A measure of uniformity

Rutger Kuyper

4 October 2015
Medvedev reducibility

Definition. Let $A, B \subseteq \omega^\omega$. Then we say that A Medvedev reduces to B ($A \leq_M B$) if there is a single Turing functional Φ such that $\Phi(B) \subseteq A$.
Medvedev reducibility
Muchnik reducibility

Definition. Let $\mathcal{A}, \mathcal{B} \subseteq \omega^\omega$. Then we say that \mathcal{A} *Muchnik reduces to* \mathcal{B} ($\mathcal{A} \leq_w \mathcal{B}$) if and only if for every $g \in \mathcal{B}$ there exists $f \in \mathcal{A}$ with $f \leq_T g$.
Muchnik reducibility
Where uniformity fails

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an n-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2^ω.

Theorem. (Kautz) Every 2-random computes a function which is not computably dominated.

Proposition. This does not hold uniformly.

Proof. Majority vote.
Where uniformity fails

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an n-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2^ω.
Where uniformity fails

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an n-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2^ω. \qed
Where uniformity fails

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an n-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2^ω.

Theorem. (Kautz) Every 2-random computes a function which is not computably dominated.
Where uniformity fails

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an n-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2^ω. □

Theorem. (Kautz) Every 2-random computes a function which is not computably dominated.

Proposition. This does not hold uniformly.
Where uniformity fails

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an n-DNC function.

Proposition. This does not hold uniformly.

*Proof.** Use the fact that the random reals are dense within 2^{ω}. □

Theorem. (Kautz) Every 2-random computes a function which is not computably dominated.

Proposition. This does not hold uniformly.

*Proof.** Majority vote. □
More failing uniformity

Theorem. (Jockusch) *We have that* $\text{DNC}_2 \leq_w \text{DNC}_3$, *but* $\text{DNC}_2 \not\leq_M \text{DNC}_3$.
Theorem. (Jockusch) We have that $\text{DNC}_2 \leq_w \text{DNC}_3$, but $\text{DNC}_2 \not\leq_M \text{DNC}_3$.

Proof. A kind of majority vote.
Intermediate degree structures

Definition. Let $\mathcal{A}, \mathcal{B} \subseteq \omega^\omega$ and let $n \in \omega$. Then we say that \mathcal{A} *n-uniformly reduces to* \mathcal{B} (notation: $\mathcal{A} \leq_n \mathcal{B}$) if there exists a sequence $\mathcal{V}_0, \mathcal{V}_1, \ldots$ of uniformly Π^0_n sets with $\mathcal{B} \subseteq \bigcup_{i \in \omega} \mathcal{V}_i$ and a uniformly computable sequence e_0, e_1, \ldots such that for every $i \in \omega$ and every $f \in \mathcal{B} \cap \mathcal{V}_i$ we have $\Phi_{e_i}(f) \in \mathcal{A}$.
Intermediate degree structures
Intermediate degree structures

Definition. Let $\mathcal{A}, \mathcal{B} \subseteq \omega^\omega$ and let $n \in \omega$. Then we say that \mathcal{A} n-uniformly reduces to \mathcal{B} (notation: $\mathcal{A} \leq_n \mathcal{B}$) if there exists a sequence $\mathcal{V}_0, \mathcal{V}_1, \ldots$ of uniformly Π^0_n sets with $\mathcal{B} \subseteq \bigcup_{i \in \omega} \mathcal{V}_i$ and a uniformly computable sequence e_0, e_1, \ldots such that for every $i \in \omega$ and every $f \in \mathcal{B} \cap \mathcal{V}_i$ we have $\Phi_{e_i}(f) \in \mathcal{A}$. Note that \leq_n induces a degree structure M_n in the usual way, the n-uniform degrees. For $n = 1$, this structure was also studied by Higuchi and Kihara, although in a different setting and with a different (but equivalent) definition.
Intermediate degree structures

Definition. Let $\mathcal{A}, \mathcal{B} \subseteq \omega^\omega$ and let $n \in \omega$. Then we say that \mathcal{A} n-uniformly reduces to \mathcal{B} (notation: $\mathcal{A} \leq_n \mathcal{B}$) if there exists a sequence $\mathcal{V}_0, \mathcal{V}_1, \ldots$ of uniformly Π^0_n sets with $\mathcal{B} \subseteq \bigcup_{i \in \omega} \mathcal{V}_i$ and a uniformly computable sequence e_0, e_1, \ldots such that for every $i \in \omega$ and every $f \in \mathcal{B} \cap \mathcal{V}_i$ we have $\Phi_{e_i}(f) \in \mathcal{A}$.

Note that \leq_n induces a degree structure \mathcal{M}_n in the usual way, the n(-uniform)-degrees.
Intermediate degree structures

Definition. Let \(\mathcal{A}, \mathcal{B} \subseteq \omega^\omega \) and let \(n \in \omega \). Then we say that \(\mathcal{A} \ n\)-uniformly reduces to \(\mathcal{B} \) (notation: \(\mathcal{A} \leq_n \mathcal{B} \)) if there exists a sequence \(\mathcal{V}_0, \mathcal{V}_1, \ldots \) of uniformly \(\Pi^0_n \) sets with \(\mathcal{B} \subseteq \bigcup_{i \in \omega} \mathcal{V}_i \) and a uniformly computable sequence \(e_0, e_1, \ldots \) such that for every \(i \in \omega \) and every \(f \in \mathcal{B} \cap \mathcal{V}_i \) we have \(\Phi_{e_i}(f) \in \mathcal{A} \).

Note that \(\leq_n \) induces a degree structure \(\mathcal{M}_n \) in the usual way, the \(n\)(-uniform)-degrees.

For \(n = 1 \), this structure was also studied by Higuchi and Kihara, although in a different setting and with a different (but equivalent) definition.
Some elementary results

Proposition. Medvedev reducibility and 0-reducibility coincide.

We will write \leq_{∞} for \leq_w.
Some elementary results

Proposition. Medvedev reducibility and 0-reducibility coincide.

We will write \leq_{∞} for \leq_w.

Proposition. For every $n \in \omega \cup \{\infty\}$, \mathcal{M}_n is a distributive lattice. In fact, it is even a Brouwer algebra: there is an operation \to_n such that

$$\mathcal{A} \oplus C \geq_n \mathcal{B} \iff C \geq_n \mathcal{A} \to_n \mathcal{B}.$$
Going back and forth

Proposition. Let $n, m \in \omega \cup \{\infty\}$ with $n \leq m$. Then the natural surjection from \mathcal{M}_n onto \mathcal{M}_m (induced by the identity map) preserves \oplus and \otimes, but not necessarily \to.

Theorem. ($m = 0, n = \infty$: Sorbi; $m = 0, n = 1$: Higuchi and Kihara) Let $n, m \in \omega \cup \{\infty\}$ with $n \leq m$. Then there is an embedding of \mathcal{M}_n into \mathcal{M}_m preserving \oplus and \to, but not necessarily \otimes.

\[
\mathcal{M}_0 \leftrightarrow \mathcal{M}_1 \leftrightarrow \mathcal{M}_2 \leftrightarrow \cdots \leftrightarrow \mathcal{M}_\infty
\]
Levels of uniformity

Definition. Let $\mathcal{A} \leq_w \mathcal{B}$. Then we say that the *uniformity of \mathcal{A} to \mathcal{B}* is the least $n \in \omega \cup \{\infty\}$ such that $\mathcal{A} \leq_n \mathcal{B}$.

Proposition. (Higuchi and Kihara) Let $\mathcal{A} \leq_w \mathcal{B}$ be such that \mathcal{A} is Σ^0_{n+1}. Then the uniformity of \mathcal{A} to \mathcal{B} is at most $\max(n, 2)$.

Levels of uniformity

Definition. Let $\mathcal{A} \leq_w \mathcal{B}$. Then we say that the *uniformity of \mathcal{A} to \mathcal{B}* is the least $n \in \omega \cup \{\infty\}$ such that $\mathcal{A} \leq_n \mathcal{B}$.

Proposition. (Higuchi and Kihara) Let $\mathcal{A} \leq_w \mathcal{B}$ be such that \mathcal{A} is Σ^0_{n+1}. Then the uniformity of \mathcal{A} to \mathcal{B} is at most $\max(n, 2)$.
Levels of uniformity in randomness

Theorem. (Effective 0-1-law, Kučera) Let $n \in \omega$, let \mathcal{V} be a Π^0_n-class of positive measure and let X be n-random. Then there is a $k \in \omega$ with $X \upharpoonright [k, \infty) \in \mathcal{V}$.
Levels of uniformity in randomness

Theorem. (Effective 0-1-law, Kučera) Let $n \in \omega$, let \mathcal{V} be a Π^0_n-class of positive measure and let X be n-random. Then there is a $k \in \omega$ with $X \upharpoonright [k, \infty) \in \mathcal{V}$.

Theorem. Let $n \in \omega$, let \mathcal{A} be a mass problem and let n–Random be the class of n-randoms. Assume there exists a Π^0_n-class \mathcal{V} of positive measure such that $\mathcal{A} \leq_M \mathcal{V}$. Then $\mathcal{A} \leq_n n$-Random.
Levels of uniformity in randomness

Theorem. (Effective 0-1-law, Kučera) Let $n \in \omega$, let \mathcal{V} be a Π^0_n-class of positive measure and let X be n-random. Then there is a $k \in \omega$ with $X \upharpoonright [k, \infty) \in \mathcal{V}$.

Theorem. Let $n \in \omega$, let \mathcal{A} be a mass problem and let n–Random be the class of n-randoms. Assume there exists a Π^0_n-class \mathcal{V} of positive measure such that $\mathcal{A} \leq_M \mathcal{V}$. Then $\mathcal{A} \leq_n n$-Random.

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \geq 1$. Then n-DNC Muchnik-reduces to n-randomness, with uniformity n.

Levels of uniformity in randomness

Theorem. (Effective 0-1-law, Kučera) Let $n \in \omega$, let \mathcal{V} be a Π^0_n-class of positive measure and let X be n-random. Then there is a $k \in \omega$ with $X \upharpoonright [k, \infty) \in \mathcal{V}$.

Theorem. Let $n \in \omega$, let \mathcal{A} be a mass problem and let n–Random be the class of n-randoms. Assume there exists a Π^0_n-class \mathcal{V} of positive measure such that $\mathcal{A} \leq^M \mathcal{V}$. Then $\mathcal{A} \leq_n n$-Random.

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \geq 1$. Then n-DNC Muchnik-reduces to n-randomness, with uniformity n.

Corollary. If $n \neq m$ then n-reducibility and m-reducibility differ.
Levels of uniformity in randomness

Theorem. (Effective 0-1-law, Kučera) Let $n \in \omega$, let \mathcal{V} be a Π^0_n-class of positive measure and let X be n-random. Then there is a $k \in \omega$ with $X \upharpoonright [k, \infty) \in \mathcal{V}$.

Theorem. Let $n \in \omega$, let \mathcal{A} be a mass problem and let $n-$Random be the class of n-randoms. Assume there exists a Π^0_n-class \mathcal{V} of positive measure such that $\mathcal{A} \leq_M \mathcal{V}$. Then $\mathcal{A} \leq_n n$-Random.

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \geq 1$. Then n-DNC Muchnik-reduces to n-randomness, with uniformity n.

Corollary. If $n \neq m$ then n-reducibility and m-reducibility differ.

Theorem. The uniformity of the non-computably-dominated functions to the 2-random sets is 2.
More levels of uniformity

Theorem. (Higuchi and Kihara)

\[\operatorname{DNC}_2 \not\leq_1 \operatorname{DNC}_3. \]

Corollary. *The uniformity of* \(\operatorname{DNC}_2 \) *to* \(\operatorname{DNC}_3 \) *is* 2.
Comparing to layerwise computability

Fix a universal Martin-Löf test U_0, U_1, \ldots. Let us say that A layerwise reduces to 1-randomness if there is a uniformly computable sequence e_0, e_1, \ldots such that $\Phi_{e_i}(2^\omega \setminus U_i) \subseteq A$.

Question. Is this weaker than 1-uniform reducibility to n-Random?
Comparing to layerwise computability

Fix a universal Martin-Löf test U_0, U_1, \ldots. Let us say that A layerwise reduces to 1-randomness if there is a uniformly computable sequence e_0, e_1, \ldots such that $\Phi_{e_i}(2^\omega \setminus U_i) \subseteq A$.

Question. Is this weaker than 1-uniform reducibility to n-Random?

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \geq 1$. Then n-DNC Muchnik-reduces to n-randomness, with uniformity n.
Comparing to layerwise computability

Fix a universal Martin-Löf test U_0, U_1, \ldots. Let us say that A \textit{layerwise reduces to 1-randomness} if there is a uniformly computable sequence e_0, e_1, \ldots such that $\Phi_{e_i}(2^\omega \setminus U_i) \subseteq A$.

Question. Is this weaker than 1-uniform reducibility to n-Random?

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \geq 1$. Then n-DNC$_{2m}$ Muchnik-reduces to n-randomness, with uniformity n.
Comparing to layerwise computability

Fix a universal Martin-Löf test U_0, U_1, \ldots. Let us say that A layerwise reduces to 1-randomness if there is a uniformly computable sequence e_0, e_1, \ldots such that $\Phi_{e_i}(2^\omega \setminus U_i) \subseteq A$.

Question. Is this weaker than 1-uniform reducibility to n-Random?

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \geq 1$. Then n-DNC$_{2m}$ Muchnik-reduces to n-randomness, with uniformity n.

Proposition. We do not have that n-DNC$_{2m}$ reduces layerwise to n-randomness.
Elementary (in)equivalence

Theorem. Let $n, m \in \omega \cup \{\infty\}$ with $m < n$ and $\{n, m\} \neq \{0, 1\}$. Then \mathcal{M}_n and \mathcal{M}_m are not elementarily equivalent.
Theorem. Let $n, m \in \omega \cup \{\infty\}$ with $m < n$ and $\{n, m\} \neq \{0, 1\}$. Then \mathcal{M}_n and \mathcal{M}_m are not elementarily equivalent.

Proof. Easy case: $n = \infty$. Muchnik reducibility is definable in \mathcal{M}_m (Dyment). Since m-reducibility and Muchnik reducibility do not coincide, form the sentence expressing this.
Elementary (in)equivalence

Hard case: \(n \in \omega \). We use the following two lemmas.

Lemma. If \(f, g \) are \(\Delta_0^n \), then \(C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f, g\}) \).

Lemma. Let \(X \oplus Y \) be \(\max(m, 1) \)-random. Then \(C(\{X\}) \otimes C(\{Y\}) \not\leq_m C(\{X, Y\}) \).

Furthermore:

- The Medvedev degrees of \(\{\{f\} | f \in \omega^\omega\} \) are isomorphic to the Turing degrees (Medvedev).
- They are definable in \(M(Dyment) \).
- \(C \) is definable in the Medvedev degrees (essentially Dyment).
- The \(\Delta_0^n \)-degrees are definable in the Turing degrees (Shore and Slaman).

Using this, express that “there are \(\Delta_0^n X \) and \(Y \) such that \(C(\{X\}) \otimes C(\{Y\}) \not\leq_m C(\{X, Y\}) \).”
Elementary (in)equivalence

Hard case: \(n \in \omega \). We use the following two lemmas.

Lemma. If \(f, g \) are \(\Delta^0_n \), then \(C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f, g\}) \).

Lemma. Let \(X \oplus Y \) be \(\max(m, 1) \)-random. Then \(C(\{X\}) \otimes C(\{Y\}) \not\leq_m C(\{X, Y\}) \).

Furthermore:

- The Medvedev degrees of \(\{\{f\} \mid f \in \omega^\omega\} \) are isomorphic to the Turing degrees (Medvedev).
Elementary (in)equivalence

Hard case: $n \in \omega$. We use the following two lemmas.

Lemma. If f, g are Δ^0_n, then $C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f, g\})$.

Lemma. Let $X \oplus Y$ be max$(m, 1)$-random. Then $C(\{X\}) \otimes C(\{Y\}) \nleq_m C(\{X, Y\})$.

Furthermore:
- The Medvedev degrees of $\{\{f\} \mid f \in \omega^\omega\}$ are isomorphic to the Turing degrees (Medvedev).
- They are definable in \mathcal{M} (Dyment).
Elementary (in)equivalence

Hard case: \(n \in \omega \). We use the following two lemmas.

Lemma. If \(f, g \) are \(\Delta^0_n \), then \(C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f, g\}) \).

Lemma. Let \(X \oplus Y \) be \(\text{max}(m, 1) \)-random. Then
\[
C(\{X\}) \otimes C(\{Y\}) \not\leq_m C(\{X, Y\})
\]

Furthermore:
- The Medvedev degrees of \(\{\{f\} \mid f \in \omega^\omega\} \) are isomorphic to the Turing degrees (Medvedev).
- They are definable in \(\mathcal{M} \) (Dyment).
- \(C \) is definable in the Medvedev degrees (essentially Dyment).
Elementary (in)equivalence

Hard case: $n \in \omega$. We use the following two lemmas.

Lemma. If f, g are Δ^0_n, then $C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f, g\})$.

Lemma. Let $X \oplus Y$ be $\max(m, 1)$-random. Then $C(\{X\}) \otimes C(\{Y\}) \nleq_m C(\{X, Y\})$.

Furthermore:

- The Medvedev degrees of $\{\{f\} | f \in \omega^\omega\}$ are isomorphic to the Turing degrees (Medvedev).
- They are definable in M (Dyment).
- C is definable in the Medvedev degrees (essentially Dyment).
- The Δ^0_n-degrees are definable in the Turing degrees (Shore and Slaman).

Using this, express that “there are $\Delta^0_n X$ and Y such that $C(\{X\}) \otimes C(\{Y\}) \nleq C(\{X, Y\})$”.
Thank you

Thank you!