Maximal chains of computable well partial orders

Alberto Marcone

(joint work with Antonio Montalbán and Richard Shore)

Computability Theory Workshop
February 6–10, 2012
Oberwolfach
1. **Well-partial-orders**
 - Maximal linear extensions of wpos
 - Maximal chains of wpos

2. **Computing maximal chains**
 - Computing strongly maximal chains is hard
 - Computing maximal chains is not easy
 - A way of computing maximal chains

3. **Comparison with reverse mathematics**
Well-partial-orders

A partial order $\mathcal{P} = (P, \leq_P)$ is a well partial order (wpo) if for every $f : \mathbb{N} \to P$ there exists $i < j$ such that $f(i) \leq_P f(j)$.

There are many equivalent characterizations of wpos:

- \mathcal{P} is well-founded and has no infinite antichains;
- every sequence in P has a weakly increasing subsequence;
- every nonempty subset of P has a finite set of minimal elements;
- all linear extensions of \mathcal{P} are well-orders.

The reverse mathematics and computability theory of these equivalences has been studied in (Cholak-M-Solomon 2004).

All equivalences are provable in $\text{WKL}_0 + \text{CAC}$.
Some examples of wpos

- Finite partial orders
- Well-orders
- Finite strings over a finite alphabet (Higman, 1952)
- Finite trees (Kruskal, 1960)
- Transfinite sequences with finite labels (Nash-Williams, 1965)
- Countable linear orders (Laver 1971, proving Fraïssé’s conjecture)
- Finite graphs (Robertson and Seymour, 2004)

The ordering is some kind of embeddability
Closure properties of wpos

- The sum and disjoint sum of two wpos are wpo
- The product of two wpos is wpo
- Finite strings over a wpo are a wpo (Higman, 1952)
- Finite trees with labels from a wpo are a wpo (Kruskal, 1960)
- Transfinite sequences with labels from a wpo which use only finitely many labels are a wpo (Nash-Williams, 1965)
The maximal order type of a wpo

\(\mathcal{P} \) is a wpo \(\iff \) all linear extensions of \(\mathcal{P} \) are well-orders

We denote by \(\text{Lin}(\mathcal{P}) \) the collection of all linear extensions of \(\mathcal{P} \).

Definition

If \(\mathcal{P} \) is a wpo, its maximal order type is

\[
\alpha(\mathcal{P}) = \sup \{ \alpha \mid \exists \mathcal{L} \in \text{Lin}(\mathcal{P}) \alpha = \text{ot}(\mathcal{L}) \}.
\]

Theorem (de Jongh – Parikh, 1977)

The sup in the definition of \(\alpha(\mathcal{P}) \) is actually a max, i.e. there exists \(\mathcal{L} \in \text{Lin}(\mathcal{P}) \) with order type \(\alpha(\mathcal{P}) \).

In other words, every \(\mathcal{I} \in \text{Lin}(\mathcal{P}) \) embeds into \(\mathcal{L} \). \(\mathcal{L} \) is called a maximal linear extension of \(\mathcal{P} \).
Computing maximal linear extensions

Theorem (Montalbán, 2007)

Every computable wpo has a computable maximal linear extension. However there is no hyperarithmetic function mapping the index of a computable wpo to the index of one of its maximal linear extensions.
The height of a well founded partial order

\(\mathcal{P} \) is a wpo \(\iff \mathcal{P} \) is well founded and all its chains are well-orders.

We denote by \(\text{Ch}(\mathcal{P}) \) the collection of all chains of \(\mathcal{P} \).

Definition

If \(\mathcal{P} \) is well founded, its **height** is

\[
\text{ht}(\mathcal{P}) = \sup\{ \alpha \mid \exists C \in \text{Ch}(\mathcal{P}) \alpha = \text{ot}(\mathcal{L}) \}.
\]

We can also define the height of \(x \in \mathcal{P} \):

\[
\text{ht}_\mathcal{P}(x) = \sup\{ \text{ht}_\mathcal{P}(y) + 1 \mid y <_\mathcal{P} x \}
\]

so that \(\text{ht}(\mathcal{P}) = \sup\{ \text{ht}_\mathcal{P}(x) + 1 \mid x \in \mathcal{P} \} \).
Wolk’s Theorem

Theorem (Wolk 1967)

If \(\mathcal{P} \) is a wpo, the \(\sup \) in the definition of \(\text{ht}(\mathcal{P}) \) is actually a max, i.e. there exists \(C \in \text{Ch}(\mathcal{P}) \) with order type \(\text{ht}(\mathcal{P}) \). Such a chain is called a maximal chain of \(\mathcal{P} \).

Actually \(C \) can be chosen so that for every \(\alpha < \text{ht}(\mathcal{P}) \) there exists \(x \in C \) such that \(\text{ht}_\mathcal{P}(x) = \alpha \). Such a chain is called a strongly maximal chain of \(\mathcal{P} \).
Two questions

In analogy with the Montalbán’s result we ask:

Question

If \mathcal{P} is a computable wpo, how complicated must maximal and strongly maximal chains of \mathcal{P} be?

It follows from previous work that a computable wpo always has a hyperarithmetic strongly maximal chain.

Question

How complicated must any function taking the computable wpo \mathcal{P} to a maximal chain be?
Computing maximal chains

1 Wpos, maximal linear extensions, maximal chains
 Well-partial-orders
 Maximal linear extensions of wpos
 Maximal chains of wpos

2 Computing maximal chains
 Computing strongly maximal chains is hard
 Computing maximal chains is not easy
 A way of computing maximal chains

3 Comparison with reverse mathematics
Theorem

Let $\alpha < \omega^\text{CK}_1$.

There exists a computable wpo \mathcal{P} such that every strongly maximal chain of \mathcal{P} computes $0^{(\alpha)}$.
Computing maximal chains is hard

The main tool

Theorem (Ash-Knight 1990)

Let $\alpha < \omega_1^{CK}$ and A is a $\Pi^0_{2\alpha+1}$ set. There exists a uniformly computable sequence of linear orders \mathcal{L}_n^A such that

$$\text{ot}(\mathcal{L}_n^A) = \begin{cases} \omega^\alpha & \text{if } n \in A; \\ \omega^{\alpha+1} & \text{if } n \not\in A. \end{cases}$$

This sequence of linear orderings can be computed uniformly in indices for α as a computable ordinal and A as a $\Pi^0_{2\alpha+1}$ set.
Every strongly maximal chain of \mathcal{P} computes $0^{(\alpha)}$: the global view
Every strongly maximal chain of \mathcal{P} computes $0^{(\alpha)}$: zooming

When $n \in 0^{(\alpha)}$,
\[\text{ot}(\mathcal{L}_n^{0^{(\alpha)}}) = \omega^\alpha\] and
\[\text{ot}(\mathcal{L}_n^{0^{(\alpha)}}) = \omega^{\alpha+1};\]
when $n \notin 0^{(\alpha)}$,\n\[\text{ot}(\mathcal{L}_n^{0^{(\alpha)}}) = \omega^{\alpha+1}\]
and \[\text{ot}(\mathcal{L}_n^{0^{(\alpha)}}) = \omega^{\alpha}\]

The unique strongly maximal chain C of \mathcal{P} always picks the $\omega^{\alpha+1}$ side

$\text{ht}(\mathcal{P})(a_n) = \omega^{\alpha+1} \cdot n$ and $\text{ht}(\mathcal{P}) = \omega^{\alpha+2}$

$n \in 0^{(\alpha)}$ iff $c_n \in C$
Computing maximal chains is not easy

Theorem

Let $\alpha < \omega_1^{CK}$. There exists a computable wpo \mathcal{P} such that $0^{(\alpha)}$ does not compute any maximal chain of \mathcal{P}.

We are not claiming that the maximal chains of \mathcal{P} compute $0^{(\alpha)}$.

$0^{(\alpha)}$ does not compute any maximal chain of \mathcal{P}: the global view
Computing maximal chains is not easy

$0^{(\alpha)}$ does not compute any maximal chain of P:
zooming

\[n \in A_i \implies \text{ot}(L_{n}^{A_i}) = \omega^\alpha \]
\[n \notin A_i \implies \text{ot}(L_{n}^{A_i}) = \omega^{\alpha+1} \]

where $n \in A_i$ iff
\[\exists e < n \Phi_e^{0(\alpha)}(n) = i \]

\[\{| i \mid n \in A_i \} \leq n \text{ and } \text{ot}(L_{n}^{A_i}) = \omega^{\alpha+1} \text{ for at least one } i \leq n \]

\[\text{ht}_{P}(a_n) = \omega^{\alpha+1} \cdot n \text{ and } \text{ht}(P) = \omega^{\alpha+2} \]
$0^{(\alpha)}$ does not compute any maximal chain of \mathcal{P}:

concluding

Let \mathcal{C} be a maximal chain. Define $\psi \leq_T \mathcal{C}$ by

$$\psi(n) = \begin{cases} i & \text{if } \exists x \in \mathcal{C} \ b_i^j \leq_P x < P \ a_{n+1}; \\ \uparrow & \text{otherwise.} \end{cases}$$

Infinitely often ψ picks an $\omega^{\alpha+1}$ chain.

Fix e. There exists $n > e$ such that $n \notin A_{\psi(n)}$. Thus $\Phi^{0(\alpha)}_e(n) \neq \psi(n)$ and thus $\psi \neq \Phi^{0(\alpha)}_e$.

Therefore $\psi \not\leq_T 0^{(\alpha)}$ and $\mathcal{C} \not\leq_T 0^{(\alpha)}$.
Generic sets for Cohen forcing

Definition

For $\alpha < \omega_1^{CK}$, a set G is α-generic if the conditions which are initial segments of G suffice to decide all Σ_α-questions. G is hyperarithmetically generic if it is α-generic for every $\alpha < \omega_1^{CK}$.

- Almost every set, in the sense of category, is hyperarithmetically generic
- A hyperarithmetically generic is not hyperarithmetic
- A hyperarithmetically generic does not compute any noncomputable hyperarithmetic set
Almost every set computes maximal chains

Theorem

Let \(G \) be hyperarithmetically generic.

For every computable wpo \(P \), there exists a maximal chain \(C \) in \(P \) such that \(C \leq_T G \).

If \(\text{ht}(P) < \omega^{\alpha+1} \), then \(2 \cdot \alpha \)-genericity of \(G \) suffices.

- Almost every set, in the sense of category, computes maximal chains.
- Every computable wpo has a maximal chain that does not compute any noncomputable hyperarithmetic set, i.e. maximal chains cannot code any \(0^{(\alpha)} \).
Nonuniformity

Our proof of the previous result has several nonuniform steps.

If \mathcal{L}_0 and \mathcal{L}_1 are computable well-orders consider $\mathcal{L}_0 \oplus \mathcal{L}_1$, which is a computable wpo.

A maximal chain of $\mathcal{L}_0 \oplus \mathcal{L}_1$ is included in some \mathcal{L}_i, and the i is uniformly computable from the maximal chain and the wpo. Then \mathcal{L}_{1-i} embeds in \mathcal{L}_i and \mathcal{L}_i is the longer chain.

By Ash-Knight this can uniformly code any hyperarithmetic set.

Theorem

There is no hyperarithmetic procedure which calculates a maximal chain of every computable wpo.

Suppose f is such that, for every index e for a computable wpo \mathcal{P}, $n \mapsto f(e, n)$ is a maximal chain of \mathcal{P}.

Then f computes every hyperarithmetic set.
Comparison with reverse mathematics

1. Wpos, maximal linear extensions, maximal chains
 - Well-partial-orders
 - Maximal linear extensions of wpos
 - Maximal chains of wpos

2. Computing maximal chains
 - Computing strongly maximal chains is hard
 - Computing maximal chains is not easy
 - A way of computing maximal chains

3. Comparison with reverse mathematics
Some equivalences with ATR_0

Theorem

Over RCA_0, the following are equivalent to ATR_0:

1. the maximal linear extension theorem for wpos [M-Shore 2011];
2. the maximal chain theorem for wpos [M-Shore 2011];
3. the strongly maximal chain theorem for wpos [M-Shore 2011];

These are all statements of the form $\forall X (\varphi(X) \implies \exists Y \psi(X,Y))$.
Different complexity

For statements of the form $\forall X (\varphi(X) \implies \exists Y \psi(X,Y))$ we ask

if X is computable, how complicated must Y be?

1. A computable wpos has a computable maximal linear extension
2. A computable wpos has a hyp maximal chain, but maximal chains can be incomparable with all noncomputable hyp sets
3. A computable wpos has a hyp strongly maximal chain, and strongly maximal chains can be of arbitrarily high complexity in the hyp hierarchy
4. There exists a computable bipartite graph such that any pair matching/cover satisfying König's duality computes every hyp set and hence is not hyp

These are four different levels of computational complexity for theorems all axiomatically equivalent to ATR_0.

The phenomena in 2 seems to be new.