Copy vs Diagonalize

Antonio Montalbán.
U. of Chicago

Oberwolfach – February 2012
Let \mathcal{K} be a class of structures on a relational language.

The players: C and D.

They build sequences of finite structures alternatively:

<table>
<thead>
<tr>
<th>Player D</th>
<th>$D[0] \subseteq D[1] \subseteq \cdots$</th>
<th>let $D = \bigcup_{D[s]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player C</td>
<td>$C[0] \subseteq C[1] \subseteq C[2] \cdots$</td>
<td>let $C = \bigcup_{C[s]}$</td>
</tr>
</tbody>
</table>

note 1: It’s allowed to repeat previous play (ex: $C[s+1] = C[s]$).

- If $C, D \in \mathcal{K}$ are isomorphic then C wins.
- If $C, D \in \mathcal{K}$ are not isomorphic then D wins.
- If $C \in \mathcal{K}$, but $D \not\in \mathcal{K}$, then C wins.
- If $D \in \mathcal{K}$, but $C \not\in \mathcal{K}$, then D wins.
- If $C \not\in \mathcal{K}$, $D \not\in \mathcal{K}$, then D wins.

note 2: To play a finite structure legally,

a player has to eventually mark it with a move ‘□’.

Def: \mathcal{K} is *copyable* if C has a computable winning strategy.

\mathcal{K} is *diagonalizable* if D has a computable winning strategy.
Examples

Theorem ([Kach, M])

Linear orderings are diagonalizable.

The ideas in this proof are due to:
[Jockusch, Soare 91]: Not every low linear order has computable copy.
[R. Miller 01]: There is an \mathcal{L} with $\text{Spec}(\mathcal{L}) \cap \Delta^0_2 = \Delta^0_2 \setminus \{0\}$.

Theorem

The class \mathbb{K} of Boolean algebras with a predicate for atom, and with infinitely many atoms, is copyable.

The ideas in this proof are due to:
[Downey Jockusch 94]: Every low Boolean algebra has computable copy.

Theorem

The class \mathbb{K} of Boolean algebras with predicates for atom, infinite, atomless, and with infinitely many atoms, is copyable.

The ideas in this proof are due to:
[Thurber 95]: Every low$_2$ Boolean algebra has low copy.
Def: \(K \) is *computably listable* if there exists a computable list of all computable structures in \(K \).

Definition

K is *listable* if there exists a Turing functional \(\Phi \), s.t., \(\forall X \in 2^{\omega} \), \(\Phi^X \) lists all the \(X \)-computable structures in \(K \).

Theorem (M)

If \(K \) is copyable, it’s listable.

The theorem doesn’t reverse but...
Now, player C builds infinitely many structures C^0, C^1, C^2,

<table>
<thead>
<tr>
<th>Player D</th>
<th>$D[0]$ \subseteq $D[1]$ \subseteq \cdots</th>
<th>let $D = \bigcup_s D[s]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C^0[0]$</td>
<td>$C^0[1]$ \subseteq $C^0[2]$ \cdots</td>
<td>let $C^0 = \bigcup_s C^0[s]$</td>
</tr>
<tr>
<td>$C^1[0]$</td>
<td>$C^1[1]$ \cdots</td>
<td>let $C^1 = \bigcup_s C^1[s]$</td>
</tr>
<tr>
<td>$C^2[0]$</td>
<td>\cdots</td>
<td>let $C^2 = \bigcup_s C^1[s]$</td>
</tr>
</tbody>
</table>

- If $D, C^0, C^1, \ldots \in K$, and for all i, $D \not\approx C^i$ then D wins.
- If $D, C^0, C^1, \ldots \in K$, and for some i, $D \cong C^i$, then C wins.
- If for some i, $C^i \not\in K$, then D wins.
- If for all i, $C \in K$, but $D \not\in K$, then C wins.

Def: K is ∞-copyable if C has a computable winning strategy. K is ∞-diagonalizable if D has a computable winning strategy.

Theorem (M)

K is listable if and only if it's ∞-copyable.
The $0^{(k)}$-Game

Player C now builds infinitely many structures C^0, C^1, \ldots, but needs to choose a single one, C^j, using k-jumps.

<table>
<thead>
<tr>
<th>Player D</th>
<th>$D[0]$ \subseteq $D[1]$ \subseteq \cdots</th>
<th>let $D = \bigcup_s D[s]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e \subseteq $C^0[0]$ \subseteq $C^1[0]$ \subseteq \cdots</td>
<td>defining $f : \omega \to \omega$</td>
</tr>
<tr>
<td>Player C</td>
<td>$f(0)$ \subseteq $f(1)$ \subseteq \cdots</td>
<td>let $C^0 = \bigcup_s C^0[s]$</td>
</tr>
<tr>
<td></td>
<td>$C^0[1]$ \subseteq $C^0[2]$ \subseteq \cdots</td>
<td>let $C^1 = \bigcup_s C^1[s]$</td>
</tr>
<tr>
<td></td>
<td>$C^1[1]$ \subseteq \cdots</td>
<td>let $C^2 = \bigcup_s C^2[s]$</td>
</tr>
<tr>
<td></td>
<td>$C^2[0]$ \subseteq \cdots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td></td>
</tr>
</tbody>
</table>

- If $\{e\}^{f(k)}(0) \uparrow$, then D wins, otherwise, let $j = \{e\}^{f(k)}(0)$.
- If $D, C^0, C^1, \ldots \in \mathbb{K}$, and $D \not\equiv C^j$, then D wins.
- If $D, C^0, C^1, \ldots \in \mathbb{K}$, and $D \equiv C^j$, then C wins.
- If for some i, $C^i \not\in \mathbb{K}$, then D wins.
- If for all i, $C \in \mathbb{K}$, but $D \not\in \mathbb{K}$, then C wins.

Def: \mathbb{K} is k-**copyable** if C has a computable winning strategy.

\mathbb{K} is k-**diagonalizable** if D has a computable winning strategy.
The 0\(^{(k)}\)-Game

Obs:

\[\text{copyable} \implies 1\text{-copyable} \implies 2\text{-copyable} \implies \cdots \implies \infty\text{-copyable}. \]
\[\text{diagonalizable} \iff 1\text{-diagonalizable} \iff 2\text{-diagonalizable} \iff \cdots \iff \infty\text{-diagonalizable}. \]

Theorem

Boolean algebras with predicate for atom are **1-diagonalizable and 2-copyable.**

This can be used to prove:

[M]: Not every low BA is 0\(^{(2)}\)-isomorphic to a computable one.

Recall:

[Downey, Jockusch 94]: Every low BA is 0\(^{(3)}\)-iso. to a computable one.

Theorem

[M]: Linear orderings are 4-copyable.

[Kach, M]: Linear orderings are 2-diagonalizable.

Question Are linear orderings 3-diagonalizable?
Def: The *jump of a structure* \mathcal{A} is another structure \mathcal{A}' built by adding relations \mathcal{A}, one for each Σ_1-formula.

Example:
- For a linear ordering, $\mathcal{L}' \equiv (\mathcal{L}, \text{succ}, 0')$.
- For a Boolean alg. $\mathcal{B}' \equiv (\mathcal{B}, \text{atom}, 0')$.
- For a Boolean alg. $(\mathcal{B}, \text{atom})' \equiv (\mathcal{B}, \text{atom}, \text{infinite}, \text{atomless}, 0')$.
- For a vector space $\mathcal{V}' \equiv (\mathcal{V}, \text{LinDep}, 0')$.

Thm: [Soskov][M 09] $\text{Spec}(\mathcal{A}') = \{ x' : x \in \text{Spec}(\mathcal{A}) \}$.

Def: For a class of structures \mathcal{K}, let $\mathcal{K}' = \{ \mathcal{A}' : \mathcal{A} \in \mathcal{K} \}$
The low property

Definition

We say that \mathcal{A} has the *low property* if, $\forall X, Y \in 2^\omega$ with $X' \equiv_T Y'$, \mathcal{A} has an X-computable copy \iff \mathcal{A} has a Y-computable copy. \mathcal{K} has the *low property* if every \mathcal{A} in \mathcal{K} does.

Thm: $[M \ 09]$ \mathcal{A} has the low property if and only if, $\forall X \in 2^\omega$, \mathcal{A}' has an X'-computable copy \iff \mathcal{A} has a X computable copy.

Theorem (M)

Assume that \mathcal{K} is Π_2^c-axiomatizable, then if \mathcal{K} has the low property, \mathcal{K}' is listable.
Let $\mathcal{B}A$ be the class of Boolean algebras

Example [Downey, Jockusch 95][Thurber 95][Knight, Stob 00] $\mathcal{B}A$, $\mathcal{B}A'$, $\mathcal{B}A''$ and $\mathcal{B}A'''$ have the low property, and hence $\mathcal{B}A$ has the low$_4$ property.

Question: Does $\mathcal{B}A^{(n)}$ have the low property for all n?

Theorem (Harris–M)

There is a low$_5$ $\mathcal{B}A$ not $0^{(7)}$-isomorphic to any computable one.

Ideas in the proof:
Let \mathcal{K} be the class of structures $(\mathcal{B}, \text{atom}, P)$ where $\mathcal{B} \in \mathcal{B}A$, and P is a unary relation that defines a c.e. subset of the atoms.

- Then \mathcal{K} is 2-diagonalizable.
- \mathcal{K} embeds, in a sense, in $\mathcal{B}A^{(5)}$.
We say that \mathbb{K} has a **computable 1-back-and-forth structure** if there is effective listing t_1, t_2, \ldots of all the Σ_1-types realized in \mathbb{K}, and the set $\{ \langle i, j \rangle : t_i \subseteq t_j \}$ is computable.

Example: The following class of structures have computable 1-back-and-forth structures:

- linear orderings,
- Boolean algebras,
- \mathbb{Q}-vector spaces,
- equivalence structures.
Theorem (M)

Let \mathbb{K} be a Π^c_2-axiomatizable class of structures with a computable 1-back-and-forth structure.

The following are equivalent:

- \mathbb{K} has the low property.
- \mathbb{K}' is listable.
- \mathbb{K}' is ∞-copyable.