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0 Introduction: Existence and Compactness

Mathematicians often prove that certain objects exist, i.e., that certain sets are not
empty. The interest in such a task may come from various sources, for example:
a physicist may need a model so that he can give a formal treatment to a theory
which is intended to capture a portion of reality; or a purely mathematical question
may arise regarding the existence of an abstract mathematical entity. Experience
tells us that existence problems in mathematics are often difficult.

Let’s take an informal look at a common way of solving existence problems in
analysis (or in a metric space): We want to show that within a set C there exists an
object x with a particular property φ(x), that is, (∃x ∈ C)φ(x). If we cannot find a
solution x directly, we may proceed to find “approximate” solutions; we construct
an object which is close to C, but perhaps not in C, and which almost has property
φ. What is usually done is the following: define a sequence 〈(xn)〉 of approximations
which get better and better as n increases; if we do things right the sequence has a
limit and that limit is the desired x.

This is easier said than done. Existence proofs often involve complicated argu-
ments which verify that a sequence of approximations converges in some sense. The
most useful tool in existence proofs is the family of compact sets. Almost everything
behaves well when restricted to a compact set. Every nonempty compact set of reals
has a maximum and minimum, the continuous image of a compact set is compact,
every sequence in a compact metric space has a convergent subsequence, a family of
compact sets which has the finite intersection property has nonempty intersection,
and so on.

A simple example of an existence proof by approximation is Peano’s existence
theorem for differential equations: One first constructs a sequence of natural ap-
proximations (i.e Euler polygons). Then, using Arzela’s theorem, a consequence
of compactness that guarantees that under certain conditions a sequence of func-
tions converges, one shows that the limit exists and is precisely the solution wanted.
Written in symbolic form, the theorem is a statement of the form

(∃x ∈ C)(f(x) ∈ D).

The approximation procedure gives us the following property:

(∀ε > 0)(∃ ∈ Cε)(f(x) ∈ Dε).

Here Cε is the set {x : ρ(x, C) ≤ ε} with ρ the metric on the space where C lives,
and similarly for Dε. Then, if we choose a sequence εn approaching 0, we obtain
a sequence of approximations. The compactness argument (Arzela’s theorem) gives
the existence of the limit.
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In this paper we present a result (called the Approximation Theorem) which
intuitively says “it is enough to approximate”, or “if you can find approximate
solutions then you can conclude that an exact solution exists without going through
the convergence argument.” In the above notation, the theorem states that:

If (∀ε > 0)(∃ ∈ Cε)(f(x) ∈ Dε) then (∃x ∈ C)(f(x) ∈ D). (1)

The reader should have no problem showing that condition (1) holds in the
following case: C is a compact subset of a complete separable metric space M, D is
a closed subset of another complete separable metric space N , and f is a continuous
function from M into N .

The main point of this paper is that our Approximation Theorem goes beyond
the familiar case of convergence in a compact set. First, we work in metric spaces
that are not necessarily separable. Second, we identify new families C,D and F of
sets C, D and functions f , such that (1) holds. These are the families of neocompact
sets, neoclosed sets, and neocontinuous functions. The family of neocompact sets
is much larger than the family of compact sets, and provides a wide variety of new
opportunities for proving existence theorems by approximation.

Here we shall concentrate on a particular case of interest in probability theory
which serves to illustrate the usefulness of our approach. The setting is the general
theory of processes where stochastic processes live on adapted spaces: probability
spaces (Ω, P,G,Gt)t∈B where P is a probability measure on a σ-algebra G,B is
the set of dyadic rationals in an interval [0, T ) where 0 < T ≤ ∞, and (Gt) is a
filtration or flow of σ-subalgebras of G. We work with the metric space L0(Ω,M)
of all P -measurable functions from Ω into a complete separable metric space M ,
identifying functions which are equal P -almost surely, with the metric of convergence
in probability.

The key concept we introduce is that of a neocompact subset of a space L0(Ω,M).
The notion of a neocompact set is a generalization of the notion of a compact set
which, as explained above, is the key in our approach to the solution of existence
problems in analysis. The motivation for this new concept comes from nonstandard
analysis and the results that have been obtained using nonstandard techniques in
stochastic analysis. But do not be discouraged by the word “nonstandard”; it only
appears in this paragraph. All the concepts, results, and proofs in this paper are
presented in conventional terms, which require only a familiarity with basic mea-
sure theory and topology. Nonstandard analysis’ main contribution to probability
theory is the introduction of “very rich” spaces where many existence proofs can be
simplified. With neocompact sets we are able to define the notion of a rich adapted
probability space in conventional terms. The proof that such spaces exist, however,
makes use of nonstandard analysis and will be postponed to the paper [9]. In that
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paper we will give a detailed nonstandard background to what is done here and
generalize the current treatment to arbitrary metric spaces.

In this paper we develop a theory of “neometric spaces”, which are metric spaces
endowed with a collection of neocompact sets. After laying the foundations of the
theory we dedicate our efforts to the neometric theory of sets of stochastic processes
and stochastic integrals. As a first illustration of our approach, we show how a whole
new class of optimality problems can be treated and solved in rich probability spaces.
A typical result of this type is that for every continuous stochastic process x on a
rich adapted space Ω there is a Brownian motion w on Ω which best approximates x
(in the metric of convergence in probability with the sup metric on paths). We then
illustrate the use of the Approximation Theorem with some nontrivial applications
in the theory of existence of solutions of stochastic differential equations.

In many cases, an existence proof using neocompact sets is an improvement of
a conventional weak convergence argument, often producing a stronger result with
a much simpler proof. The reason for this is that the set of measures on the metric
space M induced by the elements of a neocompact subset of L0(Ω,M) is always
compact in the topology of weak convergence. The original neocompact set captures
more information than the compact set of measures induced by its elements, and
the neometric machinery provides a framework for carrying this extra information
along in a proof by approximation.

The notion of a neocompact family introduced here is a generalization of the
family of neocompact sets introduced in the paper [14]. In that paper a notion of
forcing analogous to forcing in set theory was introduced for statements about ran-
dom variables, and a method of proving existence theorems on rich adapted spaces
by forcing was developed. This paper is the result of a long series of refinements
and simplifications of the methods in [14]. Our aim has been to extract the es-
sential features needed for applications to existence theorems and to present them
in a form which is understandable and can be used without any background from
mathematical logic.

The neometric methods developed here have also been successfully tested out
in another setting in the paper [7], where they are used to improve the existence
theorems of Capiński and Cutland [6] on stochastic Navier-Stokes equations.

In Section 1 we present the basic probability concepts and notation used in
this paper. The central notions of a neocompact set and a rich adapted space
are introduced in Section 2. Neocompact sets, neoclosed sets, and neocontinuous
functions are studied in a general setting in Sections 3 and 4. In Section 5, their study
is continued in the context of probability theory. The Approximation Theorem is
proved in Section 6. In Sections 7 through 11, a we build a library of neocontinuous
functions in stochastic analysis which will later be used in applications. In Section
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12, our method is illustrated by proving several optimization theorems. The use of
the Approximation Theorem is illustrated in Section 13 with a collection of existence
theorems for stochastic integral equations.

We wish to thank Nigel Cutland and Douglas Hoover for valuable discussions in
connection with this work.

This research was supported in part by Colciencias, the National Science Foun-
dation, and the Vilas Trust Fund.

1 Preliminaries

Let 0 < T ≤ ∞ and let B be the set of dyadic rationals in [0, T ). We say that
Ω = (Ω, P,G,Gt)t∈B is an adapted probability space if P is a complete probability
measure on G,Gt is a σ-subalgebra of G for each t ∈ B, and Gs ⊂ Gt whenever s < t
in B. Let Ω be an adapted probability space which will remain fixed throughout
our discussion. For s ∈ [0, T ) we let Fs be the P -completion of the σ-algebra
⋂{Gt : s < t ∈ B}. Then the filtration Fs is right continuous, that is, for all
s < ∞ we have Fs =

⋂{Ft : s < t}. We say that P is atomless if any set of
positive measure can be partitioned into two sets of positive measure, and that P is
atomless on a σ-algebra F ⊂ G if the restriction of P to F is atomless.

Throughout this paper we let M = (M,ρ), N = (N, σ), and O = (O, τ) be
complete separable metric spaces. L0(Ω,M) is the set of all P -measurable functions
from Ω into M , identifying functions which are equal P -almost surely. ρ0 is the
metric of convergence in probability on L0(Ω, M),

ρ0(x, y) = inf{ε : P [ρ(x(ω), y(ω)) ≤ ε] ≥ 1− ε}.

The space of Borel probability measures on M with the Prohorov metric

d(µ, ν) = inf{ε : µ(K) ≤ ν(Kε) + ε for all closed K ⊂ M}

is denoted by Meas(M). It is again a complete separable metric space, and con-
vergence in Meas(M) is the same as weak convergence. Each measurable function
x : Ω → M induces a measure law(x) ∈ Meas(M), and the function

law : L0(Ω,M) → Meas(M)

is continuous. Moreover, if the measure P is atomless on Gt, then for each M the
function law maps the set of all Gt-measurable x ∈ L0(Ω,M) onto Meas(M). A set
C ⊂ Meas(M) is said to be tight if for each ε > 0 there is a compact set K ⊂ M
such that µ(K) ≥ 1− ε for all µ ∈ C. The following result is a useful condition for
compactness in Meas(M).
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1.1 (Prohorov’s Theorem) A set C ⊂ Meas(M) has compact closure if and only
if there are sequences 〈bm〉 of reals and 〈Km〉 of compact subsets of M such that
bm → 1 and

C ⊂
⋂

m
{µ : µ(Km) ≥ bm}. (2)

Moreover, the right side of (2) is compact, because the set {µ : µ(K) ≥ b} is
closed in Meas(M) for each closed set K and real b. Good references for the notions
and results just introduced are [8] and [4].

We consider products of metric spaces M and N so that graphs of functions
from M into N can be treated as subsets of the product space. The product M ×N
of two metric spaces (M, ρ) and (N, σ) is defined as the cartesian product with the
metric ρ× σ given by

(ρ× σ)(x, y) = max(ρ(x1, y1), σ(x2, y2)).

Finite products are defined in a similar way.
We identify the points of the spaces L0(Ω,M)× L0(Ω, N) and L0(Ω,M ×N) in

the natural way. The metrics ρ0× σ0 and (ρ× σ)0 for these spaces are different but
determine the same topology, because

(ρ0 × σ0)(x, y) ≤ (ρ× σ)0(x, y) ≤ ρ0(x1, y1) + σ0(x2, y2).

2 Neocompact Sets

We begin this section by introducing the main new concept of this paper, the notion
of a neocompact set. A family of neocompact sets is a generalization of the family
of compact sets, and retains many of its properties. We shall then look at three
special cases of this notion, which are found by considering complete separable
metric spaces, probability spaces, and adapted probability spaces. We use script
letters M,N ,O for complete metric spaces which are not necessarily separable.

Definition 2.1 Let M be a collection of complete metric spaces M which is closed
under finite cartesian products, and for each M ∈ M let B(M) be a collection of
subsets of M, which we call basic sets. By a neocompact family over (M,B)
we mean a triple (M,B, C) where for each M ∈ M, C(M) is a collection of subsets
of M with the following properties, where M,N ,O vary over M:

(a) B(M) ⊂ C(M);

(b) C(M) is closed under finite unions; that is, if A,B ∈ C(M) then A∪B ∈ C(M).
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(c) C(M) is closed under finite and countable intersections;

(d) If C ∈ C(M) and D ∈ C(N ) then C ×D ∈ C(M×N );

(e) If C ∈ C(M×N ), then the set

{x : (∃y ∈ N )(x, y) ∈ C}

belongs to C(M), and the analogous rule holds for each factor in a finite Carte-
sian product;

(f) If C ∈ C(M×N ), and D is a nonempty set in B(N ), then

{x : (∀y ∈ D)(x, y) ∈ C}

belongs to C(M), and the analogous rule holds for each factor in a finite Carte-
sian product.

The sets in C(M) are called neocompact sets.
In particular, we shall call (M,B, C) the neocompact family generated by (M,B)

if C(M) is the smallest collection of sets which satisfies (a)–(f).

The classical example of a neocompact family is the usual family of compact sets
in metric spaces. It is not hard to see that the family of compact sets is closed under
all of the rules (a)–(f). Thus if B(M) is the family of all compact subsets of M,
then the family of neocompact sets C(M) generated by (M,B) is just B(M) itself,
i.e. every neocompact set is compact.

In fact, for the neocompact family of compact sets, C(M) is closed under ar-
bitrary intersections, and condition (f) holds for arbitrary nonempty sets D. One
reason that compact sets are useful in proving existence theorems is that they have
the following property:

If C is a set of compact sets such that any finite subset of C has a nonempty
intersection, then C has a nonempty intersection.

In many cases, all that is needed is the following weaker property.

Definition 2.2 We say that a neocompact family (M,B, C) has the countable
compactness property if for each M∈ M, every decreasing chain C0 ⊃ C1 ⊃ · · ·
of nonempty sets in C(M) has a nonempty intersection

⋂

n Cn (which, of course,
also belongs to C(M)).
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Our main point in this paper is that there are important additional cases where
the neocompact sets have the countable compactness property, and in such cases
the neocompact sets can be used to prove existence theorems in the same way that
compact sets are used.

We now turn to a second example, based on probability spaces.

Definition 2.3 Let Ω = (Ω, P,G) be a probability space, and let M be the family
of all the metric spaces M = L0(Ω,M) where M is a complete separable metric
space. Given sets B ⊂ M and C ⊂ Meas(M), we let law(B) = {law(x) : x ∈
B}, law−1(C) = {x ∈ M : law(x) ∈ C}. A subset B of M will be called basic,
B ∈ B(M), if either

(1) B is compact, or

(2) B = law−1(C) for some compact set C ⊂ Meas(M).

We say that Ω is a rich probability space if the measure P is atomless and
the neocompact family generated by (M,B) has the countable compactness property.

We shall see later that rich probability spaces exist, but that the usual classical
examples of probability spaces are not rich in the sense of this paper.

Recall that the image of a compact set B by a continuous function is compact,
while the inverse image of a compact set C by a continuous function is closed but
need not be compact. The following example shows that if the measure P is atomless
and M has more than one point, there will always be compact sets C ⊂ Meas(M)
such that law−1(C) is not compact. So in this case the neocompact sets go beyond
the compact sets and we have a bigger family to work with.

Example 2.4 Let Λ = (Λ, P,G) be an atomless probability space and let N = {0, 1}.
The the space N = L0(Λ, N) is neocompact in itself but not compact.

Proof: N is basic and hence neocompact. Since Λ is atomless there is a count-
able sequence 〈Sn〉 of sets of measure 1/2 which are mutually independent. Then
the sequence 〈ISn〉 of characteristic functions of 〈Sn〉 is a sequence in N with no
convergent subsequence, so N is not compact. 2

Finally, we turn to the third example, based on adapted probability spaces.

Definition 2.5 Let Ω = (Ω, P,G,Gt)t∈B be an adapted probability space, and let
M be the family of all the metric spaces M = L0(Ω,M) where M is a complete
separable metric space. This time a subset B of M will be called basic, B ∈ B(M),
if either
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(1) B is compact,

(2) B = law−1(C) for some compact set C ⊂ Meas(M), or

(3) B = {x ∈ law−1(C) : x is Gt −measurable} for some compact C ⊂ Meas(M)
and t ∈ B.

We say that Ω is a rich adapted space if the measure P is atomless on G0, Ω
admits a Brownian motion, and the neocompact family generated by (M,B) has the
countable compactness property.

The following fact, which is of central importance to our approach, is implicit in
the paper [14] and will be proved explicitly in [9].

Theorem 2.6 Rich probability spaces and rich adapted spaces exist. 2

(In fact, in [9] we prove a stronger result which applies to stochastic processes
with values in a nonseparable metric space. Given an uncountable cardinal κ, the
notion of a κ-rich probability space or adapted space Ω is defined in the same way as
a rich space except that M is the family of all L0(Ω,M) where M is a complete metric
space with a dense subset of cardinality less than κ, and countable compactness is
replaced by the property that any family of fewer than κ neocompact sets with the
finite intersection property has nonempty intersection. Thus rich is ω1-rich. In [9]
we show that for each κ, κ-rich probability and adapted spaces exist.)

We shall see in Example 5.7 that in a rich adapted space, Gt is always a proper
subset of the intersection Ft =

⋂{Gs : s > t}. The same example will show that
rich adapted spaces would not exist if the universal projection condition (f) were
strengthened by allowing the set D to be neocompact rather than basic.

The countable compactness property is a powerful tool in proving existence theo-
rems on rich adapted spaces, because it can be applied in a wide variety of situations
to show that a set

⋂

n Cn is nonempty. In many cases, a classical existence proof
using compact sets can be generalized to get a new existence theorem using neo-
compact sets. Neocompact sets are useful because, in spite of the many properties
they share with compact sets, there are important neocompact sets which are not
compact. We have already seen one such set in Example 2.4. We shall give other
examples later, such as the set of all stopping times between 0 and 1, and the set of
all Brownian motions, on a rich adapted space.

In this paper we shall see that the class of neocompact sets for a rich adapted
space is quite extensive, and because of the countable compactness property, richness
is a very strong condition. Rich adapted spaces have plenty of room for a new
stochastic process with a desired relationship to a given stochastic process. For
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example, it will be shown in [15] that every rich adapted space is saturated in the
sense of the paper [11].

The requirements that P is atomless on G0 and that Ω admits a Brownian motion
insure that the probability space and the filtration are nontrivial. For instance, it
avoids the extreme case where Ω has only one element, in which case L0(Ω,M) is
isomorphic to M and the neocompact sets are the same as the compact sets.

Note that for a rich probability space or a rich adapted space, each finite set of
random variables is compact and hence neocompact.

The family of neocompact sets with respect to an adapted space includes the
family of neocompact sets with respect to the corresponding probability space, and
consequently any rich adapted space is rich as a probability space.

Before going on, let us show that none of the “ordinary” probability spaces
are rich. In the literature, one usually works with a probability space of the form
(M,µ,G) where M is a complete separable metric space and µ is the completion of
a Borel probability measure on the family of Borel sets G in M . Let us call such
a probability space ordinary. Each separable metric space has a countable open
basis {On : n ∈ N}. We say that a measurable set A is independent of a family
of sets S in a probability space (Λ, P,G) if

P (A ∩B) = P (A)P (B) for all B ∈ S.

In an atomless ordinary probability space, every measurable set can be approxi-
mated in probability by sets in the countable open basis, and therefore no set of
measure strictly between 0 and 1 can be independent of this open basis. The fol-
lowing theorem shows that no ordinary probability space is rich, and consequently
no ordinary adapted space is rich.

Proposition 2.7 Let Λ = (Λ, P,G) be a rich probability space. Then for every
countable family S of measurable sets there exists a set of measure 1/2 which is
independent of S.

Proof: Let N = {0, 1} be the two-element metric space, so that N = L0(Λ, N)
is the space of characteristic functions of measurable sets in Λ. Let {xn : n ∈ N} be
the set of characteristic functions of sets in S. For each k the set

Bk = {(z1, . . . , zk, y) ∈ N k+1 :

P (y = 1) = 1/2 and y is independent of {z1, . . . , zk}}
is of the form law−1(C) where C is closed and hence compact in the compact space
Meas(Nk+1). Thus B is neocompact in N k+1. Therefore the set

Ak = {y ∈ N : P (y = 1) = 1/2 and y is independent of {x1, . . . , xk}}
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is a section of the neocompact set Bk. We will show in Proposition 3.6 below that
sections of neocompact sets are neocompact, so Ak is neocompact in N . Since
the rich probability space Λ is atomless, each Ak is nonempty. Clearly the sets
Ak form a decreasing chain. Then by the countable compactness property, there
exists z ∈ ⋂

k Ak. z is the characteristic function of a set of measure 1/2 which is
independent of the family S. 2

3 General Neocompact Families

In the next two sections we study neocompact families in general. After that we
shall concentrate on the particular cases of rich probability spaces and rich adapted
spaces.

Blanket Hypothesis 1 From now on, we assume that (M,B, C) is a neocompact
family with the countable compactness property where M is a collection of complete
metric spaces closed under finite cartesian products, and for each M ∈ M,B(M)
contains at least all compact sets in M.

It will always be understood that M,N ,O are spaces in M.
We now introduce a notion analogous to that of a closed set. It is defined from

neocompactness using a property that holds in metric spaces for closed and compact
sets.

Definition 3.1 A set C ⊂ M is neoclosed in M if C ∩ D is neocompact in M
for every neocompact set D in M.

Here are some easy facts about neoclosed sets.

3.2 M is neoclosed in M.

3.3 Every neocompact set in M is neoclosed.

3.4 Finite unions and countable intersections of neoclosed sets in M are neoclosed
in M.

Proposition 3.5 If C is neoclosed in M×N and D is neocompact in N , then the
set

E = {x : (∃y ∈ D)(x, y) ∈ C}

is neoclosed in M.
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Proof: Let A be neocompact in M. Then

E ∩ A = {x ∈M : (∃y ∈ N )(x, y) ∈ C ∩ (A×D)}

is neocompact in M. 2

The next proposition shows that sections of neocompact or neoclosed sets are
neocompact or neoclosed respectively.

Proposition 3.6 If B is neocompact (neoclosed) in M×N , then for each y ∈ N
the section

A = {x ∈M : (x, y) ∈ B}
is neocompact (neoclosed) in M.

Proof: We prove the neocompact case. The set

C = {x ∈M : (∃y)(x, y) ∈ B}

is neocompact by (e). Since {y} is neocompact in N , the set C×{y} is neocompact
in M×N by (d). Then the set D = B ∩ (C × {y}) is neocompact in M×N by
(c). The desired set A is given by

A = {x ∈M : (∃y)(x, y) ∈ D},

so A is neocompact in M by (e). 2

We are now ready to define the notion of a neocontinuous function, which is
analogous to the classical notion of a continuous function. For this purpose, we
need the product of two metric spaces. Recall that the product M × N is the
metric space on the cartesian product with the product metric

(ρ× σ)(x, y) = max(ρ(x1, y1), σ(x2, y2)).

Definition 3.7 Let D ⊂ M. A function f : D → N is neocontinuous from M
to N if for every neocompact set A ⊂ D in M, the restriction f |A = {(x, f(x)) :
x ∈ A} of f to A is neocompact in M×N .

Remark 3.8 f : D → N is neocontinuous from M to N if and only if f |A is
neocontinuous from M to N for every neocompact A ⊂ D in M.

Proposition 3.9 If f : D → N is neocontinuous from M to N and A ⊂ D is
neocompact in M, then the set

f(A) = {f(x) : x ∈ A}

is neocompact in N .
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Proof: Let G be the graph f |A, which is neocompact. Then f(A) = {y ∈ N :
(∃x ∈M)[(x, y) ∈ G]}, so f(A) is neocompact in N . 2

Proposition 3.10 If f : C → N is neocontinuous from M to N , C is neoclosed in
M, and D is neoclosed in N , then

f−1(D) = {x ∈ C : f(x) ∈ D}

is neoclosed in M.

Proof: Let B be neocompact in M. Then A = B ∩ C is neocompact in M and
the graph G of f |A is neocompact in M×N . Thus f−1(D)∩B = {x ∈M : (∃y ∈
N )[(x, y) ∈ G ∧ y ∈ D]} is neocompact in M as required. 2

Corollary 3.11 If f : D → O is neocontinuous from M× N to O and b ∈ N ,
then g is neocontinuous from M to O, where g is the function with graph

G = {(x, z) : (x, b) ∈ D and f(x, b) = z}.

We call g the section of f at b.

Proof: This follows from the fact that sections of neocompact sets are neocom-
pact. 2

Corollary 3.12 For each b ∈ N , the constant function f(x) = b is neocontinuous
from M to N .

Proof: For each neocompact set A ⊂ M, the graph of f |A is the neocompact
set A× {b}. 2

Proposition 3.13 Compositions of neocontinuous functions are neocontinuous.

Proof: Let f : C → D be neocontinuous from M to N , and g : D → E be
neocontinuous from N to O. Let A ⊂ C be neocompact in M. Then B = f(A) is
neocompact in N . The graphs F of f |A and G of g|B are neocompact in M×N
and N ×O. The graph H of (g ◦ f)|A is given by

H = {(x, z) ∈M×O : (∃y ∈ N )[(x, y) ∈ F ∧ (y, z) ∈ G]}.

This set is neocompact in M×O, so g ◦ f is neocontinuous. 2
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4 Neometric Families

Now that we have defined the notion of a neocontinuous function, we can restrict our
attention to neometric families – neocompact families with neocontinuous projection
and distance functions. As we shall see in this section, once we know that the
projection and distance functions are neocontinuous, we can obtain many other
important neocontinuous functions and neoclosed sets.

Definition 4.1 We call a neocompact family (M,B, C) a neometric family, and
call its members neometric spaces, if the projection and distance functions in M
are neocontinuous.

That is, the projection functions π1 : M× N → M and π2 : M× N → N
are neocontinuous for all M,N ∈ M, the metric space R of reals is contained in
some member R of M, and for each M ∈ M the distance function ρ of M is
neocontinuous from M×M into R.

The family of ordinary compact sets is a neometric family because in that case
neocontinuity coincides with continuity, and the distance function on any metric
space is continuous.

We shall see in the next section that the family of neocompact sets for a rich
probability space or a rich adapted space is also a neometric family.

Blanket Hypothesis 2 In addition to Blanket Hypothesis 1, we assume throughout
this section that (M,B, C) is a neometric family.

Proposition 4.2 The identity function on M is neocontinuous.

Proof: For each neocompact set A ⊂M, {(x, x) : x ∈ A} = (A×A) ∩ ρ−1{0} is
neocompact because A× A is neocompact and ρ−1{0} is neoclosed. 2

Proposition 4.3 (i) If f : D → N is neocontinuous from M to N and g : D → O
is neocontinuous from M to O, then h : D → N ×O is neocontinuous from M to
N ×O where h(x) = (f(x), g(x)).

(ii) The function (x, y) 7→ (y, x) is neocontinuous from M×N to N ×M.
(iii) The function ((x, y), z) 7→ (x, (y, z)) from (M×N )×O to M× (N ×O)

and its inverse are neocontinuous.

Proof: (i) Let A ⊂ D be neocompact. Then the graph of h|A is the set

{(x, (f(x), g(x)) : x ∈ A} = {u ∈ A× (f(A)× g(A)) :
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ρ(f(π1(u)), π1(π2(u))) = 0 ∧ ρ(g(π1(u)), π2(π2(u))) = 0}

which is neocompact because all compositions of f, g, ρ, π1, and π2 are neocontinuous.
(ii) Let f be the function in question. Then f(u) = (π2(u), π1(u)), so f is

neocontinuous by (i). The proof of
(iii) is similar. 2

Lemma 4.4 Every closed ball in M is neoclosed, that is, for each x ∈ M and
r ∈ R the set B = {y ∈M : ρ(x, y) ≤ r} is neoclosed in M.

Proof: The set [0, r] is compact and hence neocompact. Thus the inverse image
ρ−1([0, r]) is neoclosed in M×M, and B is neoclosed because it is a section of
ρ−1([0, r]). 2

Proposition 4.5 Every neoclosed set in M is closed in M.

Proof: We must show that the intersection of a neoclosed set and a compact set is
compact. Since every compact set is neocompact, and the intersection of a neoclosed
set and a neocompact set is neocompact, it suffices to show that every neocompact
set in M is closed. Let C be neocompact in M and let x be in the closure of C.
Since closed balls are neoclosed, the sequence Dn = {y ∈ C : ρ(x, y) ≤ 1/n} is
a decreasing chain of nonempty neocompact sets. By the countable compactness
property, D =

⋂

n Dn is nonempty. But D ⊂ {x} ∩ C, so x ∈ C and C is closed. 2

Lemma 4.6 For every neocompact set C in M, the set

D = {ρ(x, y) : x, y ∈ C}

is bounded.

Proof: C×C is neocompact inM×M and ρ is neocontinuous, so by Proposition
3.8, D is neocompact in R. Let π be the distance function for R. Then π × π is
neocontinuous. By Proposition 3.8, for each n ∈ N the set

Dn = {x ∈ D : x ≥ n} = D ∩ {max(n, x) : x ∈ D}

= D ∩ {(π × π)((n, 0), (0, x)) : x ∈ D}

is neocompact in R. The sets Dn form a decreasing chain, and
⋂

n Dn is empty. By
the countable compactness property, Dn must be empty for some n, and hence D is
bounded. 2
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Lemma 4.7 For each x ∈M and r ∈ R, the set

C = {y ∈M : ρ(x, y) ≥ r}

is neoclosed in M.

Proof: Let A be neocompact in M. By the preceding lemma, the set {ρ(x, y) :
y ∈ A} is bounded, and hence is contained in the set [0, n] for some n. Therefore

C ∩ A = {y ∈M : ρ(x, y) ∈ [r, n]} ∩ A.

The interval [r, n] is compact and hence neoclosed. By Proposition 3.9, the set
ρ−1([r, n]) is neoclosed in M×M. It follows that {y ∈ M : ρ(x, y) ∈ [r, n]} is
neoclosed in M, so C ∩ A is neocompact and C is neoclosed in M. 2

Proposition 4.8 Let C be a separable subset of M. Then C is neocompact in M
if and only if C is compact.

Proof: Every compact set is neocompact in M. For the other direction, we
suppose that a separable set C is neocompact in M but not compact. Then C has
a countable cover by open balls Bn, n ∈ N which has no finite subcover. By the
preceding lemma, the complement of each Bn is neoclosed, so the sequence

Cn = C −
⋃

{Bm : m ≤ n}

is a countable decreasing chain of nonempty neocompact sets in M. By the count-
able compactness property,

⋂

n Cn is nonempty, contradicting the fact that {Bn}
covers C. Thus C is neocompact in M if and only if C is compact. 2

Corollary 4.9 If C is a neoclosed separable subset of M, then every closed subset
D of C is neoclosed.

Proof: Let A be neocompact in M. Then C ∩ A is neocompact and separable.
By the preceding proposition, C ∩ A is compact, so D ∩ A is compact and hence
neocompact, and D is neoclosed. 2

Example 4.10 This example shows that a separable closed subset of M is not nec-
essarily neoclosed. Suppose C is neocompact but not compact in M. Then there are
countable sequences 〈xn〉 in C such that no subsequence of 〈xn〉 converges, and the
countable set D = {xn} is closed but not neoclosed in M.
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Proof: Since C is neocompact but not compact, C is closed but not compact,
so there is a sequence 〈xn〉 in C with no convergent subsequence. D = {xn} is
obviously closed and separable but not compact. Suppose D is neoclosed. Then D
is neocompact because D ⊂ C. But then by Proposition 4.8, D is compact. 2

This example still works if the neocompact family is enlarged. Let M, C, and D
be as above. For any neometric family (M′,B′, C ′) such that M ∈ M′, C ∈ C ′(M)
and the countable compactness property holds, the countable closed set D is not
neoclosed.

Proposition 4.11 If f : D → N is neocontinuous from M to N , then f is contin-
uous on D.

Proof: Suppose an → a in D. Then the set A = {an ∈ n ∈ N} ∪ {a} is compact
and hence neocompact in M. Therefore the graph of f |A is neocompact in M×N
and separable, and hence compact. It follows that f(an) → f(a) in N , so f is
continuous. 2

Proposition 4.12 If D is a separable subset of M, then every continuous function
f : D → N is neocontinuous.

Proof: Every neocompact set C ⊂ D in M is separable, and thus compact by
Proposition 4.8. Therefore f |C is compact and hence neocompact in M×N . 2

Proposition 4.13 If f : C → N is neocontinuous from M to N , then f is uni-
formly continuous with respect to ρ and σ on every neocompact set D ⊂ C in M.

Proof: Let ε > 0 and n ∈ N. Since ρ and f are neocontinuous, the set

En,ε = {(x, y) ∈ D ×D : ρ(x, y) ≤ 1/n and ρ(f(x), f(y)) ≥ ε}

is neoclosed inM×M. Thus for each ε > 0, En,ε is a decreasing chain of neocompact
sets in M×M. But

⋂

n En,ε = ∅, so by the countable compactness property there
is an m ∈ N such that Em,ε = ∅. Since this holds for each ε > 0, f is uniformly
continuous on D. 2

The distance ρ(x,C) between an element x and a nonempty set C ⊂ M is
defined as

ρ(x,C) = inf{ρ(x, y) : y ∈ C}.

It is easily seen that ρ(x,C) is a continuous function of x for every nonempty set C.
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Proposition 4.14 Let C be neocompact in M. Then:
(i) For each x ∈M there exists y ∈ C such that ρ(x, y) = ρ(x,C).
(ii) For each ε > 0, the set

Cε = {x ∈M : ρ(x,C) ≤ ε}

is neoclosed in M.

Proof: (i) Let r = ρ(x,C). By Proposition 4.4, the sequence

Dn = {y ∈ C : ρ(x, y) ≤ r + 1/n}

is a decreasing chain of nonempty neocompact sets in M. By the countable com-
pactness property, there exists y ∈ ⋂

n Dn. Then y ∈ C and ρ(x, y) = r.
(ii) We prove that Cε is neoclosed. We have

Cε = {x ∈M : (∃y ∈ C)ρ(x, y) ≤ ε}.

By Proposition 3.5 and the neocontinuity of ρ, this set is neoclosed in M. 2

The classical fact that Cε is closed whenever C is closed does not carry over to
neoclosed sets. Here is an example of a neoclosed set D in the neometric family over
a rich probability space and an ε > 0 such that Dε is not neoclosed. This gives us
another example of a set which is closed but not neoclosed.

Example 4.15 Consider the neocompact family associated with a rich probability
space Ω, and let N = L0(Ω,N) where N is the set of natural numbers. Let Ω =
Ω1∪Ω2 where P (Ω1) = P (Ω2) = 1/2, let 〈Sn〉 be a sequence of mutually independent
subsets of Ω2 of measure 1/4, and let xn be the random variable

xn(ω) = n + 1 if ω ∈ Ω1, 1 if ω ∈ Sn, and 0 if ω ∈ Ω2 − Sn.

Let ε = 1/2. Then the set D = {xn : n ∈ N} is neoclosed but Dε is not neoclosed in
N .

Proof: Each compact subset of Meas(N ) contains only finitely many of the
measures law(xn), and it follows that each neocompact set inN contains only finitely
many xn’s. Therefore D is neoclosed. Let C be the neocompact set L0(Ω, {0, 1})
and let yn be the product of xn and the characteristic function of Ω2. Then for each
n, yn ∈ C and ρ0(xn, yn) = 1/2 = ε. For any other element z ∈ C, ρ0(z, D) > ε,
so C ∩ Dε = {yn}. The sequence 〈yn〉 has no convergent subsequence. Thus by
Example 4.10, the set C∩Dε is not neoclosed. Therefore C∩Dε is not neocompact,
and Dε is not neoclosed. 2
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Up to this point, none of the results in this or the preceding section made use
of the universal projection rule (f). Thus if we define a weak neometric family
(M,B, C) to be a family which satisfies all the requirements for a neometric family
except possibly the universal projection rule (f), then all of the results up to this
point hold for weak neometric families.

The remaining results in this section depend on the universal projection rule (f).

Proposition 4.16 If C is nonempty and basic in M then the function f(x) =
ρ(x,C) is neocontinuous from M to R.

Proof: Let A be neocompact in M. Then A× C is neocompact in M×M, so
B = ρ(A × C) is a neocompact subset of R and hence is compact. The graph of
f |A is given by

{(x, r) ∈ A×B : ρ(x,C) ≤ r ∧ ρ(x,C) ≥ r}

= {(x, r) ∈ A×B : (∃y ∈ C)ρ(x, y) ≤ r ∧ (∀y ∈ C)ρ(x, y) ≥ r}.

By the neocontinuity of ρ and properties (e) and (f), this set is neocompact in
M×R. Therefore f is neocontinuous. 2

To complement the preceding proposition, we now give an example of a neocom-
pact set A in the neometric family over a rich probability space such that the distance
function ρ0(x,A) is not neocontinuous. This shows that the preceding proposition
does not hold under the assumption that C is neocompact rather than basic, and
gives us an example of a continuous function which is not neocontinuous.

Example 4.17 Let Ω be a rich probability space. Let 〈Sn〉 be a sequence of mutually
independent subsets of Ω of measure 1/2. Let yn be the characteristic function of
Sn, and let

An = {x ∈ L0(Ω, {0, 1}) : (∀m < n)ρ0(x, ym) = 1/2}, A =
⋂

n
An.

Then A is a nonempty neocompact set, the closed set

B = {z ∈ L0(Ω, {0, 1}) : ρ0(z, A) = 1/2}

is not neoclosed, and the continuous function ρ0(·, A) is not neocontinuous.

Proof: Since each singleton {yn} is basic, each An is neocompact, and therefore
A is neocompact. In fact, A can be represented as a section of a basic relation in
L0(Ω, {0, 1} ×M) for some complete separable M . Moreover, yn ∈ An, so An is a
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decreasing chain of nonempty neocompact sets. Then A is nonempty by countable
compactness.

Suppose that B is neoclosed. Since {0, 1} is compact, B is neocompact. Then
for each n, the set B ∩ An is neocompact. We have yn ∈ B ∩ An for each n, so the
sets B ∩An again form a decreasing chain of nonempty neocompact sets. However,
⋂

n(B∩An) is empty, because any element of this intersection must belong to A but
have distance 1/2 from A. This shows that B cannot be neoclosed. 2

Although the function ρ(·, A) fails to be neocontinuous, we shall prove in Section
8 that ρ(·, A) is neo-lower semicontinuous for every nonempty neocompact set A.

We can see from this example that no rich probability space can satisfy the
stronger form of the universal projection rule (f) in which the set D is allowed to be
neocompact rather than basic. Let A and B be the sets from Example 4.17. Then
A is nonempty and neocompact but B is not neocompact. As we saw in the proof
of Proposition 4.16,

B = {x : (∃y ∈ A)ρ0(x, y) ≤ 1/2 ∧ (∀y ∈ A)ρ0(x, y) ≥ 1/2}.

Since B is not neocompact, the set

{x : (∀y ∈ A)ρ0(x, y) ≥ 1/2}

is not neocompact. Thus the rule (f) cannot hold for universal projections with
respect to the neocompact set A. It follows that the set A is not basic.

The next proposition is a generalization of the universal quantifier rule (f) for
neocompact sets.

Proposition 4.18 Suppose C is neoclosed in M×N , Bn is a countable increasing
chain of basic sets in N , and B is the N -closure of

⋃

n Bn. Then the set

D = {x ∈M : (∀y ∈ B)(x, y) ∈ C}

is neoclosed in M. Moreover, if C is neocompact in M×N and B 6= ∅, then D is
neocompact in M.

Proof: We first prove the result in the case that C is neocompact in M×N .
Since B 6= ∅, D is contained in the neocompact set {x : (∃y)(x, y) ∈ C} in M. By
(f), the set

Dn = {x : (∀y ∈ Bn)(x, y) ∈ C}

is neocompact in M. Then
⋂

n Dn is neocompact in M. Clearly D ⊂ ⋂

n Dn. We
show that D =

⋂

n Dn. Suppose x ∈ ⋂

n Dn and let y ∈ B. Then there is a sequence
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〈yn〉 converging to y in N such that yn ∈ Bn for each n ∈ N. We have (x, yn) ∈ C for
each n ∈ N, and C is closed, so (x, y) ∈ C and hence x ∈ D. Therefore D =

⋂

n Dn

and D is neocompact in M.
Now suppose C is neoclosed in M×N . Let A be neocompact in M and let

E = D ∩ A = {x ∈ A : (∀y ∈ B)(x, y) ∈ C}

and

En = {x ∈ A : (∀y ∈ Bn)(x, y) ∈ C} = {x ∈M : (∀y ∈ Bn)(x, y) ∈ C ∩ (A×Bn)}.

C ∩ (A × Bn) is neocompact in M×N , and by the preceding paragraph, En and
⋂

n En are neocompact in M. We see as before that E =
⋂

n En, so E is neocompact
and D is neoclosed in M. 2

Corollary 4.19 Suppose C is neoclosed in M× N , and B is a closed separable
subset of N . Then the set

D = {x ∈M : (∀y ∈ B)(x, y) ∈ C}

is neoclosed in M. Moreover, if C is neocompact in M×N and B 6= ∅, then D is
neocompact in M. 2

5 Rich Adapted Spaces

For the remainder of this paper, we confine our attention to neocompact families
in rich adapted spaces. It will be understood that any results about rich adapted
spaces which do not involve the filtration Gt also hold for rich probability spaces
with the same proof.

If (M, ρ), (N, σ), and (O, τ) are complete separable metric spaces and Ω = (Ω, P )
is a probability space, we use the short notation (M, ρ0) = L0(Ω,M), (N , σ0) =
L0(Ω, N), (O, τ0) = L0(Ω, O) for the corresponding spaces of random variables.

Blanket Hypothesis 3 Hereafter we assume that Ω is a rich adapted space. We
shall take (M,B) to be as in Definition 2.5, and take (M,B, C) to be the neocompact
family generated by (M,B).

In this and the next section, we shall not use the assumption that the neocompact
sets satisfy the universal projection rule (f), except in examples.

The following facts are easily proved.
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5.1 A set C ⊂M is contained in a neocompact set if and only if law(C) is contained
in some compact set D ⊂ Meas(M), and also if and only if C is contained in a basic
set of the form law−1(D) for some compact D.

Proof: Each basic set B in M has the property that B ⊂ law−1(D) for some
compact D ⊂ Meas(M), and each of the rules (a)–(f) for neocompact sets preserves
this property. 2

5.2 For every compact subset C of M , the set L0(Ω, C) is basic and hence neocom-
pact in M. 2

5.3 If C is a compact set in Meas(M) and t ∈ [0, T ), then the set

D = {x ∈ law−1(C) : x is Ft −measurable}

is neocompact in M.

Proof: D is the countable intersection of basic sets

D =
⋂

s∈B∩(t,T ]

{x ∈M : law(x) ∈ C ∧ x is Gs −measurable}.

2

5.4 For every closed set C in Meas(M), the set

law−1(C) = {x ∈M : law(x) ∈ C}

is neoclosed in M. 2

5.5 For every closed subset C of M and r ∈ [0, 1], the sets L0(Ω, C) and

{x ∈M : P [x(ω) ∈ C] ≥ r}

are neoclosed in M. 2

5.6 For each t ∈ [0, T ), the sets of Gt-measurable functions in M and of Ft-
measurable functions in M are neoclosed in M. 2

Here is another example of a function which is continuous but not neocontinuous.
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Example 5.7 Let M be a compact metric space with at least two elements, and let
C be the neocompact set

C = {x ∈M : x is Ft −measurable}.

Then the function f : M → R defined by f(x) = ρ0(x,C) is continuous but not
neocontinuous on a rich adapted space.

Proof: It is clear that f is continuous. We give the proof that f is not neocontin-
uous in the case that M is the two-element space M = {0, 1}, so thatM = L0(Ω,M)
is the neocompact space of characteristic functions of P -measurable subsets of Ω.
We assume that f is neocontinuous and get a contradiction. If f is neocontinuous
then the set

A = {x ∈ L0(Ω,M) : f(x) = 1/2}
is neoclosed in the neocompact space M and hence is neocompact. We have x ∈ A
if and only if x is the characteristic function of a set which is independent of Ft. Let
tn be a strictly decreasing sequence of elements of B with limn→∞ tn = t. The sets

Bn = A ∩ {x ∈ L0(Ω,M) : x is Gtn-measurable}

form a decreasing chain of neocompact sets, and since Ω admits a Brownian motion,
each Bn is nonempty. However, if f is neocontinuous then

⋂

n Bn is empty because
any x ∈ ⋂

n Bn must be Ft-measurable, so x /∈ A. This contradicts the countable
compactness property for Ω. Thus f cannot be neocontinuous. 2

We shall see in Section 8 that the function f is neo-lower semicontinuous.
It follows from the preceding example and Proposition 4.16 that the neocompact

set C of Ft-measurable functions in M is not basic.
This example also shows that Gt 6= Ft for every t < ∞ in B , because by

Proposition 4.16, the function x 7→ ρ0(x,B) is neocontinuous where B is the basic
set of Gt-measurable functions, but the function x 7→ ρ0(x,C) is not. Thus in a rich
adapted space, the Gt filtration is never right continuous, that is, Gt is a proper
subset of

⋂{Gs : s > t} for all t < ∞ in B.
Here is a reformulation of Prohorov’s theorem in our setting.

Proposition 5.8 A set C ⊂ M is contained in a neocompact set if and only if
there are a sequence 〈bm〉 of reals converging to 1 and a sequence 〈Km〉 of compact
sets in M such that C ⊂ D where

D =
⋂

m
{y ∈M : P [y(ω) ∈ Km] ≥ bm}.

Moreover, the set D is basic and hence neocompact in M.

24



Proof: Let C be contained in a neocompact in M. By 5.1 there is a compact set
A ⊂ Meas(M) such that C ⊂ law−1(A). By Prohorov’s theorem there are sequences
〈bm〉 of reals and 〈Km〉 of compact subsets of M such that

A ⊂ B =
⋂

m
{µ ∈ Meas(M) : µ(Km) ≥ bm}.

Then C ⊂ law−1(B), and we see from the definition of D that D = law−1(B), so
C ⊂ D as required. Moreover, B is compact in Meas(M), so D is basic in M. 2

It will be convenient to identify each complete separable metric space M with
the set of all constant functions in M = L0(Ω,M). With this identification we get
a notion of a neocontinuous function from M into N , and a neocontinuous function
from N into M .

Proposition 5.9 Let M be a complete separable metric space and identify M with
the set of constant functions in M. Then M is neoclosed in M.

Proof: M has the form law−1(D) for some closed set D ⊂ Meas(M). 2

We now prove the important fact that the projection functions for M×N are
neocontinuous, and the distance function for M is neocontinuous from M×M into
R. That is, the family of neocompact sets for a rich adapted space is a neometric
family. Thus all the results of the preceding section hold for rich adapted spaces.

Proposition 5.10 (i) The projection functions from M×N to M and to N are
neocontinuous.

(ii) The distance function ρ0 : M×M→ R is neocontinuous.

Proof: (i) Let π be the projection function from M×N to N . The graph G of
π is of the form law−1D where D is neoclosed, so G is neoclosed by 5.4. For each
neocompact set C in M×N , the graph of π|C is equal to the intersection of G with
the neocompact set

C × {y ∈ N : (∃x ∈M)(x, y) ∈ C}.

Thus the graph of π|C is neocompact and π is neocontinuous.
(ii) Note that for all x, y ∈ M, ρ0(x, y) ∈ [0, 1]. For each r ∈ [0, 1] there are

closed sets Dr and Er in Meas(M × M) such that for all (x, y), ρ0(x, y) ≤ r iff
law(x, y) ∈ Dr, ρ0(x, y) ≥ r iff law(x, y) ∈ Er. Then the graph of ρ0 is the neoclosed
set

⋂

{law−1(Dr)× [0, r] : r ∈ B} ∩
⋂

{law−1(Er)× [r, 1] : r ∈ B}
where B is the set of dyadic rationals in [0, 1]. Since the range of ρ0 is contained in
the compact set [0, 1], it follows that the restriction of ρ0 to any neocompact set is
neocompact. 2

25



Corollary 5.11 If C is neoclosed in M×N , then the set

D = {x ∈M : (∀y ∈ N )(x, y) ∈ C}

is neoclosed in M. Moreover, if C is neocompact in M×N , then D is neocompact
in M.

Proof: Let {bn : n ∈ N} be a countable dense set in the separable space N and
let Bn = L0(Ω, {b1, . . . , bn}). Then Bn is basic in N ,

⋃

n Bn ⊂ N , and
⋃

n Bn is dense
in N . Thus Proposition 4.18 may be applied with B = N . 2

Proposition 5.12 Let M be a complete separable metric space. The function law :
M→ Meas(M) is neocontinuous.

Proof: Let C be neocompact in M. By 5.1, C is contained in a basic set of the
form law−1(B) for some compact set B ⊂ Meas(M). Therefore law(C) is contained
in the compact set B, and the graph G of law|C is contained in the neocompact set
C ×B. For each n ∈ N there is a finite subset Dn of B such that B ⊂ (Dn)1/n. For
each z ∈ Dn the set

En,z = {(x, y) ∈ C ×B : law(x) ∈ {z}1/n ∧ y ∈ {z}1/n},

is neocompact, and since Dn is finite the set

En =
⋃

{En,z : z ∈ Dn}

is neocompact. Moreover, G =
⋂

n En, so G is neocompact as required. 2

Corollary 5.13 For each neocompact set C ∈ C(M), law(C) is compact in Meas(M),
and hence C is contained in the basic set law−1(law(C)).

Proof: By 3.8, 4.8, and the preceding theorem. 2

Corollary 5.14 If C is neoclosed in M then law(C) is closed in Meas(M).

Proof: Let C be neoclosed in M. Let D be compact in Meas(M), and let
E = C ∩ law−1(D). Since law−1(D) is neocompact, E is neocompact. Moreover,
law(E) = law(C)∩D, and by the preceding corollary, law(E) is compact. Therefore
law(C) is closed. 2

A stopping time is a key notion in stochastic analysis. A stopping time for
Ω is a random variable τ ∈ L0(Ω, [0, T ]) such that for each t ∈ [0, T ), min(τ(ω), t)
is Ft-measurable. (In the case T = ∞, [0, T ] has the compact metric ρ(x, y) =
| arctan(x)− arctan(y)|.)
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Proposition 5.15 The set of stopping times is neocompact in L0(Ω, [0, T ]).

Proof: For each t ∈ [0, T ], the set Ct of Ft-measurable y ∈ L0(Ω, [0, T ]) is
neocompact. Therefore the set

Dt = {x ∈ L0(Ω, [0, T ]) : min(x(ω), t) ∈ Ct}

= {x ∈ L0(Ω, [0, T ]) : (∃y ∈ Ct)y(ω) = min(x(ω), t)}

is neocompact. The set of stopping times in L0(Ω, [0, T ]) is equal to the countable
intersection

⋂

t∈B Dt, and is therefore neocompact in L0(Ω, [0, T ]). 2

Proposition 5.16 If B is neocompact in L0(Ω,Rd), then the set

C = {x ∈ L0(Ω,Rd) : (∃u ∈ B)[|x(ω)| ≤ |u(ω)| almost surely ]}

is neocompact in L0(Ω,Rd).

Proof: By Corollary 5.13, law(B) is compact in Meas(Rd). It follows that there
is a compact set C ′ in Meas(Rd) such that law(C) ⊂ C ′. The set

A = {(x, u) ∈ L0(Ω,Rd ×R) : |x(ω)| ≤ |u(ω)| almost surely}

has the form law−1(A′) for some closed set A′ in Meas(Rd+1), and is thus neoclosed
in L0(Ω,Rd+1). Therefore

E = {(x, u) ∈ law−1(C ′)×B : |x(ω)| ≤ |u(ω)| almost surely}

is neocompact in L0(Ω,Rd+1). We have

C = {x : (∃u)(x, u) ∈ E},

so C is neocompact in L0(Ω,Rd). 2

The following is proved by a similar argument.

Proposition 5.17 Let I be the set of increasing functions y ∈ C([0, 1],R) with
y(0) = 0, and let B be neocompact in L0(Ω, I). For an increasing y let ∆y(s, t) =
y(t)− y(s). Then the set

C = {x ∈ L0(Ω, I) : (∃u ∈ B)[∆x(ω)(s, t) ≤ ∆u(ω)(s, t) for all s ≤ t] a.s.}

is neocompact in L0(Ω,R). 2
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The following result is sometimes useful in showing that a function is neocontin-
uous.

Proposition 5.18 Let f : C → D be a function such that:
(i) C is neoclosed in M and D is neoclosed in N ;
(ii) If (x, z) ∈ C ×D and law(x, z) = law(x, f(x)) then z = f(x);
(iii) If xn, x ∈ C and law(xn) → law(x), then law(xn, f(xn)) → law(x, f(x)).
Then f is neocontinuous from M to N .

Proof: Conditions (i)–(iii) hold for any neocompact set B ⊂ C in place of C. We
may therefore assume without loss of generality that C is neocompact. It follows
from (iii) that there is a unique continuous function g : law(C) → law(C ×D) such
that for all x ∈ C, g(law(x)) = law(x, f(x)). Let F be the graph of f and let H be
the closure of law(F ) in Meas(M ×N). By 5.4, law−1(H) is neoclosed in M×N .
Let (x, z) ∈ law−1(H) ∩ (C × D). Then there is a sequence 〈xn, f(xn)〉 in F such
that law(xn, f(xn)) → law(x, y). Then law(xn) → law(x), so by (iii),law(x, y) =
law(x, f(x)). By (ii), y = f(x), so (x, y) ∈ F . Therefore by (i), F = law−1(H) ∩
(C×D), so F is neoclosed in M×N . Since we are assuming that C is neocompact,
law(C) is compact in Meas(M) by Corollary 5.13. Since g is continuous, g(law(C))
is compact in Meas(M × N) and thus f(C) is contained in the neocompact set
{y ∈ D : (∃x ∈ C)law(x, y) ∈ g(law(C))} in N . Thus F is neocompact in M×N ,
and f is neocontinuous from M to N . 2

Here is an easy consequence of Proposition 5.18.

Lemma 5.19 (Randomization Lemma). Let M, N , and K be complete separable
metric spaces.

(i) If f : M → N is continuous then the function g : M → N defined by
(g(x))(ω) = f(x(ω)) is neocontinuous.

(ii) If f : M ×K → N is continuous then the function g : M×K → N defined
by (g(x, y))(ω) = f(x(ω), y) is neocontinuous.

(iii) If f : M × K → N is continuous and y ∈ L0(Ω, K), then the function
h : M→N defined by (h(x))(ω) = f(x(ω), y(ω)) is neocontinuous. 2

For example, the function min(x(ω), y(ω)) is neocontinuous. Here is a general-
ization of Proposition 5.18 which allows a parameter u.

Proposition 5.20 Let u ∈ K and let f : C → D be a function such that:
(i) C is neoclosed in M and D is neoclosed in N ;
(ii) If (x, z) ∈ C ×D and law(u, x, z) = law(u, x, f(x)) then z = f(x);
(iii) If xn, x ∈ C and law(u, xn) → law(u, x), then law(u, xn, f(xn)) → law(u, x, f(x)).
Then f is neocontinuous from M to N . 2
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6 An Approximation Theorem

In this section we consider existence problems of the form

(∃x ∈ C)f(x) ∈ D (3)

where C is a neocompact set in M, f is a neocontinuous function from a neoclosed
set E ⊃ C to N , and D is a neoclosed set in N . We prove a useful approximation
theorem which states that every problem of the form (3) which is “approximately
true” is true. This result, when combined with a large library of neocontinuous
functions, leads to very short proofs of a variety of existence theorems. The method
may be helpful in the discovery of new results, as well as in the development of
proofs which capture an approximation idea in a natural way. As an illustration we
shall give some examples concerning stochastic differential equations at the end of
this paper.

Since compositions of neocontinuous functions are neocontinuous, other types of
existence problems can be put in the form (3). For instance, the problem

(∃x ∈ C)f(x) = g(x)

is equivalent to the problem

(∃x ∈ C)ρ0(f(x), g(x)) ∈ {0}

which has the form (3) because the distance function ρ0 is neocontinuous. Similarly,
the problem

(∃x ∈ C)[f1(x) = g1(x) ∧ f2(x) = g2(x)]

is equivalent to the problem

(∃x ∈ C) max[ρ0(f1(x), g1(x)), ρ0(f2(x), g2(x))] = 0.

We first prove the simple special case of the approximation theorem where the
domain of f and the target set D in (3) are both neocompact. The theorem is useful
because it is often much easier to solve the approximate existence problem (4) below
than the original existence problem (3). It will already be sufficient for most of the
applications to stochastic differential equations given at the end of this paper.

Theorem 6.1 (Simple Approximation Theorem) Let A and B be neocompact in M
and f : A → N be neocontinuous from M to N . Let D be neocompact in N .
Suppose that for each ε > 0,

(∃x ∈ A ∩Bε)f(x) ∈ Dε. (4)
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Then (3) holds with C = A ∩B, that is,

(∃x ∈ A ∩B)f(x) ∈ D.

Proof: Since f and ρ are neocontinuous, the set

E = {(ε, x, y, z) ∈ [0, 1]× A×B ×D : ρ(x, y) ≤ ε ∧ ρ(f(x), z) ≤ ε}

is neocompact. By property (e), the set

F = {ε ∈ [0, 1] : (∃x ∈ A)(∃y ∈ B)(∃z ∈ D)(ε, x, y, z) ∈ E}

is neocompact and hence closed. The hypothesis (4) says that (0, 1] ⊂ F . Therefore
0 ∈ F , and hence (3) holds with C = A ∩B as required. 2

The following principle is the key lemma for the general case of the approximation
theorem.

Definition 6.2 Given a sequence of sets An and a sequence of positive reals εn such
that

lim
n→∞

εn = 0,

the set
A =

⋂

n
((An)εn)

is called the diagonal intersection of An with respect to εn.

Lemma 6.3 (Closure under diagonal intersections). Let An be neocompact in M
for each n ∈ N and let limn→∞ εn = 0. Then the set A =

⋂

n(An)εn is neocompact
in M.

Proof: By Proposition 4.14, for each n the set (An)εn is neoclosed in M. There-
fore A is neoclosed in M. By Corollary 5.13, for each n the set Cn = law(An) is
compact. The Prohorov metric d on Meas(M) has the property that

d(law(x), law(y)) ≤ ρ0(x, y).

Therefore for each n, law((An)εn) ⊂ (Cn)εn , and hence law(A) ⊂ C where C =
⋂

n((Cn)εn). Since εn → 0 and each Cn is totally bounded, the set C is totally
bounded. Since C is also closed, it is compact. Therefore A is contained in the basic
neocompact set law−1(C) in M, and hence A is neocompact in M. 2

In the above proposition, if A1 ⊃ A2 ⊃ · · · then A is just the intersection
⋂

n An,
but in the general case A will properly contain

⋂

n An.
Before stating the general case of the approximation theorem, we give some other

applications of closure under diagonal intersections. The first application gives a
very natural example of a neocompact set.
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Theorem 6.4 For each d ∈ N and positive real r, the set

C = {x ∈ L0(Ω,Rd) : E[|x|] ≤ r}

is basic and hence neocompact.

Proof: We give the proof for d = 1. We first show that C is contained in a
neocompact set. Let An be the neocompact set L0(Ω, [−n, n]}. By Chebychev’s
inequality, for each n and each x ∈ C,

P [|x(ω)| ≤ n] ≥ 1− r/n.

Then
C ⊂

⋂

n
((An)r/n).

By closure under diagonal intersections, the set on the right is neocompact.
We now show that C is neoclosed. Whether x ∈ C depends only on the law of x,

so C = law−1(D) for some set D ⊂ Meas(R). Since C is contained in a neocompact
set, law(C) is contained in a compact set, so we may take D to be contained in a
compact set. We show that D is closed. Let zn be a sequence in D which converges
to some z ∈ Meas(R). By the Skorokhod representation theorem (see [8], p. 102),
there is a sequence of random variables xn in C and an x ∈ L0(Ω,R) such that
law(xn) = zn, law(x) = z, and xn converges to x almost surely. By Fatou’s lemma,

E[|x|] = E[lim inf(|xn|)] ≤ lim inf(E[|xn|]) ≤ r,

so x ∈ C and hence z = law(x) ∈ D. Thus D is closed, as we wished to show.
It follows that D is compact, and thus C is a basic set. 2

Another application of closure under diagonal intersections is a neocompact ver-
sion of the Arzela theorem.

Theorem 6.5 Suppose that: (i) C is neoclosed in M;
(ii) fn : C → N is neocontinuous on C for each n ∈ N ;
(iii) The family {fn : n ∈ N} is equicontinuous on C, that is, for each k ∈ N and

x ∈ C there exists `(k, x) ≥ k such that whenever z ∈ C and ρ0(x, z) ≤ 1/`(k, x),
we have σ0(fn(x), fn(z))) ≤ 1/k for all n ∈ N ;

(iv) fn approaches f uniformly on C, that is, for each k ∈ N there exists mk ∈ N
such that for all x ∈ C and all n ≥ mk, σ0(fn(x), f(x)) ≤ 1/k.

Then f is neocontinuous on C.
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Proof: We may assume without loss of generality that C is neocompact. Let Fn

be the graph of fn and F be the graph of f . We must show that F is neocompact.
We first show that F is neoclosed. Since fn is neocontinuous, each Fn is neocompact.
Therefore for each n and k, (Fn)1/k is neoclosed. We show that F is equal to the
neoclosed set

G =
⋂

k

⋂

n≥mk

((Fn)1/k).

Assumption (iii) insures that F ⊂ G. Suppose (x, y) ∈ G. Then for each k ∈ N
and all n ≥ m`(k,x) there exists z ∈ C such that ρ0(x, z) ≤ 1/`(k, x) ≤ 1/k and
σ0(y, fn(z)) ≤ 1/`(k, x). By assumption (ii), σ0(fn(x), fn(z)) ≤ 1/k. Therefore
σ0(fn(x), y) ≤ 2/k. Then by (iii) we have y = f(x), whence (x, y) ∈ F .

By closure under diagonal intersection, the set H =
⋂

k((Fmk)
1/k) is neocompact.

Since G is neoclosed and F = G ⊂ H, F is neocompact. 2

Lemma 6.6 Let C be neocompact in M and let 〈xn〉 be a sequence in M such that
limn→∞ ρ0(xn, C) = 0. Then the set D = C ∪ {xn : n ∈ N} is neocompact in M.

Proof: Choose a decreasing sequence εn such that εn ≥ ρ0(xn, C) and εn → 0
as n → ∞. Let Cn = C ∪ {xm : m ≤ n}. Then each Cn is neocompact, and
D ⊂ ⋂

n(Cn)εn . We also have the opposite inclusion D ⊃ ⋂

n(Cn)εn , because if
y /∈ D then y /∈ {xm : m ∈ N}, and ρ0(y, C) > 0 by Proposition 4.14, so y /∈ (Cn)εn

for some n. By closure under diagonal intersections, D is neocompact in M. 2

We now come to the general case of the approximation theorem. A still more
general theorem is proved in [10].

Theorem 6.7 (Approximation Theorem) Let A be neoclosed in M and f : A → N
be neocontinuous from M to N . Let B be neocompact in M and D be neoclosed in
N . Suppose that for each ε > 0, equation (4) holds, that is,

(∃x ∈ A ∩Bε)f(x) ∈ Dε.

Then (3) holds with C = A ∩B, that is,

(∃x ∈ A ∩B)f(x) ∈ D.

Proof: By hypothesis there is a sequence 〈xn〉 in A such that for each n, xn ∈ B1/n

and f(xn) ∈ D1/n. By the preceding lemma, for each m the set

Cm = C ∪ {xn : m ≤ n ∈ N}
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is a neocompact subset of A. Since f is neocontinuous on A, the graph

Gm = {(x, f(x)) : x ∈ Cm}

is neocompact in M×N .
Since f is neocontinuous and C1 is neocompact inM, the set f(C1) is neocompact

in N . We may choose yn ∈ D such that ρ(f(xn), yn) ≤ 1/n. Then yn ∈ (f(C1))1/n.
Using the preceding lemma again, the set

E = D ∩ [f(C1) ∪ {yn : n ∈ N}]

is neocompact inN . We have ym ∈ E and f(xm) ∈ E1/m for each m. By Proposition
4.14, E1/m is neoclosed, so

Hm = Gm ∩ (A× E1/m)

is a decreasing chain of neocompact sets. We have (xm, f(xm)) ∈ Hm, so Hm is
nonempty. By the countable compactness property there exists (x, z) ∈ ⋂

m Hm.
Then x ∈ C, z ∈ D, and z = f(x) as required. 2

It is an easy exercise to prove the analogue of the above approximation theo-
rem with compact, closed, and continuous in place of neocompact, neoclosed, and
neocontinuous. Anderson [2] gave some interesting applications of this compact ana-
logue of the approximation theorem. Another application is the existence proof for
standard Navier-Stokes equations in the first section of [7]. That paper then goes on
to apply the neometric form of the approximation theorem to obtain new existence
and optimality results for stochastic Navier-Stokes equations.

It is worth reminding the reader at this point that many of our theorems do not
involve the filtration Gt or Ft, and that such results hold for rich probability spaces
as well as rich adapted spaces. In particular, the above approximation theorem also
holds for rich probability spaces.

Corollary 6.8 Let A be neoclosed in M×N and f : A → K be neocontinuous from
M×N to K. Let B be neocompact in M and D be neoclosed in K. Suppose that
y ∈ N and for each ε > 0 there exists yε within ε of y such that

(∃x ∈ Bε)[(x, yε) ∈ A ∧ f(x, yε) ∈ Dε]. (5)

Then
(∃x ∈ B)[(x, y) ∈ A ∧ f(x, y) ∈ D]. (6)
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Proof: Apply the approximation theorem with B̂ = B × {y} in place of B. 2

We remark that the set

{x ∈ B : [(x, y) ∈ A ∧ f(x, y) ∈ D]}

of solutions of (6) is neocompact in M for each y ∈ N , and the set

{y ∈ N : (∃x ∈ B)[(x, y) ∈ A ∧ f(x, y) ∈ D]}

is neoclosed in N by Proposition 3.5.

7 Uniform Integrability

In this section we extend the theory of neocontinuity to include integrals. The
next example shows that some care will be needed. For this example, recall that
L1(Ω,R) is the space of all integrable functions from Ω into R with the metric
ρ1(x, y) = E[|x− y|], and that L1(Ω,R) is a subset of L0(Ω,R).

Example: Let xn, n ∈ N be a sequence in L1(Ω,R) and y ∈ L1(Ω,R) such that
xn converges to y in probability but not in mean, that is, xn → y in L0(Ω,R) but
not in L1(Ω,R). Then the set C = {xn : n ∈ N} ∪ {y} is a subset of L1(Ω,R)
which is compact and hence neocompact in L0(Ω,R). The function x 7→ E[x] maps
C into R but is not continuous in L0(Ω,R). Thus the expected value function is
defined but cannot be neocontinuous from L1(Ω,R) into R in the neometric family
(M,B, C).

There are two ways around this difficulty. One way, which we develop in this
section, is to restrict our attention to uniformly integrable sets of random variables.
We shall see that functions such as the integral with respect to P are neocontinuous
on every uniformly integrable set. The other way, developed in the next section, is
to introduce a neometric analogue of lower semicontinuity. We shall see that the
integral and many related functions satisfy this analogue.

Let p ∈ [1,∞) and let b ∈ M . Lp(Ω,M) is the set of all P -measurable functions
x : Ω → M such that ρ(x(ω), b))p is P -integrable, identifying functions which are
equal P -almost surely. ρp is the metric of convergence in p-th mean,

ρp(x, y) = E[ρ(x(ω), y(ω))p]1/p.

The set Lp(Ω, M) and the metric ρp do not depend on the choice of the reference
point b ∈ M . For q < p in {0} ∪ [1,∞), Lp(Ω,M) is a subset of Lq(Ω, M) but with
a different metric.
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For r ∈ R and n ∈ N let φn(r) = r if r ≥ n, φn(r) = 0 if r < n. We say that
a subset C of M is uniformly p-integrable if there is a sequence an such that
limn→∞ an = 0 and

E[φn(ρ(x(ω), b)p)] ≤ an

for each x ∈ C and n ∈ N. Thus C is uniformly p-integrable in the present sense if
and only if the set of real valued random variables

{ρ(x(ω), b) : x ∈ C}

is uniformly p-integrable in the usual sense (cf. [4]). Note that uniform p-integrability
does not depend on the choice of the point b ∈ M , and that a set C is uniformly
p-integrable if and only if every countable subset of C is uniformly p-integrable.
Each uniformly p-integrable subset of M is contained in Lp(Ω,M).

Examples. Each finite subset of Lp(Ω,M) is uniformly p-integrable. In the
special case that the set {ρ(x, y) : x, y ∈ M} is bounded, the whole space M is
uniformly p-integrable and Lp(Ω,M) = M. For each u ∈ Lp(Ω,Rd), the set

{x ∈ L0(Ω,Rd) : |x(ω)| ≤ |u(ω)| almost surely}

is uniformly p-integrable, and is also neocompact by Proposition 5.16.

Lemma 7.1 Let q < p in {0} ∪ [1,∞). A sequence in Lp(Ω, M) converges in
Lp(Ω,M) if and only if it converges in Lq(Ω,M) and is uniformly p-integrable.

Proof: This follows easily from the special case where M = R, where the result
is well known. 2

Lemma 7.2 If p ∈ [1,∞) and C is a uniformly p-integrable subset of Lp(Ω,Rd),
then C is contained in a uniformly p-integrable basic set in L0(Ω,Rd).

Proof: Let 〈an〉 be a sequence such that limn→∞ an = 0 and C is contained in
the set

B = {x : E[φn(|x|p)] ≤ an for all n ∈ N}.
Then B is uniformly p-integrable. Using elementary facts about uniformly integrable
sets (cf. [8]), we see that if xm ∈ B and limm→∞ law(xm) = law(x), then

lim
m→∞

E[φn(|xm|p)] = E[φn(|x|p)],

so x ∈ B. Thus law(B) is closed. Also, every sequence 〈xm〉 in B has a subsequence
〈xkm〉 such that law(xkm) converges, so law(B) is compact. It follows that B =
law−1(law(B)), so B is basic. 2
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Corollary 7.3 Let p ∈ [1,∞). Every uniformly p-integrable set C in M is con-
tained in a uniformly p-integrable neoclosed set D in M.

Proof: Let b ∈ M , let f(x)(ω) = ρ(x(ω), b), and let A = f(C). Then A is
uniformly p-integrable in L0(Ω,R), so A is contained in a uniformly p-integrable
basic set B in L0(Ω,R). f is neocontinuous, so the set D = f−1(B) contains C and
is uniformly p-integrable and neoclosed in M. 2

The following two results are consequences of Proposition 5.18.

Proposition 7.4 The integral function x 7→ E[x(ω)] is neocontinuous on every
uniformly integrable subset of L0(Ω,Rd).

Proof: Let C be neocompact and uniformly integrable in L0(Ω,Rd), and for
x ∈ C let f(x) = E[x(ω)]. Conditions 5.18 (i) and (ii) are easily seen to hold.
Let xn, x ∈ C and law(xn) → law(x). It follows from uniform integrability that
f(xn) → f(x) in Rd. Therefore law(xn, f(xn)) → law(x, f(x)), so condition 5.18
(iii) holds. By Proposition 5.18, f is neocontinuous. 2

Proposition 7.5 Let p ∈ [1,∞). The distance function ρp is neocontinuous on
every uniformly p-integrable set D ⊂ Lp(Ω, M)× Lp(Ω,M).

Proof: Similar to the preceding proof. 2

Theorem 7.6 Let t ∈ B and define f : L1(Ω,R) → L1(Ω,R) by f(x) = E[x|Gt].
Then

(i) f is neocontinuous on every uniformly integrable subset of L0(Ω,Rd).
(ii) For each r > 0, the set B = {f(x) : E[|x|] ≤ r} is neocompact in L0(Ω,R).

Proof: (i) Let A be neocompact in L0(Ω,Rd) and uniformly integrable. Then
the set {f(x) : x ∈ A} is uniformly integrable in L0(Ω,Rd), and by Lemma 7.2 is
contained in a uniformly integrable neocompact set F in L0(Ω,Rd). The set G of
Gt-measurable characteristic functions x ∈ L0(Ω, {0, 1}) is basic in L0(Ω,Rd). Since
the integral function x 7→ E[x] is neocontinuous on every uniformly integrable set,

H = {(x, y, z) ∈ A× F ×G : y is Gt-measurable and E[yz]− E[xz] = 0}

is neocompact. Therefore by property (f), the set

I = {(x, y) ∈ A× F : (∀z ∈ G)(x, y, z) ∈ H}

is neocompact. By definition of conditional expectation, I is the graph of the re-
striction f |A. Therefore f is neocontinuous on every uniformly integrable set.
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(ii) By Theorem 6.4, the set C = {x : E[|x|] ≤ r} is neocompact. (Note,
however, that C is not uniformly integrable, and f is not continuous on C.) We
have B = f(C). By 5.6, the set D of Gt-measurable functions is neoclosed, so
C ∩ D is neocompact. We show that B = C ∩ D. For all x we have f(x) ∈ D
and E[|f(x)|] ≤ E[|x|]. Therefore B ⊂ C ∩ D. Moreover, for all x ∈ D we have
f(x) = x, so C ∩D ⊂ B. 2

We conclude this section with another example of a function which is continuous
but not neocontinuous.

Example 7.7 Let N be a compact subset of R with at least two elements and let
t ∈ [0, T ). The function g : L0(Ω, N) → L0(Ω,R) defined by g(x) = E[x|Ft] is
continuous but is not neocontinuous in a rich adapted space.

Proof: We give the proof when N = {0, 1}, so that N = L0(Ω, N) is the neo-
compact space of characteristic functions of P -measurable subsets of Ω. g is clearly
continuous. We assume that g is neocontinuous and get a contradiction. Let the
measure µ on R be the point mass at 1/2. If g is neocontinuous then the set
A = {x ∈ L0(Ω, N) : law(g(x)) = µ} is neoclosed in the neocompact space N and
hence is neocompact. We have x ∈ A if and only if E[x|Ft](ω) = 1/2 for almost all
ω. Let tn be a strictly decreasing sequence of elements of B with limn→∞ tn = t. As
in Example 5.7, the sets

Bn = A ∩ {x ∈ L0(Ω, N) : x is Gtn-measurable}

form a decreasing chain of nonempty neocompact sets. However, if g is neocon-
tinuous then

⋂

n Bn is empty because any x ∈ ⋂

n Bn must be Ft-measurable, so
g(x)(ω) = x(ω) ∈ N and x /∈ A. This contradicts the countable compactness
property for Ω. Thus g cannot be neocontinuous. 2

8 Semicontinuity

In this section we shall continue the study of expected values in the neometric
setting. We start with the fact that, by Fatou’s lemma, the expected value function
is lower semicontinuous from L0(Ω, [0,∞]) to [0,∞]. To improve that result we shall
introduce a neometric analogue of lower semicontinuity.

It will be convenient to use the compact topological space R̄ = [−∞,∞] of
extended reals. We make R̄ into a metric space by defining the distance σ(r, s) =
| arctan(s) − arctan(r)|, with arctan(−∞) = −π/2, arctan(∞) = π/2. For any
metric space M and set D ⊂ M, a function f : D → R̄ is said to be lower
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semicontinuous, or LSC, if whenever xn → x in D, we have lim infn→∞(f(xn)) ≥
f(x). It is easy to see that f is LSC if and only if for every compact set C ⊂ M,
the upper graph {(x, r) ∈ C × R̄ : f(x) ≤ r} is compact.

We shall use the notation R̄+ = [0,∞], R̄ = L0(Ω, R̄), and R̄+ = L0(Ω, R̄+).

Definition 8.1 Let D ⊂ M. A function f : D → R̄ is neo-LSC on M if for
every neocompact set C ⊂ D, the upper graph

{(x, y) ∈ C × R̄ : f(x)(ω) ≤ y(ω) almost surely}

is neocompact.

In the special case that f maps D into R, the definition simplies to the following.

Proposition 8.2 Let D ⊂ M and let f : D → R. Then f is neo-LSC if and only
if the set

{(x, z) ∈ C × R̄ : f(x) ≤ z}
is neocompact for every neocompact set C ⊂ D. Moreover, if f is neo-LSC then f
is LSC.

Proof: Let C ⊂ D be neocompact,

A = {(x, y) ∈ C × R̄ : f(x) ≤ y(ω) almost surely}

and
B = {(x, z) ∈ C × R̄ : f(x) ≤ z}.

If A is neocompact, then B is neocompact because

B = A ∩ (C × R̄)

and C × R̄+ is neoclosed. If B is neocompact, then A is neocompact because

A = {(x, y) : (∃z)[(x, z) ∈ B and z ≤ y(ω) almost surely]}.

This shows that f is neo-LSC if and only if B is neocompact for every C.
Now suppose f is neo-LSC. If C is compact, then C×R̄ is compact, and therefore

the set B is compact. This shows that f is LSC. 2

Recall from Proposition 4.16 that if B ⊂ M is basic then the distance from a
random variable x to B is neocontinuous in x. Examples 4.17 and 5.7 show that the
distance from x to a neocompact set is not necessarily neocontinuous, but the next
result shows that it is at least neo-LSC.
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Proposition 8.3 If C ⊂M is neocompact, then the function

f(x) = ρ0(x,C)

is neo-LSC from M into R.

Proof: Let A ⊂M be neocompact. The upper graph

D = {(x, z) ∈ A× R̄+ : ρ0(x,C) ≤ z}

is neocompact because

D = {(x, z) : (∃y)[ρ0(x, y) ≤ z ∧ y ∈ C]}.

Thus f is neo-LSC by Proposition 8.2. 2

We now turn to the expected value function.

Theorem 8.4 (i) The expected value function

E : R̄+ → R̄

is neo-LSC.
(ii) For each t ∈ B, the conditional expectation function f : R̄+ → R̄ defined by

f(x) = E[x|Gt] is neo-LSC.

Proof: We prove (ii). The proof of (i) will be similar but with G instead of Gt.
Let A be neocompact in R̄+, and let

G = {(x, y) ∈ A× R̄ : f(x)(ω) ≤ y(ω) almost surely}.

We must show that G is neocompact. By the randomization lemma, for each n ∈ N
the function x 7→ min(n, x) is neocontinuous from R̄+ to L0(Ω, [0, n]). The set
L0(Ω, [0, n]) is uniformly integrable, so by Theorem 7.6, the function y 7→ E[y|Gt] is
neocontinuous on L0(Ω, [0, n]). Therefore for each n the function

fn(x) = E[min(n, x)|Gt]

is neocontinuous and hence neo-LSC from R̄+ to R̄. Since min(n, x) ≤ x everywhere,
we have

fn(x)(ω) ≤ f(x)(ω)

almost surely. Moreover, limn→∞ min(n, x) = x, so by Fatou’s lemma,

lim inf
n→∞

(fn(x)(ω)) ≥ f(x)(ω)
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almost surely. Therefore

sup
n→∞

(fn(x)(ω)) = f(x)(ω)

almost surely. Then

G =
⋂

n
{(x, y) ∈ A× R̄ : fn(x)(ω) ≤ y(ω) almost surely},

and hence G is neocompact as required. 2

We cannot replace Gt by Ft in the preceding theorem. The proof of Example 7.7
shows that for each t ∈ [0, T ), the conditional expectation function x 7→ E[x|Ft] is
not even neo-LSC on L0(Ω, {0, 1}).

Proposition 8.5 If D is a separable subset of M, then every LSC function f :
D → R̄ is neo-LSC.

Proof: Every neocompact set C ⊂ D in M is separable, and thus compact by
Proposition 4.8. Therefore the upper graph

G = {(x, r) ∈ C × R̄ : f(x) ≤ r}

is compact and hence neocompact, so f is neo-LSC. 2

All continuous functions into R̄ are LSC. Here is the analogous result for neo-LSC
functions.

Proposition 8.6 Let D ⊂ M. Every neocontinuous function f : D → R̄ is neo-
LSC. A function f : D → R̄ is neocontinuous if and only if both f and −f are
neo-LSC.

Proof: We may assume that D is neocompact. Suppose first that f is neocon-
tinuous. Then the set

F = {(x, f(x)) : x ∈ C}

is neocompact. The set

L = {(z, y) ∈ R̄ × R̄ : z(ω) ≤ y(ω) almost surely}

is also neocompact by 5.2. Therefore the upper graph

G = {(x, y) ∈ C × R̄ : f(x)(ω) ≤ y(ω) almost surely}
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= {(x, y) ∈ C × R̄ : (∃z ∈ R̄)((x, z) ∈ F ∧ (z, y) ∈ L)}

is neocompact, and f is neo-LSC. Similarly, −f is neocontinuous and hence neo-LSC.
Now suppose that both f and −f are neo-LSC. Then both the upper and lower

graphs
G = {(x, y) ∈ C × R̄ : f(x)(ω) ≤ y(ω) almost surely}

and
H = {(x, y) ∈ C × R̄ : f(x)(ω) ≥ y(ω) almost surely}

are neocompact. Therefore the graph F = G ∩ H of f |C is neocompact, so f is
neocontinuous. 2

The next result is a randomization lemma for lower semicontinuous functions.

Proposition 8.7 If f : M → R̄ is LSC then the function g : M → R̄ defined by
g(x)(ω) = f(x(ω)) is neo-LSC.

Proof: Let C be neocompact in M. By Proposition 5.8, there are a sequence
〈bm〉 of reals converging to 1 and a sequence 〈Km〉 of compact sets in M such that
C ⊂ D where

D =
⋂

m
{x ∈M : P [x(ω) ∈ Km] ≥ bm}.

Moreover, D is neocompact in M. It suffices to show that the set

G = {(x, y) ∈ D × R̄ : f(x(ω)) ≤ y(ω) almost surely}

is neocompact. Since f is lower semicontinuous, for each m the set

Am = {(x, y) ∈ Km × R̄ : f(x) ≤ y}

is compact. By 5.5, the set

Bm = {(x, y) ∈ D × R̄ : P [(x, y)(ω) ∈ Am] ≥ bm}

is neoclosed. Also, G =
⋂

m Bm, so G is neoclosed. For each m, the set Âm =
L0(Ω, Am) is neocompact and Bm ⊂ (Âm)bm . Hence G ⊂ ⋂

m(Âm)bm . By the
diagonal intersection property, the set

⋂

m(Âm)bm is neocompact. Therefore G is
neocompact as required. 2

We next prove a result on the composition of two neo-LSC functions. If B ⊂ R̄,
we say that a function g : B → R̄ is monotone if whenever x ∈ B and x(ω) ≤ y(ω)
almost surely, we have y ∈ B and g(x)(ω) ≤ g(y)(ω) almost surely. For example, the
conditional expectation function x 7→ E[x|Gt] is monotone with domain B = R̄+.
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Proposition 8.8 Suppose that f : A → B is neo-LSC on M, and g : B → R̄ is
neo-LSC on R̄ and monotone. Then the composition g ◦ f : A → R̄ is neo-LSC on
M.

Proof: Let C ⊂ A be neocompact. Since f and g are neo-LSC and g is monotone,
we see in turn that each of the sets

F = {(x, y) ∈ C × R̄ : f(x)(ω) ≤ y(ω) almost surely},

D = {y ∈ R̄ : (∃x)(x, y) ∈ F},

G = {(y, z) ∈ D × R̄ : g(y) ≤ z almost surely},

H = {(x, y, z) : (x, y) ∈ F and (y, z) ∈ G},

J = {(x, z) : (∃y)(x, y, z) ∈ H}

are neocompact. Using the monotonicity of g again, one can check that

J = {(x, z) ∈ C × R̄ : ((g ◦ f)(x))(ω) ≤ z(ω) almost surely}.

Since this set is neocompact, g ◦ f is neo-LSC. 2

Corollary 8.9 If f : D → R̄+ is neo-LSC on M, then the functions x 7→ E[f(x)]
and x 7→ E[f(x)|Gt] are neo-LSC on M.

Corollary 8.10 Let p ∈ [1,∞). The distance function ρp is neo-LSC on Lp(Ω,M)×
Lp(Ω,M).

Proposition 8.11 The composition of a neocontinuous function and a neo-LSC
function is neo-LSC. That is, if f : A → N is neocontinuous from M to N and
g : f(A) → R̄ is neo-LSC on N , then g ◦ f : A → R̄ is neo-LSC on M.

Proof: The proof is similar to the proof of Proposition 8.8 but is simpler. 2

Corollary 8.12 For each open set O ⊂ M , the function x 7→ P [x(ω) ∈ O] is
neo-LSC from M to [0, 1].

Proof: By the Portmanteau theorem ([4], p. 11), the function f(µ) = µ(O) is
LSC from Meas(M) to [0, 1], and P [x(ω) ∈ O] = f(law(x)). 2

Corollary 8.13 For each set D ⊂ K, neocontinuous function f : D → M, and
neocompact set C ⊂ M, the function g : D → R defined by g(x) = ρ0(f(x), C) is
neo-LSC from K into R̄. 2
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9 Spaces of Stochastic Processes

Sections 9, 10, and 11 contain technical material in stochastic analysis. Our aim in
these sections is to build a library of neocompact sets and neocontinuous functions
in a rich adapted space. On a first reading, it may be helpful to skip ahead to
Section 12 where we begin to apply neocompact sets.

We assume throughout this section that M is a complete separable metric space.
To illustrate our method in the simplest case, we work with stochastic processes on
the unit time interval [0, 1], and take B to be the set of binary rationals in [0, 1).
One can also consider stochastic processes with the time line [0,∞) instead of [0, 1].
Another possibility, which was used in [14], is to take the set of binary rationals in
[0,∞) as the time line.

Definition 9.1 By a stochastic process on Ω with values in M we mean a mea-
surable function x from Ω × [0, 1] into M , where Ω × [0, 1] has the product of the
rich measure P on Ω and Lebesgue measure on [0, 1].

There are several ways to build metric spaces of stochastic processes. The sim-
plest approach is to form a new metric space N whose elements are functions from
[0, 1] into M , and then consider metric spaces of random variables with values in N .
Here are some possibilities for N .

C([0, 1],M) is the space of continuous functions from [0, 1] into M with the
metric sup{ρ(x(t), y(t)) : t ∈ [0, 1]} of uniform convergence.

L0([0, 1], M) is the space of all Lebesgue measurable functions x : [0, 1] → M
with the metric ρ0 of convergence in probability, identifying functions which are
equal a.e.

If p ∈ [1,∞), the metric space Lp([0, 1],M) is the set of Lebesgue measurable
functions x : [0, 1] → M such that (ρ(x(·), a))p is Lebesgue integrable for every
a ∈ M , with the metric ρp defined by

ρp(x(·), y(·)) =
∫ 1

0
(ρ(x(t), y(t))pdt1/p.

D([0, 1],M) is the space of right continuous left limit (rcll) functions from [0, 1]
into M , with a complicated metric called the Skorokhod J1 metric. We shall leave
the treatment of this space in our framework for a future publication.

Example 9.2 Some neocontinuous functions on spaces of stochastic processes:

Let p ∈ {0}∪[1,∞). Since the identity function from C([0, 1],M) into Lp([0, 1],M)
is continuous, the identity function from L0(Ω, C([0, 1],M)) into L0(Ω, Lp([0, 1],M))
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is neocontinuous by the randomization lemma 5.19. It follows that any neocom-
pact set in L0(Ω, C([0, 1],M)) is neocompact in L0(Ω, Lp([0, 1],M)). Moreover, if
D ⊂ L0(Ω, C([0, 1],M)) and f : D → N is neocontinuous from L0(Ω, Lp([0, 1],M))
to N , then f is neocontinuous from L0(Ω, C([0, 1],M)) to N .

The elements of L0(Ω, C([0, 1],M)) are called continuous stochastic processes.
If x is a continuous stochastic process and t ∈ [0, 1], we let xt be the random
variable xt(ω) = x(ω)(t). Since the application function (a, t) 7→ a(t) is continuous
from C([0, 1],M) × [0, 1] into M , we see from the randomization lemma 5.19 that
(x, t) 7→ xt is neocontinuous from L0(Ω, C([0, 1],M))×[0, 1] into L0(Ω,M). Since the
supremum function a 7→ sup{a(t) : t ∈ [0, 1]} is continuous from C([0, 1],R) to R,
the function x 7→ sup{x(ω)(t) : t ∈ [0, 1]} is neocontinuous from L0(Ω, C([0, 1],R))
into R.

Let N be either Lp([0, 1],M) or C([0, 1],M). If t ∈ (0,1] and x ∈ N , we let
x|t be the restriction (x|t)(ω) = (x(ω))|[0, t]. For each t, the function x 7→ x|t
is neocontinuous from L0(Ω, N) to L0(Ω, Nt) where Nt is either Lp([0, t],M) or
C([0, t],M).

If x ∈ L0(Ω, N), a representative of x is a measurable function x̃ : Ω× [0, 1] →
M such that x̃(ω, t) = x(ω)(t) almost surely in P× Lebesgue measure.

Definition 9.3 Let p ∈ {0}∪[1,∞), and let N be either C([0, 1],M) or Lp([0, 1],M).
A stochastic process x ∈ N is said to be adapted if x has a representative x̃ such
that x̃(·, t) is Ft-measurable for all t ∈ [0, 1). Ap(Ω,M) will denote the set of all
adapted processes in L0(Ω, Lp([0, 1],M)), and A(Ω,M) denotes A0(Ω,M).

Proposition 9.4 Let p ∈ {0}∪[1,∞), and let N be either C([0, 1], M) or Lp([0, 1],M).
Then the set of adapted processes is neoclosed in N .

Proof: For each t ∈ (0, 1), the set of Ft-measurable elements of L0(Ω, Nt) is
neoclosed in Nt, and therefore the set

Ct = {x ∈ N : x|t is Ft −measurable}

is neoclosed in N . The set of adapted processes in N is equal to the countable
intersection

⋂

0<t∈B Ct, and thus is neoclosed in N . 2

Example 9.5 Let AC(Ω,M) be the neoclosed set of adapted processes in L0(Ω, C([0, 1],M))
and let ST (Ω) be the set of stopping times in L0(Ω, [0, 1]). If x ∈ AC(Ω, M) and
τ ∈ ST (Ω), xτ denotes the stopped process

xτ (ω, t) = x(ω, min(τ(ω), t)).
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The deterministic function (a, t) 7→ at is continuous from C([0, 1],M) × [0, 1] into
M , so the function (x, τ) 7→ xτ is neocontinuous from AC(Ω,M) × ST (Ω) into
AC(Ω,M) by the randomization lemma. Since ST (Ω) is neocompact by Proposition
5.15, it follows that for every neocompact set B ⊂ AC(Ω,M), the set of stopped
processes

{xτ : x ∈ B and τ ∈ ST (Ω)}

is neocompact in AC(Ω,M).

We conclude this section by showing that on each uniformly integrable set in
L0(Ω,R), the function x(ω) 7→ E[x(ω)|Ft] is a neocontinuous function into the
space of adapted stochastic processes A1(Ω,R). This is in contrast to Example 7.7,
where we saw that the corresponding function with t held fixed is not neocontinuous.
In proving neocontinuity of this function, we shall use our neocompact analogue of
Arzela’s theorem.

Definition 9.6 Let

stepn : L0(Ω,MBn) → L0(Ω, Lp([0, 1],M))

be defined by

stepn(x)(ω, t) = xs(ω) whenever s ∈ Bn and t ∈ [s, s + 2−n).

That is, stepn(x)(ω) is the right continuous step function with steps in Bn whose
value at each s ∈ Bn is xs(ω). It follows easily from Proposition 5.18 that stepn is
neocontinuous.

The next theorem is like Proposition 7.6 but with Ft and a variable t instead of
Gt and a fixed t.

Theorem 9.7 Define the function f : L1(Ω,R) → A1(Ω,R) by

f(x)(ω, t) = E[x(·)|Ft](ω).

(i) The function f is neocontinuous on each uniformly integrable set C ⊂ L0(Ω,R).
(ii) For each r > 0, the set {f(x) : E[|x|] ≤ r} is neocompact in A1(Ω,R).

Proof: Let ρ be the metric for L1([0, 1],R). For t ∈ B let g(x)(ω, t) = E[x(·)|Gt](ω).
Then f(x(ω))(s) = limt↓s g(x)(ω, t) for all s ∈ [0, 1). For each n ∈ N let fn be the
function

fn(x(ω)) = stepn((E[x(·)|Gt](ω) : t ∈ Bn)).
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Then fn(x(ω))(t) = g(x)(ω, t) for all t ∈ Bn.
(i) Let C ⊂ L0(Ω,R) be a uniformly integrable set. Each fn is neocontinuous on

C. The family {fn : n ∈ N} is equicontinuous on C because for each x, y ∈ C and
each n,

ρ0(fn(x), fn(y)) ≤ E[
∑

t∈Bn

|E[x|Gt]− E[y|Gt]|]/2n

≤
∑

t∈Bn

E[|E[x− y|Gt]|]/2n ≤
∑

t∈Bn

E[|x− y|]/2n = E[|x− y|]

and C is uniformly integrable.
We show that limn→∞ fn(x) = f(x) uniformly on C. For a, b ∈ R let U(a, b)(ω)

be the number of times the path g(x)(ω, t) crosses from below a to above b when
t ∈ B. Doob’s upcrossing inequality (cf. [8]) shows that

E[U(a, b)] ≤ E[|x|]
b− a

.

Since C is uniformly integrable, the set of values E[|x|] for x ∈ C is bounded. Let
ε > 0 and choose c > 0 so that E[|x|]/c ≤ ε for all x ∈ C. By Doob’s martingale
inequality,

P [sup
t∈B

|g(x)(ω, t)| ≥ c] ≤ ε for all x ∈ C.

For x ∈ C let S(x) be the set of all ω such that supt∈B |g(x)(ω, t)| ≤ c, so that
P [S(x)] ≥ 1− ε. Now let x ∈ C and ω ∈ S(x), and let Vn(x, ω) be the set of times
t ∈ [0, 1) at which the paths fn(x)(ω, t) and f(x)(ω, t) differ by at least ε. If the set
Vn(x, ω) has Lebesgue measure at least ε/c, then it must meet at least 2n(ε/c) of the
subintervals of [0, 1] bounded by points of Bn. Within each of these subintervals,
the path g(x)(ω, t) must have an upcrossing of some subinterval of [−c, c] of length
ε/2. In view of the upcrossing inequality above, there is a k ∈ N such that for
all n ≥ k, the set Vn(x, ω) has Lebesgue measure ≤ ε/2c, and thus for x ∈ C and
ω ∈ S(x),

ρ(fn(x)(ω, ·), f(x)(ω, ·)) =
∫ 1

0
|fn(x)(ω, t))− f(x)(ω, t)|dt ≤ ε(1− ε/c) + ε ≤ 2ε.

For all x ∈ C and n ≥ k, P [S(x)] ≥ 1−ε, and hence ρ0(fn(x), f(x)) ≤ 2ε. Therefore
fn(x) → f(x) uniformly on C. It now follows by the analogue of Arzela’a theorem,
Theorem 6.5, that the function f is neocontinuous on C.

(ii) Let D = {x : E[|x|] ≤ r}. By Theorem 6.4, D is neocompact, and by
Proposition 7.6, fn(D) is neocompact in L0(Ω, L1([0, 1],R)) for each n. The first
part of the proof shows that fn(x) → f(x) uniformly on D. Therefore

f(D) ⊂
⋂

n
(fn(D))εn
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for some sequence εn → 0. The opposite inclusion is easily seen to hold as well. By
closure under diagonal intersections, f(D) is neocompact in L0(Ω, L1([0, 1],R)). 2

For each d ∈ N let
Ld = L0(Ω, L1([0, 1]d,R)).

The preceding theorem can be generalized to show that for each d, the function

f : Ld → Ld+1

defined by
f(y)(ω,~s, t) = E[y(·, ~s)|Ft](ω)

is neocontinuous on each uniformly integrable subset of Ld. The paper [11] in-
troduced a whole class of bounded functions from L1 into Ld, called conditional
processes. This class is defined as the smallest class of functions which contains
the functions

Φ̂(x)(ω, t1, . . . , td) = Φ(x(ω, t1), . . . , x(ω, td))

where Φ is bounded and continuous on Rd, and is closed under (repeated) compo-
sition by continuous real functions and by the conditional expectation function

f(y)(ω,~s, t) = E[y(·, ~s)|Ft](ω).

Since compositions of neocontinuous functions are neocontinuous, and all conditional
processes are bounded, it follows that each conditional process in the sense of [11]
is neocontinuous for each rich adapted probability space Ω.

10 Martingale Integrals

For simplicity, we confine our discussion here to martingales with continuous paths
on the unit interval [0, 1]. With some additional complications, the more general
case of local martingales with paths in D([0,∞),Rd) can be treated in a similar
manner.

Martingales are integrable stochastic processes with values in Rd such that for
each pair of times s ≤ t, the expected value at time t conditioned on time s equals
the value at time s. Brownian motions are examples of martingales.

Definition 10.1 A process z ∈ L2(Ω, C([0, 1],Rd)) is said to be a (continuous
square integrable) martingale if z is adapted and

E[z1(·)|Ft](ω) = zt(ω) almost surely for all t ∈ [0, 1).

We let M(Ω,Rd) denote the set of martingales z ∈ L2(Ω, C([0, 1],Rd)) such that
z(ω, 0) = 0.

47



Proposition 10.2 M(Ω,Rd) ∩ A is neocompact in L0(Ω, C([0, 1],Rd)) for every
2-uniformly integrable neocompact set A in L0(Ω, C([0, 1],Rd)).

Proof: (Cf. [13]). Recall that for each t ∈ B, (
⋃

s<tFs) ⊂ Gt ⊂ Ft. We claim
that a continuous process z ∈ L2(Ω, C([0, 1],Rd)) is a martingale if and only if
zs = E[z1|Gs] for all s ∈ B. To see this, suppose first that z is a martingale and
s ∈ B. Then zs = E[z1|Fs], and by continuity zs is Gs-measurable and

zs = E[zs|Gs] = E[E[z1|Fs]|Gs] = E[z1|Gs].

For the converse suppose that zs = E[z1|Gs] for all s ∈ B. Then for all t ∈ [0, 1),

zt = lim
s↓t

zs = lim
s↓t

E[z1|Gs] = E[z1|Ft],

so z is an Ft-martingale. This proves the claim.
For each s ∈ B, the function z 7→ E[z1|Gs] is neocontinuous on each uniformly

2-integrable set by Proposition 7.6. Let A be a uniformly 2-integrable neocompact
set in L0(Ω, C([0, 1],Rd)). Then

Bs = {z ∈ A : zs − E[z1|Gs] = 0}

is neocompact. By the preceding paragraph,

M(Ω,Rd) ∩ A =
⋂

s∈B

Bs,

which is a countable intersection of neocompact sets and hence is neocompact. 2

We now turn to stochastic integrals.
To illustrate our methods in a simple case we shall consider integrals with respect

to continuous square integrable martingales, and then specialize to integrals with re-
spect to d-dimensional Brownian motions. We also restrict our attention to the case
of bounded adapted integrands. There are analogous results for the more general
case of integrals of predictable processes with respect to local semimartingales.

Definition 10.3 Let c, d, and k ∈ N remain fixed throughout our discussion and
let K = [−k, k]. Let Kcd be the space of all c × d matrices with entries in K,
with the Euclidean norm |u| =

√

∑

i,j(ui,j)2. Recall that A(Ω, M) is the set of all
adapted processes in L0(Ω, L0([0, 1],M)), i.e., the set of measurable adapted real
valued processes with values in M . The stochastic integral

∫ t

0
g(ω, s)dz(ω, s), g ∈ A(Ω,Kcd), z ∈M(Ω,Rd)
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is the unique continuous function from A(Ω,Kcd)×M(Ω,Rd) into M(Ω,Rc) such
that if g(·, u) is constant and Fs-measurable for u ∈ [s, t), then

∫ t

0
g(ω, u)dz(ω, u) =

∫ s

0
g(ω, u)dz(ω, u) + g(ω, s)[z(ω, t)− z(ω, s)].

Definition 10.4 We say that a set C is neocompact in A(Ω,M) if C ⊂ A(Ω,M)
and C is neocompact in L0(Ω, L0([0, 1], M)). We say that C is neocompact in
M(Ω,Rd) if C ⊂ M(Ω,Rd) and C is uniformly 2-integrable and neocompact in
L0(Ω, C([0, 1],Rd)).

Definition 10.5 Let Bn be the set of multiples of 2−n in [0, 1). The quadratic
variation [z, z] of a one dimensional continuous martingale z ∈M(Ω,R) is the L1

limit of the sequence of sums

[z, z]n(ω)(t) =
∑

{[z(ω)(s)− z(ω)(s− 2−n)]2 : s ∈ Bn and s ≤ t}.

This limit exists and [z, z] is a continuous increasing process (cf. [8]).

We use the classical equation

E[(
∫ t

0
g(ω, s)dz(ω, s))2] = E[

∫ t

0
(g(ω, s))2d[z, z]]. (7)

It can be shown that for every uniformly 2-integrable set C ⊂ M(Ω,Rd), the
stochastic integral function is neocontinuous fromA(Ω,Kcd)×C toM(Ω,Rc), show-
ing first that the quadratic variation is neocontinuous from C to L1(Ω, C([0, 1],R)).
(For analogous results in the nonstandard setting, see [12] and [1]). Here we shall
prove the easier result that for each z ∈ M(Ω,Rd), the stochastic integral with
respect to z is neocontinuous from A(Ω,Kcd) to M(Ω,Rc). This will be sufficient
for us to obtain existence theorems for stochastic differential equations.

Lemma 10.6 Let z ∈M(Ω,R). The function

θ(x)(ω, t) =
∫ t

0
(x(ω, s))2d[z, z](ω, s)

is neocontinuous from A(Ω,K ) to L0(Ω, I) and its range is contained in a neocom-
pact set, where I is the set of increasing functions in C([0, 1],R) with value 0 at
0.
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Proof: The deterministic function x 7→
∫ t
0(x(s))2dy(s) is continuous from L0([0, 1],K)×

I to I. By the randomization lemma 5.19, θ is neocontinuous from A(Ω,K ) to
L0(Ω, I). For each x ∈ A(Ω,K ) and s < t in [0, 1] we have

(θ(x)(ω, t)− θ(x)(ω, s)) ≤ k2([z, z](ω, t)− [z, z](ω, s)).

By Proposition 5.17, the range of θ is contained in a neocompact set in L0(Ω, I). 2

Lemma 10.7 Let k > 0 and let C be a neocompact set in M(Ω,R). The set A of
all y ∈M(Ω,R) such that for some z ∈ C,

(y(ω, t)− y(ω, s))2 ≤ k2(z(ω, t)− z(ω, s))2 for all s ≤ t in [0, 1] a.s.

is neocompact in M(Ω,R).

Proof: We may assume that C is nonempty. Since C is uniformly 2-integrable
there is a sequence 〈an〉 such that limn→∞ an = 0 and

E[φn(sup
t

(z(ω, t))2)] ≤ an

for all z ∈ C and n ∈ N. Then A is contained in the uniformly 2-integrable neoclosed
set

B = {y ∈ L0(Ω, C([0, 1],Rd)) : E[φn(sup
t

(y(ω, t)/k)2)] ≤ an for all n ∈ N}.

Let Dn be the set

{(y, z) ∈ B × C : (∀s, t ∈ Bn)(y(ω, t)− y(ω, s))2 ≤ k2(z(ω, t)− z(ω, s))2 a.s.}.

Dn is a decreasing chain of uniformly 2-integrable neoclosed sets. Since the paths
of each y ∈ B are continuous,

A = M(Ω,R) ∩ {y ∈ B : (∃z ∈ C)(y, z) ∈
⋂

n
Dn}.

For each y, the sets
En(y) = {z ∈ C : (y, z) ∈ Dn}

form a decreasing chain of neocompact sets. Then by the countable compactness
property,

A = M(Ω,R) ∩ {y ∈ B : (
⋂

n
En(y)) 6= ∅}
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= M(Ω,R) ∩
⋂

n
{y ∈ B : En(y) 6= 0}

= M(Ω,R) ∩
⋂

n
{y ∈ B : (∃z ∈ C)(y, z) ∈ Dn}.

By Proposition 3.5, each set in the countable intersection on the right is neoclosed.
Therefore

A = M(Ω,R) ∩ F

where F is a uniformly 2-integrable neoclosed set.
For each δ > 0 and x ∈ C([0, 1],R) let w(δ, x) be the modulus of continuity

w(δ, x) = sup{|x(t)− x(s)| : s, t ∈ [0, 1] and |t− s| ≤ δ}.

For each (y, z) ∈ ⋂

n Dn and δ > 0 we have y(ω, 0) = z(ω, 0) = 0 and

w(δ, y(ω)) ≤ kw(δ, z(ω))

almost surely. Let N = {x ∈ C([0, 1],R) : x(0) = 0}. A set S ⊂ Meas(N) has
compact closure if and only if for each η > 0 and ε > 0 there exists δ > 0 such that
µ[w(δ, x) > ε] < η for all µ ∈ S (cf. [4]). Since C is neocompact, law(C) is compact.
Therefore for each η and ε > 0 there exists δ > 0 such that for all z ∈ C,

P{ω : w(δ, z(ω)) > ε} < η.

Then for all y ∈ F ,
P{ω : w(δ, y(ω)) > kε} < η.

It follows that law(F ) has compact closure in Meas(C([0, 1],R). Therefore F is
contained in a neocompact set, and since F is neoclosed, F is neocompact in
L0(Ω, C([0, 1],R)). By Proposition 10.2, A = M(Ω,R)∩F is uniformly 2-integrable
and neocompact in L0(Ω, C([0, 1],R)), and hence is neocompact in M(Ω,R). 2

Proposition 10.8 Let z ∈M(Ω,Rc). The function

φ(x)(ω, t) =
∫ t

0
x(ω, s)dz(ω, s)

is neocontinuous from A(Ω,Kcd) to M(Ω,Rc) and its range is contained in a neo-
compact set in M(Ω,Rc).

Proof: Since each coordinate of the stochastic integral is a sum of d one-dimensional
stochastic integrals, it suffices to prove the result in the one dimensional case
c = d = 1. The range of φ is contained in the neocompact set A in M(Ω,Rc) from
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the preceding lemma with C = {z}. For t ∈ B, let Gt be the set of all Gt-measurable
x ∈ L0(Ω,K), and for n ∈ N let Hn be the Cartesian product

∏{Gt : t ∈ Bn}. Each
Gt is basic in L0(Ω,K). For each n, the function φ|stepn(Hn) is neocontinuous
because it is given by the finite sum

φ(x)(ω, t) =
∑

{x(ω, s)(z(ω, s + 2−n)− z(ω, s)) : s ∈ Bn and s + 2n ≤ t}

+x(ω, s + 2n)(z(ω, t)− z(ω, s + 2n)).

Let B ⊂ A(Ω,K ) be neocompact and let

Dn = {(x, y) ∈ B × A : (∀v ∈ Hn)(ρ2(φ(stepn(v)), y))2 ≤ E[θ(x− stepn(v))]}.

By applying property (f) 2n + 1 times, we see that Dn is neocompact. By (7), the
graph of φ|B is equal to the neocompact set

⋂

n Dn. Thus φ is neocontinuous. 2

11 Stochastic Integrals Over Brownian Motions

A d-dimensional Brownian motion on Ω is a continuous martingale x inM(Ω,Rd))
such that law(x) is the Wiener distribution on C([0, 1],Rd). Let Wd be the set of
d-dimensional Brownian motions on Ω.

Proposition 11.1 Let N be either C([0, 1],Rd) or L0([0, 1],Rd). For each p ∈
[1,∞), the set Wd of d-dimensional Brownian motions on Ω is neocompact and
uniformly p-integrable in N .

Proof: Wd is the intersection of the set M(Ω,Rd) and the neocompact uniformly
p-integrable set of processes x such that law(x) is the Wiener distribution. By
Proposition 10.2, Wd is neocompact in N . 2

We remark that the set Wd is not compact, because it contains a sequence of
independent Brownian motions, and such a sequence has no convergent subsequence.

We now consider stochastic integrals with respect to d-dimensional Brownian
motions. For stochastic integrals with respect to Brownian motion, Definition 10.3
in the preceding section can be extended to the case that y is adapted with paths in
L2([0, 1],Rcd), and gives a continuous function fromA2(Ω,Rcd)×Wd into A2(Ω,Rc).

Proposition 11.2 Let φ be the stochastic integral function

φ(y, w)(ω, t) =
∫ t

0
y(ω, s)dw(ω, s).

(i) φ is neocontinuous from A2(Ω,Rcd)×Wd to A2(Ω,Rc).
(ii) For each k, φ is neocontinuous from A(Ω,Kcd)×Wd to M(Ω,Rc).
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Proof: It suffices to prove the theorem in the one dimensional case c = d = 1.
(i) This is a direct consequence of Proposition 5.18.
(ii) The quadratic variation of a one dimensional Brownian motion w ∈ W1 is

just [w,w](ω, t) = t. Therefore equation (7) becomes

E[
∫ t

0
g(ω, s)dw(ω, s)2] = E[

∫ t

0
(g(ω, s))2ds].

Since the set W1 is neocompact in M(Ω,R), we see from Lemma 10.7 that the set

{
∫ t

0
y(ω, s)dw(ω, s) : y ∈ A(Ω,K) and w ∈ W1}

is contained in a neocompact set in M(Ω,R). A straightforward modification of the
proof of Proposition 10.8 now shows that the function φ is neocontinuous in both
variables y and w. 2

From now on we let w be a d-dimensional Brownian motion for Ω which remains
fixed throughout our discussion. We next wish to show that the function

(g, x) 7→
∫ t

0
g(s, x(ω, s))dw(ω, s)

is neocontinuous, where g is a measurable but possibly discontinuous function from
[0, 1] × Rc into Kcd, and x is in M(Ω,Rc). In order to prove such a result, we
will have to restrict x to a certain neoclosed set. The difficulty is that the function
x 7→ g(·, x) is not continuous, and is not even well defined for all x because g may
have two representatives g1 and g2 such that g1(s, x(ω, s)) 6= g2(s, x(ω, s)) on a
subset of Ω of positive measure. For neocontinuity to make sense, we must first
choose an appropriate metric for the space of measurable functions from [0, 1]×Rc

into Kcd. For this purpose we use the normal probability measure on Rc.

Definition 11.3 For each closed set H ⊂ Rc×d, we let L(H ) be the space of mea-
surable functions from [0, 1]×Rc into H with the metric of convergence in probability
relative to the product of Lebesgue measure on [0, 1] and the c-dimensional normal
measure on Rc.

Let J be the compact set of all matrices u ∈ Kcd such that 1/k ≤ det(uuT ), and
let I be the set of all stochastic integrals

I = {
∫ t

0
y(ω, s)dw(ω, s) : y ∈ A(Ω,J)}.

The preceding corollary shows that I is contained in a neocompact subset ofM(Ω,Rc).
We apply the following inequality of Krylov [16].
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Lemma 11.4 There is a constant b depending only on k, c, and d such that for each
x ∈ I and Borel function h : [0, 1]×Rc → R,

E[
∫ 1

0
|h(t, x(ω, t))|dt] ≤ b‖h‖c+1.2 (8)

Definition 11.5 Let H be the set of all adapted processes x ∈ L0(Ω, C([0, 1],Rc))
such that for each Borel function h : [0, 1]×Rc → R, the inequality (8) holds. Thus
I ⊂ H.

Lemma 11.6 The set H is neoclosed in L0(Ω, C([0, 1],Rc)).

Proof: Let M be the complete separable metric space of all Borel functions
h : [0, 1] ×Rc → R with the metric ρ(g, h) = min(1, ‖g − h‖c+1). For each n ∈ N,
let Un be the compact set of all h ∈ M such that h has Lipschitz bound n and
support [0, 1]× [−n, n]c. For each n, the function

(h, x) 7→ E[
∫ 1

0
|h(t, x(ω, t))|dt]

is neocontinuous from Un × L0(Ω, C([0, 1],Rc)) to R, and the function h → ‖h‖c+1

is continuous from Un to R. Therefore by Proposition 4.18, the set

An = {x : (∀h ∈ Un)E[
∫ 1

0
|h(t, x(ω, t))|dt] ≤ b‖h‖c+1}

and the intersection
⋂

n An are neoclosed in L0(Ω, C([0, 1],Rc)). We show that H =
⋂

n An. The inclusion H ⊂ ⋂

n An is trivial. Let x ∈ ⋂

n An. Then the function

I(h) = E[
∫ 1

0
h(t, x(ω, t))dt]

on the vector lattice
⋃

n Un of Lipschitz functions with bounded support generates
a Daniell integral. Every Borel function h is measurable with respect to I, and
the inequality (8) for Lipschitz h insures that Lebesgue null sets are null sets with
respect to I. By taking limits we see that the inequality (8) holds for all h ∈ M , so
x ∈ H. 2

Lemma 11.7 For any g ∈ L(Kcd) and x ∈ H,

E[sup
t
|
∫ t

0
g(s, x(ω, s))dw(ω, s)|2] ≤ 4b‖|g(·, ·)|2‖c+1.
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Proof: By Doob’s martingale inequality,

E[sup
t
|
∫ t

0
g(s, x(ω, s))dw(ω, s)|2]

≤ 4E[|
∫ 1

0
g(s, x(ω, s))dw(ω, s)|2] = 4E[

∫ 1

0
|g(s, x(ω, s))|2ds].

Now apply the inequality (8) with h(·, ·) = |g(·, ·)|2. 2

Theorem 11.8 The stochastic integral function

ψ : L(Kcd)×H →M(Ω,Rc)

defined by

ψ(g, x)(ω, t) =
∫ t

0
g(s, x(ω, s))dw(ω, s) (9)

is neocontinuous and its range is contained in a neocompact set in M(Ω,Rc).

Proof: By Proposition 10.8, the function

φ : A(Ω,Kcd) →M(Ω,Rc),

defined by

φ(y)(ω, t) =
∫ t

0
y(ω, s)dw(ω, s),

is neocontinuous and its range is contained in a neocompact set B in M(Ω,Rc).
For n ∈ N, let Ln be the closed set of all g ∈ L(Kcd) with support [0, 1]×[−n, n]c,

and let Un be the compact set of functions g ∈ Ln with uniform Lipschitz bound
n. Then

⋃

n Un is dense in L(Kcd). By the randomization lemma 5.19 and the
neocontinuity of φ, the stochastic integral function

ψ(h, x) = φ(h(t, x(ω, t)))

is well defined and neocontinuous on Un ×H.
We show that ψ is neocontinuous on Lm×H and then do the same for L(Kcd)×H.

Let Gm be the set

Gm =
⋂

n
{(g, x, y) ∈ Lm ×H×B : (∀h ∈ Un)ρ2(y, ψ(h, x))2 ≤ 8b‖|g − h|2‖c+1}.

Then (g, x, ψ(g, x)) ∈ Gm whenever (g, x) ∈ Lm ×H. If g ∈ Lm, x ∈ H, and ε > 0,
then for all f, h ∈ ⋃

n Un such that

‖|g − f |2‖c+1 ≤ ε, ‖|g − h|2‖c+1 ≤ ε,

55



we have

ρ2(ψ(f, x), ψ(h, x))2 = ρ2(0, ψ((f − h), x))2 ≤ 4b‖|f − h|2‖c+1 ≤ 8bε.

Since
⋃

n(Un ∩ Lm) is dense in Lm, it follows that Gm is the graph of ψ|(Lm ×H).
By Proposition 4.18, Gm is a countable intersection of neoclosed sets and is thus
neoclosed. Since B is neocompact, it follows from Proposition 5.18 that ψ|(Lm×H)
is neocontinuous.

The truncation function g 7→ g ∧m, defined by

(g ∧m)(t, y) = g(t, y) if y ∈ [−m,m]c,

(g ∧m)(t, y) = 0 otherwise

is continuous from L(Kcd) onto Lm. Therefore for each m the function

ψm(g, x) = ψ(g ∧m,x)

is neocontinuous from L(Kcd) × H to B. Let C ⊂ H be neocompact. Since Kcd

is bounded, there is a sequence 〈am〉 in R such that limm→∞ am = 0 and whenever
m ≤ n and (g, x) ∈ L(Kcd)× C, we have ρ2(ψm(g, x), ψn(g, x)) ≤ am. Let G be the
neoclosed set

G =
⋂

m
{(g, x, y) ∈ L(Kcd)× C ×B : ρ2(ψm(g, x), y) ≤ am}.

Then G is the graph of ψ|(L(Kcd)×C) and G is neoclosed. Since B is neocompact,
it follows from Proposition 5.18 that ψ is neocontinuous on L(Kcd)×H. 2

12 Optimization Theorems

In this section we give some applications of the following corollary.

Corollary 12.1 Let C be a nonempty neocompact set in M.
(i) For every neocontinuous function f : C → R, the range f(C) has a maximum

and minimum.
(ii) For every neo-LSC function g : C → R̄, the range g(C) has a minimum.

Proof: (i) By Proposition 3.8, f(C) is neocompact in R. By Proposition 4.8,
f(C) compact. Since C and hence f(C) is nonempty, it has a maximum and mini-
mum.
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(ii) By Proposition 8.5, the upper graph

G = {(x, r) ∈ C × R̄ : g(x) ≤ r}

is neocompact. Therefore the set

A = {r ∈ R̄ : (∃x)(x, r) ∈ G}

is a neocompact subset of R̄. Since R̄ is separable, A is compact. C is nonempty,
so A is nonempty and has a minimum element s, which is also a minimum element
of g(C). 2

By applying this corollary to our library of neocompact sets and neocontinuous
functions, we can quickly obtain many optimization results. Here are a few examples.

Theorem 12.2 For every continuous stochastic process x ∈ L0(Ω, C([0, 1],R)) there
exists a stopping time τ ∈ L0(Ω, [0, 1]) such that E[|xτ(ω)(ω)|] is a minimum. More-
over, if E[supt(|xt(ω)|)] < ∞, there exists a stopping time σ ∈ L0(Ω, [0, 1]) such that
E[xσ(ω)(ω)] is a minimum.

Proof: The set C of stopping times in L0(Ω, [0, 1]) is neocompact, the function
τ 7→ |xτ | is neocontinuous from C to L0(Ω,R+), and the function y 7→ E[y(ω)] is
neo-LSC and monotone. Therefore the composition τ 7→ E[|xτ |] is neo-LSC from C
to R̄+, and thus its range has a minimum.

If E[supt(|xt(ω)|)] < ∞, the set

D = {y ∈ L0(Ω,R) : |y(ω)| ≤ sup
t

(|xt(ω)|) almost surely}

is uniformly integrable and neocompact. The function σ 7→ xσ is neocontinuous from
C to D, and the function y 7→ E[y(ω)] is neocontinuous from D to R. Therefore
the composition σ 7→ E[xσ] is neocontinuous from C to R, and hence its range has
a minimum. 2

Theorem 12.3 Let p ∈ {0} ∪ [1,∞). For each process x ∈ Lp(Ω, N) and each
nonempty neocompact set C ⊂ Lp(Ω, N) there exists y ∈ C whose distance from x
is a minimum in Lp(Ω, N).

Proof: The distance function ρp(x, y) is neo-LSC on the neocompact set {x}×C,
so its range has a minimum. 2

Corollary 12.4 Let p, q ∈ {0}∪[1,∞) and let N be either C([0, 1],Rd) or Lq([0, 1],Rd).
For each process x ∈ Lp(Ω, N) there is a d-dimensional Brownian motion b on Ω
whose distance from x is a minimum in Lp(Ω, N).
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Proof: The set of Brownian motions is neocompact in N and is contained in
Lp(Ω, N). 2

The following result is a sort of selection theorem.

Theorem 12.5 Let M be a compact metric space, and let f ∈ L0(Ω, C(M,R)).
There exists x ∈M such that

f(ω)(x(ω)) = sup{f(ω)(y) : y ∈ M}

for almost all ω ∈ Ω.

Proof: Let g : R → R be a bounded continuous increasing function (e.g. the
arctan function). The function

h(x) = E[g(f(ω)(x(ω)))]

is neocontinuous from M to R. Since M is neocompact, the range of h is nonempty
and compact, and thus has a maximum at some x ∈M. Let

s(ω) = sup{f(ω)(y) : y ∈ M}

and
A = {ω ∈ Ω : f(ω)(x(ω)) < s(ω)}

. Since M is separable, the set A is measurable, and if P [A] > 0 then there exists
y ∈ M such that

P [f(ω)(x(ω)) < f(ω)(y)] > 0.

Define z ∈ M by putting z(ω) = x(ω) if f(ω)(x(ω)) ≥ f(ω)(y), and z(ω) = y
otherwise. Then E[g(f(ω)(x(ω))] < E[g(f(ω)(z(ω))], contrary to the choice of x.
Therefore P [A] = 0 and the result follows. 2

In the following theorem, we give C(R,R) the metric

ρ(x, y) = min(1,
∞
∑

n=1
{2−n sup{|x(t)− y(t)| : |t| ≤ n})

of uniform convergence on compact sets, so that C(R,R) is a complete separable
metric space.

Theorem 12.6 Let k > 0, let K = [−k, k], let

f ∈ A(Ω, C(R,K))
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be an adapted process, let g : C([0, 1],R) → R̄+ be a lower semicontinuous function,
and let z ∈ M(Ω,R) be a continuous martingale. Then any neocompact set C in
A(Ω,R) contains an element x such that

E[g(
∫ t

0
f(ω, s, x(ω, s))dz(ω, s))]

is minimal.

Proof: The functions x 7→ f(ω, s, x(ω, s)) and y 7→
∫ t
0 y(ω, s)dz(ω, s) are neocon-

tinuous. By the results of Section 8, the function

x 7→ E[g(
∫ t

0
f(ω, s, x(ω, s))dz(ω, s))]

is neo-LSC from C to R̄+, and by Corollary 12.1 its range has a minimum. 2

Theorem 12.7 Let k > 0, let K = [−k, k], let f ∈ A(Ω,Kcd) be an adapted process,
and let g : C([0, 1],Rc) → R̄+ be a lower semicontinuous function. Then the set Wd

of d-dimensional Brownian motions on Ω contains an element w such that

E[g
∫ t

0
f(ω, s)dw(ω, s)]

is minimal.

Proof: By Proposition 11.2 and the argument for the preceding theorem, the
function w 7→ E[g

∫ t
0 f(ω, s)dw(ω, s)] is neo-LSC from Wd to R̄+. The set Wd is

neocompact, so the range of the function has a minimum. 2

13 Existence Theorems

In this section we illustrate the use of the approximation theorem by proving some
existence theorems for stochastic differential equations. We continue to assume that
Ω = (Ω, P,G,Gt)t∈B is a rich adapted probability space. It should be emphasized
that the results of this section do not hold for arbitrary adapted probability spaces,
and depend heavily on the richness property. For instance, it was shown by Barlow
[3] that, even in the case that z is a Brownian motion, Theorem 13.2 below is false
without our blanket hypothesis that Ω is a rich adapted space.

As a warmup, we prove an existence theorem for ordinary differential equations
with random parameters (cf K1]). We let d be a positive integer, let k > 0, and
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let K = [−k, k]. For each complete separable metric space M , let C(Rd,M) be the
metric space of continuous functions from Rd into M with the metric

ρ̂(x, y) = min(1,
∞
∑

n=1
sup{ρ(x(u), y(u)) : |u| ≤ n}2−n).

This determines the topology of uniform convergence on compact sets (the compact-
open topology). Then C(Rd,M) is a complete separable metric space. For example,
if M is either Rc or a closed ball about the origin in Rc, then the set of Lipschitz
functions with compact support is dense in C(Rd,M).

Theorem 13.1 Let f ∈ L0(Ω, C(Rd,Kd)). There exists x ∈ L0(Ω, C([0, 1],Rd))
such that

x(ω, t) =
∫ t

0
f(ω, s)(x(ω, s))ds.

If f is adapted, then x may be taken to be adapted.

Proof: Let
M = L0(Ω, C([0, 1],Rd)).

Let D be the compact set of y ∈ C([0, 1],Rd) such that y has Lipschitz bound k
and y(0) = 0. By 5.2, the set D = L0(Ω, D) is neocompact in M. The function

x 7→
∫ t

0
f(ω, s)(x(ω, s))ds (10)

is a composition of neocontinuous functions, and is therefore neocontinuous fromM
to D. We wish to prove the formula

(∃x ∈ D)x(ω, t) =
∫ t

0
f(ω, s)(x(ω, s))ds. (11)

For y ∈ D we use the convention y(t) = 0 for t < 0. Instead of proving (11), we
instead prove the equivalent statement

(∃x ∈ D)(∃u ∈ {0})[x(ω, t) =
∫ t

0
f(ω, s)(x(ω, s− u))ds]. (12)

The function (x, u) 7→ x(ω, t−u) is neocontinuous onM×[0, 1] because the function
(y, u) 7→ y(t− u) is continuous on C([0, 1],Rd)× [0, 1]. A typical approximation of
(12) says that there exists x within ε of D and u ∈ [0, ε] such that x(ω, t) is within
ε of

∫ t
0 f(ω, s)(x(ω, s − u))ds in M. Take u = ε. By successively integrating over

the subintervals
[0, u], [u, 2u], · · · ,
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we get x ∈ D such that

x(ω, t) =
∫ t

0
f(ω, s)(x(ω, s− u))ds.

Then (12) holds by the Approximation Theorem.
In the adapted case, the same proof works taking D to be the set of adapted

processes in L0(Ω, D), which is neocompact because the set of adapted processes in
M is neoclosed. 2

We now apply our method to get a short proof of an existence theorem for
stochastic integral equations from [12] and [17]. Recall that Kcd is the set of all
c × d matrices with coefficients in the set K = [−k, k], and L(Kcd) is the space of
measurable functions from [0, 1]×Rc into Kcd.

Theorem 13.2 For each g ∈ A(Ω, C(Rc,Kcd)) and martingale z ∈M(Ω,Rd) there
exists a martingale x ∈M(Ω,Rc)) such that

x(ω, t) =
∫ t

0
g(ω, s)(x(ω, s))dz(ω, s). (13)

Proof: Let z ∈ M(Ω,Rd). By Proposition 10.8, the stochastic integral function
is neocontinuous from A(Ω,Kcd) to M(Ω,Rc) and its range

{
∫ t

0
h(ω, s)dz(ω, s) : h ∈ A(Ω,Kcd)}

is contained in a neocompact set D in M(Ω,Rcd). We prove the formula

(∃u ∈ {0})(∃x ∈ D)[x(ω, t) =
∫ t

0
g(ω, s)(x(ω, s− u))dz(ω, s)]. (14)

As in the proof of Theorem 13.1, we easily see that for each u > 0 there exists x ∈ D
such that

x(ω, t) =
∫ t

0
g(ω, s)(x(ω, s− u))dz(ω, s).

Therefore each approximation of (14) holds, and (14) follows by the Approximation
Theorem. 2

The proofs of Theorems 13.1 and 13.2 can easily be combined to obtain an
existence theorem for stochastic integral equations with both a drift and a diffusion
term,

x(ω, t) =
∫ t

0
f(ω, s)(x(ω, s))ds +

∫ t

0
g(ω, s)(x(ω, s))dz(ω, s).

Since g has ω as an argument in the preceding theorem, we obtain an existence
theorem with an adapted control y(ω, t) as a corollary.
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Corollary 13.3 Let h and y be measurable adapted process with h ∈ A(Ω, C(Rc+e,Kcd))
and y ∈ A(Ω,Re), and let z be a martingale in M(Ω,Rd). Then there exists a mar-
tingale x ∈M(Ω,Rc)) such that

x(ω, t) =
∫ t

0
h(ω, s)(x(ω, s), y(ω, s))dz(ω, s). (15)

Proof: Apply Theorem 13.2 with g(ω, t)(·) = h(ω, t)(·, y(ω, t)). 2

The set S of pairs

(g, x) ∈ A(Ω, C(Rc,Kcd))×M(Ω,Rc)

such that (13) holds is neoclosed. We use this fact to show that optimal solutions
exist.

Corollary 13.4 Let f : C([0, 1],Rc) → R̄+ be lower semicontinuous and let z ∈
M(Ω,Rd).

(i) For each nonempty neocompact subset B of A(Ω, C(Rc,Kcd)), the set T of
pairs (g, x) ∈ B ×M(Ω,Rc)) such that (13) holds has an element (g, x) such that
E[f(x(ω))] is minimal.

(ii) For each h ∈ A(Ω, C(Rc+e,Kcd)) and each nonempty neocompact set C ⊂
A(Ω,Re), the set U of pairs (x, y) ∈ M(Ω,Rc) × C such that (15) holds has an
element (x, y) such that E[f(x(ω))] is minimal (so that y is an optimal control in
C).)

Proof: (i) The set T is nonempty by Theorem 13.2, and neocompact because it
is neoclosed and contained in the set

B × {
∫ t

0
j(ω, s)dz(ω, s) : j ∈ A(Ω,Kcd)},

which in turn is contained in a neocompact subset of B ×M(Ω,Rc). Therefore
the set D = {x : (∃g)(g, x) ∈ T} is neocompact. By Section 8, the function
x 7→ E[f(x(ω))] is neo-LSC from D into R̄+, and by Corollary 12.1 its range has a
minimal element.

The proof of (ii) is similar. 2

All of the applications up to this point used only the simple approximation
theorem 6.1 rather than the more general approximation theorem 6.7. The following
invariance theorem uses the general approximation theorem, in the form of Corollary
6.9. Recall that Meas(M) is the space of Borel probability measures on M with the
Prohorov metric, and

law : M→ Meas(M)
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is the neocontinuous function where law(x) is the measure on M induced by x. We
say that xn → x in distribution if law(xn) → law(x) in Meas(M).

Theorem 13.5 Suppose that gn → g in A(Ω, C(Rc,Kcd)), un → 0 in [0, 1], D ⊂
M(Ω,Rc) is neocompact, and for each n ∈ N, xn ∈ D and xn is within 1/n of

∫ t

0
gn(ω, s)(xn(ω, s− un))dz(ω, s).

Then there is a solution x ∈ D of (13) such that some subsequence of (gn, xn)
converges in distribution to (g, x).

Proof: Let B be the compact set {g}∪{gn : n ∈ N}. Then the set B×[0, 1]×D is
neocompact, so its image under the law function is compact. Therefore the sequence
(gn, xn) has a subsequence such that the sequence (law(gn), law(xn)) converges to a
point (law(g), y). Now consider the formula

(∃x ∈ D)[x(ω, t) =
∫ t

0
ĝ(ω, s)(x(ω, s− û))dz(ω, s) ∧ law(x) = y]. (16)

A typical approximation of (16) says that there exists x within ε of D such that x
is within ε of

∫ t

0
ĝ(ω, s)(x(ω, s− û))dz(ω, s)

and law(x) is within ε of y. By taking xn for x, we see that each approximation of
(16) is satisfied by (gn, un) for sufficiently large n. By Corollary 6.9, (16) holds for
(g, 0), so there is an x ∈M(Ω,Rc) which solves (13) such that law(x) = y. 2

By applying the countable compactness property to Theorem 13.2, we obtain an
infinite dimensional analogue.

Theorem 13.6 Let j : N → N and k → N → N be increasing sequences, and let
Kn = [−k(n), k(n)]. For each n ∈ N, let gn ∈ A(Ω, C(Rj(n),Kn)) and let zn ∈
M(Ω,R) be a continuous martingale. Then there exists a sequence of martingales
xn ∈M(Ω,R) such that for each n

xn(ω, t) =
∫ t

0
gn(ω, s)(x1(ω, s), . . . , xj(n)(ω, s))dzn(ω, s). (17)

Proof: By Proposition 10.8, for each n there is a neocompact set Bn in M(Ω,R)
containing all stochastic integrals

∫

h(ω, s)dzn where h ∈ A(Ω,Kn). For each m ≤
n ∈ N, let

Cm,n = {(x1, . . . , xm) ∈ B1 × · · · ×Bm : (∃xm+1 ∈ Bm+1) · · · (∃xj(n) ∈ Bj(n))
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∧

i≤n

[xi =
∫ t

0
gi(ω, s)(x1(ω, s), . . . xj(i)(ω, s))dzi(ω, s)]}.

For each m, Cm,n, n ∈ N is a decreasing chain of neocompact sets in M(Ω,Rm). For
each m and n, Theorem 13.2 shows that Cm,n 6= ∅. Let Dm =

⋂

n Cm,n. Using the
countable compactness property, there exists x1 ∈ D1. Continuing inductively, given
(x1, . . . , xm) ∈ Dm, for each n there exists xm+1 such that (x1, . . . , xm+1) ∈ Cm+1,n,
and we may use the countable compactness property to obtain xm+1 such that
(x1, . . . , xm+1) ∈ Dm+1. Then the sequence (x1, x2, . . . ) satisfies (17). 2

As another illustration of our method, we give a short proof of an existence
theorem from [13] (see also [1] and [5]) for differential equations where the coefficient
matrix g(s, x) does not depend on ω but is only measurable rather than continuous
in x. The analogous weak existence theorem was proved earlier by Krylov [16] using
the same inequality which we used in Theorem 11.8. We assume that g(s, x) is
nondegenerate, that is, g maps [0, 1]×Rc into the set

J = {y ∈ Kcd : det(yyT ) ≥ 1/k}.

Let w be a d-dimensional Brownian motion on Ω, and recall that

I = {
∫ t

0
y(ω, s)dw(ω, s) : y ∈ A(Ω,J)} ⊂ M(Ω,Rc).

Theorem 13.7 For each measurable function g ∈ L(J) and d-dimensional Brown-
ian motion w, there exists x ∈M(Ω,Rc) such that

x(ω, t) =
∫ t

0
g(s, x(ω, s))dw(ω, s). (18)

Proof: There is a sequence gn of continuous functions converging to g in L(J ).
By Theorem 13.2, for each n ∈ N we may choose a solution xn ∈ I of the equation

xn(ω, t) =
∫ t

0
gn(s, xn(ω, s))dw(ω, s).

By Theorem 11.8, the stochastic integral function

ψ(g, x)(ω, t) =
∫ t

0
g(s, x(ω, s))dw(ω, s)

is neocontinuous from L(Kcd)×H into a neocompact set B ⊂M(Ω,Rc), where H
is a neoclosed set of adapted functions containing I. Then the set C = {g} × B is
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neocompact in L(Kcd)×M(Ω,Rc). For each n, (g, xn) ∈ C, so the distance between
(gn, xn) and C converges to 0. Thus each approximation to the existence problem

(∃(g, x) ∈ C)x = ψ(g, x)

is true. By the Approximation Theorem, there exists an x ∈ B such that x = ψ(g, x).
which solves (18). 2

Like Theorem 13.2, the preceding results can be extended to equations with
drift terms. We can draw additional conclusions from the fact that the stochastic
integral is neocontinuous. Here is one example, which is proved in the same way as
the preceding theorem.

Theorem 13.8 Suppose g ∈ L(Kcd), h ∈ A(Ω,Kcd), and

g(t, y) + h(ω, t) ∈ J for all ω, t, y.

For each d-dimensional Brownian motion w there exists x ∈M(Ω,Rc) such that

x(ω, t) =
∫ t

0
[g(s, x(ω, s)) + h(ω, s)]dw(ω, s). 2
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