Dominating and unbounded reals in Hechler extensions

Justin Palumbo

UCLA

ASL

2012 North American Annual Meeting
University of Wisconsin Madison
March 31, 2012
Dominating and unbounded reals

Definition

If V is a model of set theory and $V[G]$ is a generic extension, a real $d \in V[G] \cap \omega^\omega$ is called *dominating* if for every $f \in V \cap \omega^\omega$ we have $f \leq^* d$.

We will also be interested in *unbounded* reals.

Definition

A real $x \in V[G] \cap \omega^\omega$ is called *unbounded* if for every $f \in V \cap \omega^\omega$ we have $x \not\leq^* f$.

Justin Palumbo
Dominating and unbounded reals

Definition

If V is a model of set theory and $V[G]$ is a generic extension, a real $d \in V[G] \cap \omega^\omega$ is called dominating if for every $f \in V \cap \omega^\omega$ we have $f \leq^* d$.

Here \leq^* is the preorder of *eventual domination*.
Definition

If V is a model of set theory and $V[G]$ is a generic extension, a real $d \in V[G] \cap \omega^\omega$ is called dominating if for every $f \in V \cap \omega^\omega$ we have $f \leq_* d$.

Here \leq_* is the preorder of eventual domination

$$f \leq_* g \iff (\forall \infty n) f(n) \leq g(n).$$
Definition

If V is a model of set theory and $V[G]$ is a generic extension, a real $d \in V[G] \cap \omega^\omega$ is called *dominating* if for every $f \in V \cap \omega^\omega$ we have $f \leq^* d$.

Here \leq^* is the preorder of *eventual domination*

$$f \leq^* g \iff (\forall \infty n) f(n) \leq g(n).$$

We will also be interested in *unbounded reals*.
Dominating and unbounded reals

Definition

If V is a model of set theory and $V[G]$ is a generic extension, a real $d \in V[G] \cap \omega^\omega$ is called dominating if for every $f \in V \cap \omega^\omega$ we have $f \leq^* d$.

Here \leq^* is the preorder of eventual domination

$$f \leq^* g \iff (\forall \infty n) f(n) \leq g(n).$$

We will also be interested in unbounded reals.

Definition

A real $x \in V[G] \cap \omega^\omega$ is called unbounded if for every $f \in V \cap \omega^\omega$ we have $x \not\leq^* f$.
The most basic method of adding a dominating real to the universe is *Hechler forcing* \mathbb{D}.
The most basic method of adding a dominating real to the universe is Hechler forcing \mathbb{D}.

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^\omega$.
The most basic method of adding a dominating real to the universe is *Hechler forcing* \mathbb{D}.

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^\omega$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added;
The most basic method of adding a dominating real to the universe is *Hechler forcing* \mathbb{D}.

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^\prec$ and $f \in \omega^\omega$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added; and we refer to f as the commitment, which represents a restriction on the possible values of the real beyond the stem.
The most basic method of adding a dominating real to the universe is *Hechler forcing* \mathbb{D}.

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^\omega$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added; and we refer to f as the commitment, which represents a restriction on the possible values of the real beyond the stem.

The ordering is given by $\langle s', f' \rangle \leq \langle s, f \rangle$ if:

1. $s \subseteq s'$.

Justin Palumbo

Dominating and unbounded reals in Hechler extensions
The most basic method of adding a dominating real to the universe is **Hechler forcing** \mathbb{D}.

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^\omega$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added; and we refer to f as the commitment, which represents a restriction on the possible values of the real beyond the stem.

The ordering is given by $\langle s', f' \rangle \leq \langle s, f \rangle$ if:

1. $s \subseteq s'$.
2. $(\forall n) f(n) \leq f'(n)$.
The most basic method of adding a dominating real to the universe is Hechler forcing \mathbb{D}.

Conditions in \mathbb{D} are of the form $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^\omega$. We refer to s as the stem of the condition, which represents a finite approximation of the real to be added; and we refer to f as the commitment, which represents a restriction on the possible values of the real beyond the stem.

The ordering is given by $\langle s', f' \rangle \leq \langle s, f \rangle$ if:

1. $s \subseteq s'$.
2. $(\forall n)f(n) \leq f'(n)$.
3. $(\forall n \in |s'| \setminus |s|) f(n) \leq s'(n)$.

Justin Palumbo

Dominating and unbounded reals in Hechler extensions
In order to simplify the analysis of the Hechler extension, Baumgartner and Dordal (in “Adjoining dominating functions”) used a slight variation which we denote \mathbb{D}_{nd}.
In order to simplify the analysis of the Hechler extension, Baumgartner and Dordal (in “Adjoining dominating functions”) used a slight variation which we denote \mathbb{D}_{nd}. The forcing is just like \mathbb{D} except the stems $s \in \omega^\omega$ are taken to be nondecreasing.
\(\mathbb{D}_{\text{nd}} \) admits a rank analysis.
\(\mathbb{D}_{nd} \) admits a rank analysis. Let \(A \subseteq \omega^{<\omega} \). For each nondecreasing \(s \in \omega^{<\omega} \) we define \(\text{rk}_A(s) \in \text{ON} \cup \{\infty\} \) by recursion:
D_{nd} admits a rank analysis. Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\text{rk}_A(s) = 0$ if $s \in A$.

The point of this definition is that A is a dense set exactly when every nondecreasing $s \in \omega^{<\omega}$ gets a rank.

Using the rank analysis Baumgartner and Dordal proved:

Theorem (Baumgartner, Dordal, 1985)

Say $V \models \text{CH}$. Let G be generic for the finite support iteration of D_{nd}. Then $V[G] \models s = \omega_1 \land b = 2^\omega$. In particular $s < b$ is consistent.
\(\mathbb{D}_{\text{nd}} \) admits a *rank analysis*. Let \(A \subseteq \omega^{<\omega} \). For each nondecreasing \(s \in \omega^{<\omega} \) we define \(\text{rk}_A(s) \in \text{ON} \cup \{\infty\} \) by recursion:

1. \(\text{rk}_A(s) = 0 \) if \(s \in A \).
2. \(\text{rk}_A(s) \leq \alpha + 1 \) if there is \(m \in \omega \) and a sequence \(\{t_l : l \in \omega\} \subseteq \omega^m \) with \(\lim t_l(0) = \infty \) and \(\text{rk}_A(s \upharpoonright t_l) \leq \alpha \).
\mathbb{D}_{nd} admits a rank analysis. Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\text{rk}_A(s) = 0$ if $s \in A$.
2. $\text{rk}_A(s) \leq \alpha + 1$ if there is $m \in \omega$ and a sequence \(\{t_l : l \in \omega\} \subseteq \omega^m \) with \(\lim t_l(0) = \infty \) and $\text{rk}_A(s \langle t_l \rangle) \leq \alpha$.

The point of this definition is that A is a dense set exactly when every nondecreasing s gets a rank.
\mathcal{D}_{nd} admits a *rank analysis*. Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\text{rk}_A(s) = 0$ if $s \in A$.
2. $\text{rk}_A(s) \leq \alpha + 1$ if there is $m \in \omega$ and a sequence $\{t_l : l \in \omega\} \subseteq \omega^m$ with $\lim t_l(0) = \infty$ and $\text{rk}_A(s \upharpoonright t_l) \leq \alpha$.

The point of this definition is that A is a dense set exactly when every nondecreasing s gets a rank. Using the rank analysis Baumgartner and Dordal proved:

\begin{itemize}
 \item Say $V \models \text{CH}$. Let G be generic for the finite support iteration of \mathcal{D}_{nd}. Then $V[G] \models s = \omega_1 \land b = 2^\omega$. In particular $s < b$ is consistent.
\end{itemize}
\(\mathbb{D}_{nd}\) admits a *rank analysis*. Let \(A \subseteq \omega^{<\omega}\). For each nondecreasing \(s \in \omega^{<\omega}\) we define \(\text{rk}_A(s) \in \text{ON} \cup \{\infty\}\) by recursion:

1. \(\text{rk}_A(s) = 0\) if \(s \in A\).
2. \(\text{rk}_A(s) \leq \alpha + 1\) if there is \(m \in \omega\) and a sequence \(\{t_l : l \in \omega\} \subseteq \omega^m\) with \(\lim t_l(0) = \infty\) and \(\text{rk}_A(s \upharpoonright t_l) \leq \alpha\).

The point of this definition is that \(A\) is a dense set exactly when every nondecreasing \(s\) gets a rank. Using the rank analysis Baumgartner and Dordal proved:

Theorem (Baumgartner, Dordal, 1985)

Say \(V \models \text{CH}\). Let \(G\) be generic for the finite support iteration of \(\mathbb{D}_{nd}\). Then \(V[G] \models s = \omega_1 \land b = 2^\omega\). In particular \(s < b\) is consistent.
In “Combinatorial properties of Hechler forcing” Brendle, Judah and Shelah used this same rank analysis to prove:

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with D_{nd} adds a MAD family of size ω_1 and a Luzin set of size 2^{ω}. The existence of a Luzin set of size 2^{ω} completely determines Cichoń’s diagram of cardinal characteristics; it sets the left half equal to ω_1 and the right half equal to the continuum. They also introduced a rank analysis for D and showed that their theorem holds for the usual Hechler extension. It was an open question whether D and D_{nd} are equivalent as forcing notions.
In “Combinatorial properties of Hechler forcing” Brendle, Judah and Shelah used this same rank analysis to prove:

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with \mathbb{D}_{nd} adds a MAD family of size ω_1 and a Luzin set of size 2^ω.

The existence of a Luzin set of size 2^ω completely determines Cichoń's diagram of cardinal characteristics; it sets the left half equal to ω_1 and the right half equal to the continuum.

They also introduced a rank analysis for \mathbb{D} and showed that their theorem holds for the usual Hechler extension.

It was an open question whether \mathbb{D} and \mathbb{D}_{nd} are equivalent as forcing notions.
In “Combinatorial properties of Hechler forcing” Brendle, Judah and Shelah used this same rank analysis to prove:

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with D_{nd} adds a MAD family of size ω_1 and a Luzin set of size 2^ω.

The existence of a Luzin set of size 2^ω completely determines Cichoń’s diagram of cardinal characteristics; it sets the left half equal to ω_1 and the right half equal to the continuum.
In “Combinatorial properties of Hechler forcing” Brendle, Judah and Shelah used this same rank analysis to prove:

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with D_{nd} adds a MAD family of size ω_1 and a Luzin set of size 2^{ω}.

The existence of a Luzin set of size 2^{ω} completely determines Cichoń’s diagram of cardinal characteristics; it sets the left half equal to ω_1 and the right half equal to the continuum.

They also introduced a rank analysis for D and showed that their theorem holds for the usual Hechler extension.
In “Combinatorial properties of Hechler forcing” Brendle, Judah and Shelah used this same rank analysis to prove:

Theorem (Brendle, Judah and Shelah, 1992)

Forcing with \mathbb{D}_{nd} adds a MAD family of size ω_1 and a Luzin set of size 2^ω.

The existence of a Luzin set of size 2^ω completely determines Cichoń’s diagram of cardinal characteristics; it sets the left half equal to ω_1 and the right half equal to the continuum.

They also introduced a rank analysis for \mathbb{D} and showed that their theorem holds for the usual Hechler extension. It was an open question whether \mathbb{D} and \mathbb{D}_{nd} are equivalent as forcing notions.
Brendle and Löwe (in “Eventually different functions and inaccessible cardinals”) used a further variant of Hechler forcing. Conditions in D_{tree} are trees $T \subseteq \omega^{<\omega}$ with a distinguished stem $s = \text{stem}(T)$ so that:

1. $(\forall t \in T) s \subseteq t$ or $t \subseteq s$.
2. $t \in T$ with $s \subseteq t$ implies that $(\forall \infty n) t \upharpoonright n \in T$.

The ordering is inclusion: $T' \leq T$ whenever $T' \subseteq T$.

Justin Palumbo
Dominating and unbounded reals in Hechler extensions
Brendle and Löwe (in “Eventually different functions and inaccessible cardinals”) used a further variant of Hechler forcing. (They used the notation D; in other recent literature it has been referred to as $L(Fin)$.)
Brendle and Löwe (in “Eventually different functions and inaccessible cardinals”) used a further variant of Hechler forcing. (They used the notation \(\mathbb{D} \); in other recent literature it has been referred to as \(\mathbb{L}(\text{Fin}) \).) We shall denote this forcing by \(\mathbb{D}_{\text{tree}} \) and refer to it as the \emph{tree Hechler forcing}.

Conditions in \(\mathbb{D}_{\text{tree}} \) are trees \(T \subseteq \omega^{<\omega} \) with a distinguished stem \(s = \text{stem}(T) \) so that:

1. \((\forall t \in T) s \subseteq t \) or \(t \subseteq s \).
2. \(t \in T \) with \(s \subseteq t \) implies that \((\forall \infty n) t \upharpoonright n \in T \).

The ordering is inclusion: \(T' \leq T \) whenever \(T' \subseteq T \).
Brendle and Löwe (in “Eventually different functions and inaccessible cardinals”) used a further variant of Hechler forcing. (They used the notation \mathbb{D}; in other recent literature it has been referred to as $\mathbb{L}(\text{Fin})$.) We shall denote this forcing by \mathbb{D}_{tree} and refer to it as the tree Hechler forcing.

Conditions in \mathbb{D}_{tree} are trees $T \subseteq \omega^{< \omega}$ with a distinguished stem $s = \text{stem}(T)$ so that:

1. $(\forall t \in T) s \subseteq t \text{ or } t \subseteq s$.
2. $t \in T$ with $s \subseteq t$ implies that $(\forall \infty n) t \upharpoonright n \in T$.

The ordering is inclusion: $T' \leq T$ whenever $T' \subseteq T$.

Justin Palumbo

Dominating and unbounded reals in Hechler extensions
Brendle and Löwe (in “Eventually different functions and inaccessible cardinals”) used a further variant of Hechler forcing. (They used the notation \mathbb{D}; in other recent literature it has been referred to as $\mathbb{L}(\text{Fin})$.) We shall denote this forcing by \mathbb{D}_{tree} and refer to it as the tree Hechler forcing.

Conditions in \mathbb{D}_{tree} are trees $T \subseteq \omega^{<\omega}$ with a distinguished stem $s = \text{stem}(T)$ so that:

1. $(\forall t \in T) s \subseteq t$ or $t \subseteq s$.

Brendle and Löwe (in “Eventually different functions and inaccessible cardinals”) used a further variant of Hechler forcing. (They used the notation \mathbb{D}; in other recent literature it has been referred to as $\mathbb{L}(\text{Fin})$.) We shall denote this forcing by \mathbb{D}_{tree} and refer to it as the tree Hechler forcing.

Conditions in \mathbb{D}_{tree} are trees $T \subseteq \omega^\omega$ with a distinguished stem $s = \text{stem}(T)$ so that:

1. $(\forall t \in T)s \subseteq t$ or $t \subseteq s$.
2. $t \in T$ with $s \subseteq t$ implies that $(\forall \infty n)t \looparrowright n \in T$.
Brendle and Löwe (in “Eventually different functions and inaccessible cardinals”) used a further variant of Hechler forcing. (They used the notation \mathbb{D}; in other recent literature it has been referred to as $\mathbb{L}(\text{Fin})$.) We shall denote this forcing by \mathbb{D}_{tree} and refer to it as the tree Hechler forcing.

Conditions in \mathbb{D}_{tree} are trees $T \subseteq \omega^{<\omega}$ with a distinguished stem $s = \text{stem}(T)$ so that:

1. $(\forall t \in T) s \subseteq t$ or $t \subseteq s$.
2. $t \in T$ with $s \subseteq t$ implies that $(\forall^\infty n) t \operatorname{forces} n \in T$.

The ordering is inclusion: $T' \leq T$ whenever $T' \subseteq T$.
Brendle and Löwe (in “Eventually different functions and inaccessible cardinals”) used a further variant of Hechler forcing. (They used the notation \mathbb{D}; in other recent literature it has been referred to as $\mathbb{L}(\text{Fin})$.) We shall denote this forcing by \mathbb{D}_{tree} and refer to it as the tree Hechler forcing.

Conditions in \mathbb{D}_{tree} are trees $T \subseteq \omega^{<\omega}$ with a distinguished stem $s = \text{stem}(T)$ so that:

1. $(\forall t \in T) s \subseteq t$ or $t \subseteq s$.
2. $t \in T$ with $s \subseteq t$ implies that $(\forall^\omega n)t \smallfrown n \in T$.

The ordering is inclusion: $T' \leq T$ whenever $T' \subseteq T$.
Brendle and Löwe wanted a model where $\Delta^1_2(D)$ holds but $\Delta^1_2(E)$ fails. They introduced D_{tree} because it admits a rank analysis even simpler than that of D_{nd}:
Brendle and Löwe wanted a model where $\Delta^1_2(D)$ holds but $\Delta^1_2(E)$ fails. They introduced D_{tree} because it admits a rank analysis even simpler than that of D_{nd}:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:
Brendle and Löwe wanted a model where $\Delta^1_2(\mathbb{D})$ holds but $\Delta^1_2(\mathbb{E})$ fails. They introduced \mathbb{D}_{tree} because it admits a rank analysis even simpler than that of \mathbb{D}_{nd}:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\text{rk}_A(s) = 0$ if $s \in A$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for \mathbb{D}_{tree}; the proofs are the same, but easier.

Since \mathbb{D}, \mathbb{D}_{nd}, and \mathbb{D}_{tree} all admit a rank analysis and all have the same effect on the common cardinal characteristics, it is natural to ask: how do these forcings relate to each other? Are they actually distinct as forcing notions?
Brendle and Löwe wanted a model where $\Delta^1_2(\mathbb{D})$ holds but $\Delta^1_2(\mathbb{E})$ fails. They introduced \mathbb{D}_{tree} because it admits a rank analysis even simpler than that of \mathbb{D}_{nd}:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\text{rk}_A(s) = 0$ if $s \in A$.
2. $\text{rk}_A(s) \leq \alpha + 1$ if $(\exists \infty n) \text{rk}_A(s \triangleleft n) \leq \alpha$.
Brendle and Löwe wanted a model where $\Delta^1_2(D)$ holds but $\Delta^1_2(E)$ fails. They introduced D_{tree} because it admits a rank analysis even simpler than that of D_{nd}:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\text{rk}_A(s) = 0$ if $s \in A$.

2. $\text{rk}_A(s) \leq \alpha + 1$ if $(\exists \infty n) \text{rk}_A(s \upharpoonright n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for D_{tree}:
Brendle and Löwe wanted a model where $\Delta^1_2(\mathbb{D})$ holds but $\Delta^1_2(\mathbb{E})$ fails. They introduced \mathbb{D}_{tree} because it admits a rank analysis even simpler than that of \mathbb{D}_{nd}:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\text{rk}_A(s) = 0$ if $s \in A$.
2. $\text{rk}_A(s) \leq \alpha + 1$ if $(\exists \infty n)\text{rk}_A(s \upharpoonright n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for \mathbb{D}_{tree}; the proofs are the same, but easier.
Brendle and Löwe wanted a model where $\Delta_2^1(D)$ holds but $\Delta_2^1(E)$ fails. They introduced D_{tree} because it admits a rank analysis even simpler than that of D_{nd}:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\text{rk}_A(s) = 0$ if $s \in A$.
2. $\text{rk}_A(s) \leq \alpha + 1$ if $(\exists \infty n) \text{rk}_A(s \upharpoonright n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for D_{tree}; the proofs are the same, but easier.

Since D, D_{nd}, and D_{tree} all admit a rank analysis and all have the same effect on the common cardinal characteristics, it is natural to ask:
Brendle and Löwe wanted a model where $\Delta^1_2(D)$ holds but $\Delta^1_2(E)$ fails. They introduced D_{tree} because it admits a rank analysis even simpler than that of D_{nd}:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\text{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\text{rk}_A(s) = 0$ if $s \in A$.
2. $\text{rk}_A(s) \leq \alpha + 1$ if $(\exists \infty n)\text{rk}_A(s \smallsetminus n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for D_{tree}; the proofs are the same, but easier.

Since D, D_{nd}, and D_{tree} all admit a rank analysis and all have the same effect on the common cardinal characteristics, it is natural to ask: how do these forcings relate to each other?
Brendle and Löwe wanted a model where $\Delta^1_2(D)$ holds but $\Delta^1_2(E)$ fails. They introduced D_{tree} because it admits a rank analysis even simpler than that of D_{nd}:

Let $A \subseteq \omega^{<\omega}$. For each nondecreasing $s \in \omega^{<\omega}$ we define $\operatorname{rk}_A(s) \in \text{ON} \cup \{\infty\}$ by recursion:

1. $\operatorname{rk}_A(s) = 0$ if $s \in A$.
2. $\operatorname{rk}_A(s) \leq \alpha + 1$ if $(\exists \infty n) \operatorname{rk}_A(s \ join n) \leq \alpha$.

Both the Baumgartner-Dordal and the Brendle-Judah-Shelah theorems go through for D_{tree}; the proofs are the same, but easier.

Since D, D_{nd}, and D_{tree} all admit a rank analysis and all have the same effect on the common cardinal characteristics, it is natural to ask: how do these forcings relate to each other? Are they actually distinct as forcing notions?
Theorem (Neeman, P.)

\(D \) and \(D_{nd} \) are equivalent as forcing notions.
Theorem (Neeman, P.)

\(\mathbb{D} \) and \(\mathbb{D}_{\text{nd}} \) are equivalent as forcing notions.

The strategy of the proof is to first show that \(\mathbb{D}_{\text{nd}} \ast \mathbb{C} \) and \(\mathbb{D} \) are equivalent.
Theorem (Neeman, P.)

\(\mathcal{D} \) and \(\mathcal{D}_{nd} \) are equivalent as forcing notions.

The strategy of the proof is to first show that \(\mathcal{D}_{nd} \ast C \) and \(\mathcal{D} \) are equivalent and then show that \(\mathcal{D}_{nd} \ast C \) and \(\mathcal{D}_{nd} \) are equivalent.
Theorem (P.)

D and D_{tree} are not equivalent.
Theorem (P.)

D and D_{tree} are not equivalent.

Proving this is complicated by the fact that each poset is a subforcing of the other:
Theorem (P.)

\mathbb{D} and \mathbb{D}_{tree} are not equivalent.

Proving this is complicated by the fact that each poset is a subforcing of the other: forcing with \mathbb{D} adds a \mathbb{D}_{tree}-generic real and vice versa.
Theorem (P.)

\(\mathcal{D} \) and \(\mathcal{D}_{\text{tree}} \) are not equivalent.

Proving this is complicated by the fact that each poset is a subforcing of the other: forcing with \(\mathcal{D} \) adds a \(\mathcal{D}_{\text{tree}} \)-generic real and vice versa.

Thus \(\mathcal{D} \) and \(\mathcal{D}_{\text{tree}} \) provide a counterexample to the natural Cantor-Bernstein theorem in the category of forcing notions.
To separate the two notions of forcing, we give a comparison of the relationship between dominating reals and the unbounded reals in the two extensions. We have the following two results:

Theorem (P.)

Let G be D-generic over V. There is an unbounded real x in $V \[G \]$ so that $x \leq^* y$ for every dominating real $y \in V \[G]$.

Theorem (P.)

Let G be D-tree-generic over V. Let x be an unbounded real in $V \[G \]$. Then there is a dominating real $y \in V \[G \]$ so that $(\exists \infty n) y(n) < x(n)$.

(That is, $x \not\leq^* y$).
To separate the two notions of forcing, we give a comparison of the relationship between dominating reals and the unbounded reals in the two extensions. We have the following two results:

Theorem (P.)

Let G be \mathbb{D}-generic over V. There is an unbounded real x in $V[G]$ so that $x \leq^* y$ for every dominating real $y \in V[G]$.
To separate the two notions of forcing, we give a comparison of the relationship between dominating reals and the unbounded reals in the two extensions. We have the following two results:

Theorem (P.)

Let \(G \) be \(\mathbb{D} \)-generic over \(V \). There is an unbounded real \(x \) in \(V[G] \) so that \(x \leq^* y \) for every dominating real \(y \in V[G] \).

Theorem (P.)

Let \(G \) be \(\mathbb{D}_{\text{tree}} \)-generic over \(V \). Let \(x \) be an unbounded real in \(V[G] \). Then there is a dominating real \(y \in V[G] \) so that \((\exists^\infty n)y(n) < x(n)\).
To separate the two notions of forcing, we give a comparison of the relationship between dominating reals and the unbounded reals in the two extensions. We have the following two results:

Theorem (P.)

Let G be \mathbb{D}-generic over V. There is an unbounded real x in $V[G]$ so that $x \leq^* y$ for every dominating real $y \in V[G]$.

Theorem (P.)

Let G be \mathbb{D}_{tree}-generic over V. Let x be an unbounded real in $V[G]$. Then there is a dominating real $y \in V[G]$ so that $(\exists^\infty n) y(n) < x(n)$. (That is, $x \not\leq^* y$.)
A conjecture of Brendle and Löwe

Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by \mathbb{D}_{tree}:

\begin{quote}
Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.
\end{quote}

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of \mathbb{D}_{tree}:

\begin{quote}
Conjecture (Brendle and Löwe)

The only nontrivial subforcings of \mathbb{D}_{tree} are Cohen forcing \mathbb{C} and \mathbb{D}_{tree} itself.
\end{quote}

We can see now that this conjecture is false. Forcing with \mathbb{D}_{tree} adds a \mathbb{D}_{tree}-generic real, which is neither equivalent to \mathbb{D}_{tree} nor to \mathbb{C}.

Justin Palumbo
Dominating and unbounded reals in Hechler extensions
Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by \mathbb{D}_{tree}:

Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of \mathbb{D}_{tree}:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of \mathbb{D}_{tree} are Cohen forcing \mathbb{C} and \mathbb{D}_{tree} itself.

We can see now that this conjecture is false. Forcing with \mathbb{D}_{tree} adds a \mathbb{D}-generic real, which is neither equivalent to \mathbb{D}_{tree} nor to \mathbb{C}.
Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by \mathbb{D}_{tree}:

Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of \mathbb{D}_{tree}:

Forcing with \mathbb{D}_{tree} adds a \mathbb{D}_{tree}-generic real, which is neither equivalent to \mathbb{D}_{tree} nor to \mathbb{C}.

Justin Palumbo

Dominating and unbounded reals in Hechler extensions
Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by D_{tree}:

Theorem (Brendle and Löwe, 2009)

Every real added by D_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of D_{tree}:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of D_{tree} are Cohen forcing C and D_{tree} itself.
Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by D_{tree}:

Theorem (Brendle and Löwe, 2009)

Every real added by D_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of D_{tree}:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of D_{tree} are Cohen forcing C and D_{tree} itself.

We can see now that this conjecture is false.
Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by \mathbb{D}_{tree}:

Theorem (Brendle and Löwe, 2009)

Every real added by \mathbb{D}_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of \mathbb{D}_{tree}:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of \mathbb{D}_{tree} are Cohen forcing \mathbb{C} and \mathbb{D}_{tree} itself.

We can see now that this conjecture is false. Forcing with \mathbb{D}_{tree} adds a \mathbb{D}-generic real,
Brendle and Löwe proved a dichotomy theorem for the possible reals in the extension by D_{tree}:

Theorem (Brendle and Löwe, 2009)

Every real added by D_{tree} is either dominating or infinitely equal to some ground model real.

Motivated by this, they made an analogous dichotomy-style conjecture on the possible subforcings of D_{tree}:

Conjecture (Brendle and Löwe)

The only nontrivial subforcings of D_{tree} are Cohen forcing C and D_{tree} itself.

We can see now that this conjecture is false. Forcing with D_{tree} adds a D-generic real, which is neither equivalent to D_{tree} nor to C.
Constructing an unbounded real in $V^\mathbb{D}$ dominated by every dominating real requires a precise analysis of the dominating reals in that extension.
Constructing an unbounded real in $V^\mathbb{D}$ dominated by every dominating real requires a precise analysis of the dominating reals in that extension. Let ω^ω denote the set of functions in ω^ω which converge monotonically to infinity.
Constructing an unbounded real in V^D dominated by every dominating real requires a precise analysis of the dominating reals in that extension. Let $\omega \uparrow \omega$ denote the set of functions in ω^ω which converge monotonically to infinity. Notice that if d is a dominating real, and $z \in V \cap \omega \uparrow \omega$ then both $d \circ z$ and $z \circ d$ are dominating.
Constructing an unbounded real in V^D dominated by every dominating real requires a precise analysis of the dominating reals in that extension. Let $\omega \uparrow \omega$ denote the set of functions in ω^ω which converge monotonically to infinity. Notice that if d is a dominating real, and $z \in V \cap \omega \uparrow \omega$ then both $d \circ z$ and $z \circ d$ are dominating.

Theorem (P.)

Let d be a \mathbb{D}_{nd}-generic real, and suppose $y \in V[d]$ is dominating. Then there are $z_0, z_1 \in V \cap \omega \uparrow \omega$ so that $z_0 \circ d \circ z_1 \leq^* y$.

Justin Palumbo

Dominating and unbounded reals in Hechler extensions
Constructing an unbounded real in $V^\mathbb{D}$ dominated by every dominating real requires a precise analysis of the dominating reals in that extension. Let $\omega \rightarrow^\omega$ denote the set of functions in ω^ω which converge monotonically to infinity. Notice that if d is a dominating real, and $z \in V \cap \omega \rightarrow^\omega$ then both $d \circ z$ and $z \circ d$ are dominating.

Theorem (P.)

Let d be a \mathbb{D}_{nd}-generic real, and suppose $y \in V[d]$ is dominating. Then there are $z_0, z_1 \in V \cap \omega \rightarrow^\omega$ so that $z_0 \circ d \circ z_1 \leq^* y$. We can view this theorem as saying that d generates all the dominating reals in $V[d]$.
This result has strong consequences for the cofinal structure of \mathcal{D}, the collection of dominating reals in $V[d]$.

Corollary

The structures $(V \cap \omega \omega, \leq \ast)$ and $(\mathcal{D}, \ast \geq)$ are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N}", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $F \subseteq \omega \omega$:

1. $b(F) = \min \{|H| : H \subseteq F \text{ is unbounded in } F\}$
2. $d(F) = \min \{|H| : H \subseteq F \text{ is dominating in } F\}$
3. $b_{\downarrow}(F) = \min \{|H| : H \subseteq F \downarrow \text{ is unbounded in } (F \downarrow, \ast \geq)\}$

Here $F \downarrow \subseteq \omega \omega$ is the set of functions dominating F. (So if $F = V \cap \omega \omega$ then $F \downarrow = \mathcal{D}$.)
This result has strong consequences for the cofinal structure of D, the collection of dominating reals in $V[d]$.

Corollary

The structures $(V \cap \omega^\omega, \leq^*)$ and (D, \geq^*) are cofinally isomorphic.
This result has strong consequences for the cofinal structure of \mathcal{D}, the collection of dominating reals in $V[d]$.

Corollary

The structures $(V \cap \omega^\omega, \leq^*)$ and (\mathcal{D}, \geq^*) are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N}", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $\mathcal{F} \subseteq \omega^\omega$:

\begin{align*}
1 & \quad b(\mathcal{F}) = \min \{|H| : H \subseteq \mathcal{F} \text{ is unbounded in } \mathcal{F}\} \\
2 & \quad d(\mathcal{F}) = \min \{|H| : H \subseteq \mathcal{F} \text{ is dominating in } \mathcal{F}\} \\
3 & \quad b^{\downarrow}(\mathcal{F}) = \min \{|H| : H \subseteq \mathcal{F} \text{ is unbounded in } (\mathcal{F}^{\downarrow}, \geq^*)\}
\end{align*}

Here $\mathcal{F}^{\downarrow} \subseteq \omega^\omega$ is the set of functions dominating \mathcal{F}.

(So if $\mathcal{F} = V \cap \omega^\omega$ then $\mathcal{F}^{\downarrow} = \mathcal{D}$.)

Justin Palumbo

Dominating and unbounded reals in Hechler extensions
This result has strong consequences for the cofinal structure of D, the collection of dominating reals in $V[d]$.

Corollary

The structures $(V \cap \omega^\omega, \leq^*)$ and $(D, *\geq)$ are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N}", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $F \subseteq \omega^\omega$:

Definition (Laflamme)

1. $b(F) = \min\{|H| : H \subseteq F \text{ is unbounded in } F\}$
This result has strong consequences for the cofinal structure of \mathcal{D}, the collection of dominating reals in $V[d]$.

Corollary

The structures $(V \cap \omega^\omega, \leq^)$ and (\mathcal{D}, \geq^*) are cofinally isomorphic.*

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N}", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $\mathcal{F} \subseteq \omega^\omega$:

Definition (Laflamme)

1. $b(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is unbounded in } \mathcal{F}\}$
2. $d(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is dominating in } \mathcal{F}\}$

Here $\mathcal{F} \downarrow \subseteq \omega^\omega$ is the set of functions dominating \mathcal{F}.

(So if $\mathcal{F} = V \cap \omega^\omega$ then $\mathcal{F} \downarrow = \mathcal{D}$.)

Justin Palumbo
Dominating and unbounded reals in Hechler extensions
This result has strong consequences for the cofinal structure of \mathcal{D}, the collection of dominating reals in $V[d]$.

Corollary

The structures $(V \cap \omega^\omega, \leq^*)$ and (\mathcal{D}, \geq^*) are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N}", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $\mathcal{F} \subseteq \omega^\omega$:

Definition (Laflamme)

1. $b(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is unbounded in } \mathcal{F}\}$
2. $d(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F} \text{ is dominating in } \mathcal{F}\}$
3. $b^\downarrow(\mathcal{F}) = \min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{F}^\downarrow \text{ is unbounded in } (\mathcal{F}^\downarrow, \geq^*)\}$
This result has strong consequences for the cofinal structure of D, the collection of dominating reals in $V[d]$.

Corollary

The structures $(V \cap \omega^\omega, \leq^*)$ and (D, \geq^*) are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N}", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $F \subseteq \omega^\omega$:

Definition (Laflamme)

1. $b(F) = \min\{|H| : H \subseteq F \text{ is unbounded in } F\}$
2. $d(F) = \min\{|H| : H \subseteq F \text{ is dominating in } F\}$
3. $b^\downarrow(F) = \min\{|H| : H \subseteq F^\downarrow \text{ is unbounded in } (F^\downarrow, \geq^*)\}$

Here $F^\downarrow \subseteq \omega^\omega$ is the set of functions dominating F.
This result has strong consequences for the cofinal structure of D, the collection of dominating reals in $V[d]$.

Corollary

The structures $(V \cap \omega^\omega, \leq^*)$ and $(D, *\geq)$ are cofinally isomorphic.

Using this fact, one can extend work of Laflamme ("Bounding and dominating numbers of families of functions on \mathbb{N}", 1993), and give new consistently achievable values of the following three cardinal characteristics for bounded $F \subseteq \omega^\omega$:

Definition (Laflamme)

1. $b(F) = \min\{|H| : H \subseteq F \text{ is unbounded in } F\}$
2. $d(F) = \min\{|H| : H \subseteq F \text{ is dominating in } F\}$
3. $b^\downarrow(F) = \min\{|H| : H \subseteq F^\downarrow \text{ is unbounded in } (F^\downarrow, *\geq)\}$

Here $F^\downarrow \subseteq \omega^\omega$ is the set of functions dominating F. (So if $F = V \cap \omega^\omega$ then $F^\downarrow = D$.)
http://www.math.ucla.edu/~justinpa/
Justin Palumbo, “Unbounded and dominating reals in Hechler extensions.”
http://arxiv.org/abs/1201.2932
http://www.math.ucla.edu/~justinpa/

Justin Palumbo, “Unbounded and dominating reals in Hechler extensions.”
http://arxiv.org/abs/1201.2932

Thank you.