a, and Y ® b, be positive term series and suppose lim (a,/b,) exists. If

, b, converges then ) ™ | a, converges. If ) * | a, diverges then Z’I’;l b, diverges.
Multlphcatlon of Power Series.
Prove that if f(x) =} ,a,x" and g(x) = ) =, b,x" then f(x)g(x) = Z:“:O ¢, x" where

¢, =agbh, +ab,_ +--+a, b+ ab,.
Hint : First prove the corresponding formula for partial sums, then take the standard
part of an infinite partial sum.
Suppose f(x) is the sum of a power series for |x| < r and let g(x) = f(x?). Prove that for
each n,
0 if » is odd,

@) —
£"0 ——— Q) ifniseven.

(ﬂ/2)'
Show that if p < —1 then the binomial series

1+px+p—(p2! )2 +———p(p~13)'(p_2) 34

diverges at x = 1 and x = — 1. Hint: Cauchy Test.

If p > 1, the series converges at x = | and x = — 1. Hint: Compare with Y *_, 1/n%

Note: The cases —1 < p < | are more difficult. It turns out that if —1 < p <0 the

series converges at x = | and diverges at x = —1. If p = 0 the series converges at

x=1land x = —1.

Prove that e is irrational, that is, e # a/b for all integers a, b. Hint: Suppose e = a/b,
V=bja.Letc=e"' -3 (—1y/nl Then|c| = l/a! but || < 1/a + 1)..
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