Four Related Questions
How common are minimal degrees?

Question 1
What is the (classical) Hausdorff dimension of the set of minimal Turing degrees?

Notes
No 1-random has minimal degree, so the measure of the minimal degrees is zero.

Even better, the degrees that compute a minimal degree have measure zero (Paris).

In particular, no 2-random computes a minimal degree (Barmpalias, Day and Lewis improving on work of Kurtz).

The packing dimensions of the set of minimal Turing degrees is 1 (Downey, Greenberg).
How common are minimal degrees?

Question 1
What is the (classical) Hausdorff dimension of the set of minimal Turing degrees?

Notes
- No 1-random has minimal degree, so the measure of the minimal degrees is zero.
How common are minimal degrees?

Question 1

What is the (classical) Hausdorff dimension of the set of minimal Turing degrees?

Notes

- No 1-random has minimal degree, so the measure of the minimal degrees is zero.
- Even better, the degrees that compute a minimal degree have measure zero (Paris).
How common are minimal degrees?

Question 1
What is the (classical) Hausdorff dimension of the set of minimal Turing degrees?

Notes
- No 1-random has minimal degree, so the measure of the minimal degrees is zero.
- Even better, the degrees that compute a minimal degree have measure zero (Paris).
- In particular, no 2-random computes a minimal degree (Barmpalias, Day and Lewis improving on work of Kurtz).
How common are minimal degrees?

Question 1
What is the (classical) Hausdorff dimension of the set of minimal Turing degrees?

Notes
- No 1-random has minimal degree, so the measure of the minimal degrees is zero.
- Even better, the degrees that compute a minimal degree have measure zero (Paris).
- In particular, no 2-random computes a minimal degree (Barmpalias, Day and Lewis improving on work of Kurtz).
- The packing dimensions of the set of minimal Turing degrees is 1 (Downey, Greenberg).
How common are minimal degrees?

Question 1

What is the (classical) Hausdorff dimension of the set of minimal Turing degrees?
How common are minimal degrees?

Question 1

What is the (classical) Hausdorff dimension of the set of minimal Turing degrees?

How might we answer this?
Question 1

What is the (classical) Hausdorff dimension of the set of minimal Turing degrees?

How might we answer this?

If for every oracle X, there is a real of minimal degree and effective Hausdorff dimension 1 relative to X, then $\dim_H(\text{Minimal}) = 1$.

Proposition (Greenberg and M.)

There is a computable order function $h : \omega \to \omega \setminus \{0, 1\}$ such that every h-bounded DNC function computes a real of effective Hausdorff dimension 1.

How common are minimal degrees?

Question 1

What is the (classical) Hausdorff dimension of the set of minimal Turing degrees?

How might we answer this?

If for every oracle X, there is a real of minimal degree and effective Hausdorff dimension 1 \textit{relative to} X, then $\dim_H(\text{Minimal}) = 1$.

Proposition (Greenberg and M.)

There is a computable order function $h: \omega \rightarrow \omega \setminus \{0, 1\}$ such that every h-bounded DNC function computes a real of effective Hausdorff dimension 1.
Can minimal DNC functions grow slowly?

Proposition (Greenberg and M.)
There is a computable order function $h: \omega \to \omega \setminus \{0, 1\}$ such that every h-bounded DNC function computes a real of effective Hausdorff dimension 1.
Can minimal DNC functions grow slowly?

Proposition (Greenberg and M.)

There is a computable order function \(h: \omega \to \omega \setminus \{0, 1\} \) such that every \(h \)-bounded DNC function computes a real of effective Hausdorff dimension 1.

There is a DNC function of minimal degree (Kumabe, Lewis).
Proposition (Greenberg and M.)

There is a computable order function $h : \omega \to \omega \setminus \{0, 1\}$ such that every h-bounded DNC function computes a real of effective Hausdorff dimension 1.

There is a DNC function of minimal degree (Kumabe, Lewis). Can such a function grow slowly?

Question 2

Is there an h-bounded DNC function of minimal degree?
Can minimal DNC functions grow slowly?

Proposition (Greenberg and M.)

There is a computable order function $h: \omega \to \omega \setminus \{0, 1\}$ such that every h-bounded DNC function computes a real of effective Hausdorff dimension 1.

There is a DNC function of minimal degree (Kumabe, Lewis). Can such a function grow slowly?

Question 2

Is there an h-bounded DNC function of minimal degree?

We would actually need this in a partially relativized form:

Question 2^X

For an oracle X, is there an h-bounded function that is DNC relative to X and has minimal degree?
Can minimal DNC functions grow slowly?

Proposition (Greenberg and M.)
There is a computable order function $h: \omega \to \omega \setminus \{0, 1\}$ such that every h-bounded DNC function computes a real of effective Hausdorff dimension 1.

There is a DNC function of minimal degree (Kumabe, Lewis). Can such a function grow slowly?

Question 2
Is there an h-bounded DNC function of minimal degree?

We would actually need this in a partially relativized form:

Question 2^X
For an oracle X, is there an h-bounded function that is DNC relative to X and has minimal degree?

Question 2^X implies that $\dim_H(\text{Minimal}) = 1$.
Can minimal DNC functions grow slowly?

There are connections between what can be computed from a slow growing DNC function and what can be computed *uniformly* from a bounded DNC function:
Can minimal DNC functions grow slowly?

There are connections between what can be computed from a slow growing DNC function and what can be computed \textit{uniformly} from a bounded DNC function:

Facts (Greenberg and M.)

- There is a uniform way to compute a real of Hausdorff dimension 1 from a DNC$_k$ function.
- There is a computable order function h such that every h-bounded DNC function computes a real of Hausdorff dimension 1.
Can minimal DNC functions grow slowly?

There are connections between what can be computed from a slow growing DNC function and what can be computed \textit{uniformly} from a bounded DNC function:

Facts (Greenberg and M.)

- There is a uniform way to compute a real of Hausdorff dimension 1 from a DNC\(_k\) function.
- There is a computable order function \(h\) such that every \(h\)-bounded DNC function computes a real of Hausdorff dimension 1.

Also:

- (Downey, Greenberg, Jockusch, Milans) There is no uniform way to compute a Kurtz random from a DNC\(_3\) function.
- (Greenberg, M.; Khan, M.) For any computable order function \(h\), there is an \(h\)-bounded DNC that computes no Kurtz random.
Can we uniformly witness the non-minimality of DNC\(_3\) functions?

There are connections between what can be computed from a slow growing DNC function and what can be computed uniformly from a bounded DNC function:
Can we uniformly witness the non-minimality of DNC₃ functions?

There are connections between what can be computed from a slow growing DNC function and what can be computed uniformly from a bounded DNC function:

So this:

Question 2

Is there an h-bounded DNC function of minimal degree?
Can we uniformly witness the non-minimality of DNC$_3$ functions?

There are connections between what can be computed from a slow growing DNC function and what can be computed uniformly from a bounded DNC function:

So this:

Question 2

Is there an h-bounded DNC function of minimal degree?

…is related to the uniform question for bounded DNC functions:
Can we uniformly witness the non-minimality of DNC_3 functions?

There are connections between what can be computed from a slow growing DNC function and what can be computed uniformly from a bounded DNC function:

So this:

Question 2
Is there an h-bounded DNC function of minimal degree?

... is related to the uniform question for bounded DNC functions:

Question 3.k
Fix $k \geq 3$. Is there a functional Γ such that $\emptyset <_T \Gamma^f <_T f$ for every DNC_k function $f : \omega \to k$?
Can we uniformly witness the non-minimality of DNC_3 functions?

There are connections between what can be computed from a slow growing DNC function and what can be computed uniformly from a bounded DNC function:

So this:

Question 2

Is there an h-bounded DNC function of minimal degree?

…is related to the uniform question for bounded DNC functions:

Question 3.k

Fix $k \geq 3$. Is there a functional Γ such that $\emptyset <_T \Gamma^f <_T f$ for every DNC_k function $f: \omega \rightarrow k$?

It is not hard to see that DNC_k functions are non-minimal, but no uniform proof is known.
Are continuous functions either injective on a big set or constant on a big(ish) set?

We might want to modify Kumabe, Lewis to answer Questions 2.

\[f : \omega \rightarrow 2^\omega \text{ is continuous}, \text{ is } f \text{ either } 1\text{-injective on a } 2\text{-bushy tree, or } 2\text{-constant on an eventually } 2\text{-bushy tree.} \]

A tree \(T \) is 2-bushy if every \(\sigma \in T \) has at least two immediate extensions. \(T \) is eventually 2-bushy if this holds for sufficiently long strings \(\sigma \).

17 is an arbitrary number (greater than 3).
Are continuous functions either injective on a big set or constant on a big(ish) set?

We might want to modify Kumabe, Lewis to answer Questions 2.

For this, we would need to prove an appropriate (delayed) splitting lemma.
Are continuous functions either injective on a big set or constant on a big(ish) set?

We might want to modify Kumabe, Lewis to answer Questions 2.

For this, we would need to prove an appropriate (delayed) splitting lemma. In purely combinatorial form:

Question 4

If $f : 17^\omega \to 2^\omega$ is continuous, is f either

1. injective on a 2-bushy tree, or
2. constant on an eventually 2-bushy tree.
Are continuous functions either injective on a big set or constant on a big(ish) set?

We might want to modify Kumabe, Lewis to answer Questions 2.

For this, we would need to prove an appropriate (delayed) splitting lemma. In purely combinatorial form:

Question 4

If \(f : 17^\omega \to 2^\omega \) is continuous, is \(f \) either

1. injective on a 2-bushy tree, or
2. constant on an eventually 2-bushy tree.

- A tree \(T \) is **2-bushy** if every \(\sigma \in T \) has at least two immediate extensions.
Are continuous functions either injective on a big set or constant on a big(ish) set?

We might want to modify Kumabe, Lewis to answer Questions 2.

For this, we would need to prove an appropriate (delayed) splitting lemma. In purely combinatorial form:

Question 4

If $f : 17^{\omega} \rightarrow 2^{\omega}$ is continuous, is f either

1. injective on a 2-bushy tree, or
2. constant on an eventually 2-bushy tree.

- A tree T is **2-bushy** if every $\sigma \in T$ has at least two immediate extensions.
- T is **eventually 2-bushy** if this holds for sufficiently long strings σ.
Are continuous functions either injective on a big set or constant on a big(ish) set?

We might want to modify Kumabe, Lewis to answer Questions 2.

For this, we would need to prove an appropriate (delayed) splitting lemma. In purely combinatorial form:

Question 4

If \(f : 17^\omega \to 2^\omega \) is continuous, is \(f \) either

1. injective on a 2-bushy tree, or
2. constant on an eventually 2-bushy tree.

- A tree \(T \) is **2-bushy** if every \(\sigma \in T \) has at least two immediate extensions.
- \(T \) is **eventually 2-bushy** if this holds for sufficiently long strings \(\sigma \).
- 17 is an arbitrary number (greater than 3).
Are continuous functions either injective on a big set or constant on a big(ish) set?

Question 4
If $f : 17^\omega \rightarrow 2^\omega$ is continuous, is f either
1. injective on a 2-bushy tree, or
2. constant on an eventually 2-bushy tree.
Are continuous functions either injective on a big set or constant on a big(ish) set?

Question 4

If \(f : 17^\omega \to 2^\omega \) is continuous, is \(f \) either

1. injective on a 2-bushy tree, or
2. constant on an eventually 2-bushy tree.

It should be noted that:

Kumar, private communication

There is a continuous \(f : [0, 1] \to \mathbb{R} \) such that

1. \(f \) is non-injective on every positive measure set, and
2. \(f \) is non-constant on every positive measure set.