On the number of infinite sequences with trivial initial segment complexity

George Barmpalias

Joint work with Tom Sterkenburg

Institute of Software

Chinese Academy of Sciences
The map G takes c to the number of K-trivial streams with constant c.

What is the arithmetical complexity of G?

... or equivalently

How hard is to compute G?
A stream is **random** if it has high initial segment complexity.

To describe the first n bits of the sequence you need to use n bits (modulo a constant)

On the other end of the spectrum:

A stream is **trivial** if the complexity of its first n bits is as low as the complexity of 0^n.
Chaitin asked if there are non-computable streams whose initial segment complexity is as low as a computable stream.

Solovay gave a positive answer.

The world of K-trivial streams

Computable from the halting problem i.e. Δ^0_2 (Chaitin 70s)

Incomplete, and in fact low (Downey/Hirschfeldt/Nies/Stephan)

Downward closed under \leq_T (Hirschfeldt/Nies 2005)

Form an ideal in the Turing degrees.
Provide a ‘natural’ solution to Post’s problem.

\[A = \{ n \mid \exists e, s \left(W_{e,s} \cap A_s = \emptyset \land n > 2e \land n \in W_{e,s} \land \sum_{n < j < s} 2^{-K_s(j)} < 2^{-e} \right) \} \]

Post’s simple set

Scott sets: Turing incomparability using the \(K \)-trivial degrees.

(Kučera and Slaman)
Cumulative hierarchy of K-trivial streams

A stream X is K-trivial if $K(X \upharpoonright n) \leq K(n) + c$ for all n, some c.

K-trivial streams are stratified in a hierarchy of length ω

\ldots whose c-level contains the K-trivial streams with constant c.
The map G takes c to the number of K-trivial strings with constant c.

What is the arithmetical complexity of G?

... or equivalently

How hard is to compute G?
Basic facts about G, by DMNY

- Computable from $0^{(3)} \ldots$ i.e. Δ^0_4

- Not computable i.e. not Δ^0_1

- Not computable from the halting problem, i.e. not Δ^0_2

Is it computable from $0^{(2)}$ i.e. is it Δ^0_3?
The classes of K_c-trivial streams

- They are uniformly Π^0_1 in the halting set.
- The set of infinite paths through a $0'$-computable tree.
- The width of these trees is computably bounded since

$$|\{\sigma \in 2^n \mid K(\sigma) \leq K(|\sigma|) + c\}| < 2^c$$

\ldots by the coding theorem
The number of infinite paths through a tree \(T \) with bounded width can be computed from \(T'' \).

This is optimal!

If a family of trees is computable from a low\(_2\) oracle \(A \) then the number of paths is computable from \(0^{(2)} \).

Oracle \(A \) is low\(_2\) if \(A'' \) is computable from \(0^{(2)} \); \(\Sigma^0_2(A) \subseteq \Delta^0_3 \).
Theorem (B. and Tom Sterkenburg)

Given a Δ^0_2 tree T which only has K_c-trivial paths we can compute the index of another Σ^0_1 tree which is K-trivial and has the same infinite paths as the original tree.

The new trees have trivial initial segment complexity.

Fact: $0^{(2)}$ can compute a low$_2$ index of a K_c-trivial stream given c and the Δ^0_2 index of the stream.
Computation of $G(c)$ from $0^{(2)}$

- Get the index of the original Δ^0_2 tree representing the class K_c-trivial.

- Compute the index of the K-trivial tree representing this class.

- Use $0^{(2)}$ to compute a low$_2$-ness index of the new tree.

- Use $0^{(2)}$ again to compute the number of infinite paths through this tree.

- This is $G(c)$
A related class: low for K streams

If a computer is given access to a powerful oracle, it will achieve better compression for many strings.

X is called low for K if $K^X = K$.

...... if as far as prefix-free complexity is concerned, it is not better than a computable oracle.

This class was defined by Muchnik in 1999, who also exhibited non-computable elements in it.
Low for \(K \) streams are stratified in a cumulative hierarchy of finite classes.

Hirschfeldt and Nies showed that they coincide with the \(K \)-trivial streams.

Our methodology applies to this class, showing that

\[\ldots \text{the corresponding function giving the cardinality of the hierarchy classes is } \Delta^0_3. \]
A consequence of the main result is that \(0'' \) can obtain the indices of the \(K_c \)-trivial strings.

This can be used to show that a number of \(K \)-related objects have lower complexity.

For example, gap functions for \(K \)-triviality.
These are non-decreasing unbounded functions f such that

$$\forall n \ [K(X \upharpoonright n) \leq K(n) + f(n) + c] \Rightarrow X \text{ is } K\text{-trivial.}$$

- Constructed by Csima and Montalbán in 2006
- Used to obtain minimal pairs in the degrees of randomness
- Complexity: Δ^0_4
- Downey raised the question about their complexity
Complexity of gap functions

Theorem (Barmpalias/Baartse and Bienvenu/Merkle/Nies)

If \(f \) is \(\Delta^0_2 \) unbounded and non-decreasing then there are uncountably many streams \(X \) such that

\[
K(X \upharpoonright n) \leq K(n) + f(n) \quad \text{for all } n.
\]

Theorem (Barmpalias and Martijn Baartse)

There is a \(\Delta^0_3 \) gap function for \(K \)-triviality.
References

Barmpalias/Sterkenburg
On the number of infinite sequences with trivial initial segment complexity

Barmpalias/Baartse
On the gap between trivial and nontrivial initial segment prefix-free complexity
Submitted.

Webpage: http://www.barmpalias.net