The complexity within well-partial-orderings

Antonio Montalbán

University of Chicago

Madison, March 2012
1. Background on WQOs

2. WQOs in Proof Theory
 - Kruskal’s theorem and the graph-minor theorem
 - Linear orderings and Fraïssé’s Conjecture

3. WPOs in Computability Theory
Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.
Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:
- finite strings over a finite alphabet [Higman 52];
Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:
- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
Well-quasi-orderings

Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:
- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
Well-quasi-orderings

Definition: A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:
- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- countable linear orderings [Laver 71];
Well-quasi-orderings

Definition: A *well-quasi-ordering (WQO)*, is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:

- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- countable linear orderings [Laver 71];
- finite graphs [Robertson, Seymour].
Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:
- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- countable linear orderings [Laver 71];
- finite graphs [Robertson, Seymour].
Definition: A well-quasi-ordering (WQO), is quasi-ordering which has no infinite descending sequences and no infinite antichains.

Example: The following sets are WQO under an embeddability relation:
- finite strings over a finite alphabet [Higman 52];
- finite trees [Kruskal 60],
- labeled transfinite sequences with finite labels [Nash-Williams 65];
- countable linear orderings [Laver 71];
- finite graphs [Robertson, Seymour].

Definition: A well-partial-ordering (WPO), is a WQO which is a partial ordering.
There are many equivalent characterizations of WPOs:
Well-partial-orders

There are many equivalent characterizations of WPOs:

- \mathcal{P} is well-founded and has no infinite antichains;

The reverse mathematics and computability theory of these equivalences was studied in [Cholak-Marcone-Solomon 04].

Antonio Montalbán (U. of Chicago)
There are many equivalent characterizations of WPOs:

- \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to \mathcal{P}$ there exists $i < j$ such that $f(i) \leq_P f(j)$;
- every subset of \mathcal{P} has a finite set of minimal elements;
- all linear extensions of \mathcal{P} are well-orders.

The reverse mathematics and computability theory of these equivalences was been studied in [Cholak-Marcone-Solomon 04].
There are many equivalent characterizations of WPOs:

- \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to \mathcal{P}$ there exists $i < j$ such that $f(i) \leq_{\mathcal{P}} f(j)$;
- every subset of \mathcal{P} has a finite set of minimal elements;
There are many equivalent characterizations of WPOs:

- \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \rightarrow \mathcal{P}$ there exists $i < j$ such that $f(i) \leq_{\mathcal{P}} f(j)$;
- every subset of \mathcal{P} has a finite set of minimal elements;
- all linear extensions of \mathcal{P} are well-orders.

The reverse mathematics and computability theory of these equivalences was been studied in [Cholak-Marcone-Solomon 04].
There are many equivalent characterizations of WPOs:

- \mathcal{P} is well-founded and has no infinite antichains;
- for every $f : \mathbb{N} \to P$ there exists $i < j$ such that $f(i) \leq_{\mathcal{P}} f(j)$;
- every subset of P has a finite set of minimal elements;
- all linear extensions of \mathcal{P} are well-orders.

The reverse mathematics and computability theory of these equivalences was been studied in [Cholak-Marcone-Solomon 04].
Closure properties of WPOs

The sum and disjoint sum of two WPOs are WPO.
The product of two WPOs is WPO.
Finite strings over a WPO are a WPO (Higman, 1952).
Finite trees with labels from a WPO are a WPO (Kruskal, 1960).
Transfinite sequences with labels from a WPO which use only finitely many labels are a WPO (Nash-Williams, 1965).
The sum and disjoint sum of two WPOs are WPO.
 Closure properties of WPOs

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.
The sum and disjoint sum of two WPOs are WPO.
The product of two WPOs is WPO.
Finite strings over a WPO are a WPO (Higman, 1952).
The sum and disjoint sum of two WPOs are WPO.
The product of two WPOs is WPO.
Finite strings over a WPO are a WPO (Higman, 1952).
Finite trees with labels from a WPO are a WPO (Kruskal, 1960).
Closure properties of WPOs

- The sum and disjoint sum of two WPOs are WPO.
- The product of two WPOs is WPO.
- Finite strings over a WPO are a WPO (Higman, 1952).
- Finite trees with labels from a WPO are a WPO (Kruskal, 1960).
- Transfinite sequences with labels from a WPO which use only finitely many labels are a WPO (Nash-Williams, 1965).
Recall: Every linearization of a WPO is well-ordered.
Recall: Every linearization of a WPO is well-ordered.

(\leq_L is a linearization of (P, \leq_P) if it's linear and $x \leq_P y \Rightarrow x \leq_L y$.)

Definition: The length of $P = (P, \leq_P)$ is $\omega(P) = \sup\{\text{ordType}(W, \leq_L) : \text{where } \leq_L \text{ is a linearization of } P\}$.

Note: P is a WPO \iff $\text{B}ad(P)$ is well-founded.

Theorem: [De Jongh, Parikh 77] $\omega(P) + 1 = \text{rk}(\text{B}ad(P))$.

Recall: Every linearization of a WPO is well-ordered.

(\leq_L) is a linearization of (P, \leq_P) if it's linear and $x \leq_P y \Rightarrow x \leq_L y$.

So, for any $\{x_n\}_{n \in \omega}$, there are $i < j$ with $(x_i \leq_P x_j)$, hence $x_i \not\geq_L x_j$.
Recall: Every linearization of a WPO is well-ordered.

(\(\leq_L\) is a *linearization* of \((P, \leq_P)\) if it's linear and \(x \leq_P y \Rightarrow x \leq_L y\).

So, for any \(\{x_n\}_{n \in \omega}\), there are \(i < j\) with \((x_i \leq_P x_j)\), hence \(x_i \not\leq_L x_j\).

Definition: The *length* of \(\mathcal{P} = (P, \leq_P)\) is

\[o(\mathcal{P}) = \sup \{ \text{ordType}(W, \leq_L) : \text{where } \leq_L \text{ is a linearization of } \mathcal{P} \} \]
Length

Recall: Every linearization of a WPO is well-ordered.

\(\leq_L \) is a linearization of \((P, \leq_P)\) if it’s linear and \(x \leq_P y \Rightarrow x \leq_L y\).

So, for any \(\{x_n\}_{n \in \omega} \), there are \(i < j \) with \(x_i \leq_P x_j \), hence \(x_i \not\leq_L x_j \).

Definition: The length of \(P = (P, \leq_P) \) is

\[o(P) = \sup \{ \text{ordType}(W, \leq_L) : \text{where } \leq_L \text{ is a linearization of } P \} \]

Def: \(\text{Bad}(P) = \{ \langle x_0, \ldots, x_{n-1} \rangle \in P^\omega : \forall i < j \ (x_i \not\leq_P x_j) \} \),

Note: \(P \) is a WPO \(\iff \) \(\text{Bad}(P) \) is well-founded.
Recall: Every linearization of a WPO is well-ordered.
\(\leq_L\) is a *linearization* of \((P, \leq_P)\) if it's linear and \(x \leq_P y \Rightarrow x \leq_L y\).

So, for any \(\{x_n\}_{n \in \omega}\), there are \(i < j\) with \((x_i \leq_P x_j)\), hence \(x_i \not\leq_L x_j\).

Definition: The *length* of \(\mathcal{P} = (P, \leq_P)\) is
\[o(\mathcal{P}) = \sup\{\text{ordType}(W, \leq_L) : \text{where } \leq_L \text{ is a linearization of } \mathcal{P}\}.\]

Def: \(\text{Bad}(\mathcal{P}) = \{\langle x_0, \ldots, x_{n-1}\rangle \in P^{<\omega} : \forall i < j \: (x_i \not\leq_P x_j)\}\),

Note: \(\mathcal{P}\) is a WPO \(\iff\) \(\text{Bad}(\mathcal{P})\) is well-founded.

Theorem: [De Jongh, Parikh 77] \(o(\mathcal{P}) + 1 = \text{rk}(\text{Bad}(\mathcal{P}))\).
1 Background on WQOs

2 WQOs in Proof Theory
- Kruskal’s theorem and the graph-minor theorem
- Linear orderings and Fraïssé’s Conjecture

3 WPOs in Computability Theory
Kruskal’s theorem

Theorem: [Kruskal 60] Let T be the set of finite trees ordered by $T \preceq S$ if there is an embedding $: T \rightarrow S$ preserving $<$ and $g.l.b.$ Then T is a WQO.
Kruskal’s theorem

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \preccurlyeq S$ if there is an embedding $: T \rightarrow S$ preserving $<$ and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal.

Corollary: [Friedman] (RCA_0) Kruskal’s theorem $\Rightarrow \Gamma_0$ well-ordered. Therefore, $\text{ATR}_0 \not\vdash$ Kruskal’s theorem.
Kruskal’s theorem

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \preccurlyeq S$ if there is an embedding $\iota: T \to S$ preserving $<$ and $g.l.b.$ Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR_0. It’s the “least ordinal” that ATR_0 can’t prove it’s an ordinal.)
Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \preccurlyeq S$ if there is an embedding $: T \to S$ preserving $<$ and gcd. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal. $(\Gamma_0$ is the proof-theoretic ordinal of ATR_0. It’s the “least ordinal” that ATR_0 can’t prove it’s an ordinal.

ATR_0 – *Arithmetic Transfinite Recursion* – is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)
Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \preceq S$ if there is an embedding $T \to S$ preserving $<$ and g.l.b. Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the the proof-theoretic ordinal of ATR_0. It’s the “least ordinal” that ATR_0 can’t prove it’s an ordinal. ATR_0 – Arithmetic Transfinite Recursion – is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.)

Corollary: [Friedman] (RCA_0) Kruskal’s theorem $\Rightarrow \Gamma_0$ well-ordered.
Kruskal’s theorem

Theorem: [Kruskal 60] Let \mathcal{T} be the set of finite trees ordered by $T \preceq S$ if there is an embedding $: T \rightarrow S$ preserving $<$ and $g.l.b.$ Then \mathcal{T} is a WQO.

Theorem: [Friedman] The length of \mathcal{T} is $\geq \Gamma_0$, the Feferman–Schütte ordinal. (Γ_0 is the proof-theoretic ordinal of ATR_0. It’s the “least ordinal” that ATR_0 can’t prove it’s an ordinal.

ATR_0—Arithmetic Transfinite Recursion—is the subsystem of 2nd-order arithmetic that allows the iteration of the Turing jump along any ordinal.]

Corollary: [Friedman] (RCA$_0$) Kruskal’s theorem $\Rightarrow \Gamma_0$ well-ordered. Therefore,

$$\text{ATR}_0 \nvdash \text{Kruskal’s theorem}.$$
The “big five” subsystems of 2nd-order arithmetic

Axiom systems:

\(\text{RCA}_0: \)

\(\text{WKL}_0: \)

\(\text{ACA}_0: \)

\(\text{ATR}_0: \)

\(\Pi^1_1-\text{CA}_0: \)
The “big five” subsystems of 2nd-order arithmetic

Axiom systems:

RCA$_0$: Recursive Comprehension + Σ^0_1-induction + Semiring ax.

WKL$_0$:

ACA$_0$:

ATR$_0$:

Π^1_1-CA$_0$:
The “big five” subsystems of 2nd-order arithmetic

Axiom systems:

RCA_0: Recursive Comprehension $+ \Sigma^0_1$-induction $+ \text{Semiring ax.}$

WKL_0: Weak König’s lemma $+ \text{RCA}_0$

ACA_0:

ATR_0:

Π^1_1-CA_0:

Axiom systems:

RCA₀: Recursive Comprehension + \(\Sigma^0_1 \)-induction + Semiring ax.

WKL₀: Weak König’s lemma + RCA₀

ACA₀: Arithmetic Comprehension + RCA₀

\(\Leftrightarrow \) “for every set \(X \), \(X' \) exists”.

ATR₀:

\(\Pi^1_1 \)-CA₀:
The “big five” subsystems of 2nd-order arithmetic

Axiom systems:

RCA$_0$: Recursive Comprehension + Σ^0_1-induction + Semiring ax.

WKL$_0$: Weak König’s lemma + RCA$_0$

ACA$_0$: Arithmetic Comprehension + RCA$_0$

\[\iff \text{“for every set } X, X' \text{ exists”}. \]

ATR$_0$: Arithmetic Transfinite recursion + ACA$_0$.

\[\iff \text{“ } \forall X, \forall \text{ ordinal } \alpha, X(\alpha) \text{ exists”}. \]

Π^1_1-CA$_0$:
Axiom systems:

\(\text{RCA}_0 \): Recursive Comprehension + \(\Sigma^0_1 \)-induction + Semiring ax.

\(\text{WKL}_0 \): Weak König’s lemma + \(\text{RCA}_0 \)

\(\text{ACA}_0 \): Arithmetic Comprehension + \(\text{RCA}_0 \)

\(\Leftrightarrow \) “for every set \(X, X' \) exists”.

\(\text{ATR}_0 \): Arithmetic Transfinite recursion + \(\text{ACA}_0 \).

\(\Leftrightarrow \) “\(\forall X, \forall \text{ ordinal } \alpha, X^{(\alpha)} \) exists”.

\(\Pi^1_1\)-\(\text{CA}_0 \): \(\Pi^1_1 \)-Comprehension + \(\text{ACA}_0 \).

\(\Leftrightarrow \) “\(\forall X, \text{ the hyper-jump of } X \) exists”.
The exact reversals

[Friedman] Neither of ATR_0, or Kruskal’s theorem implies the other.
The exact reversals

[Friedman] Neither of ATR$_0$, or Kruskal’s theorem implies the other.

Thm: [Rathjen–Weiermann 93] The length of \mathcal{T} is $\theta \Omega^\omega$, the Ackerman ordinal. The following are equivalent over RCA$_0$

- Kruskal’s theorem.
- The Π^1_1-reflection principle for Π^1_2-transfinite induction.
The exact reversals

[Friedman] Neither of ATR_0, or Kruskal’s theorem implies the other.

Thm: [Rathjen–Weiermann 93] The length of \mathcal{T} is $\theta \Omega^\omega$, the Ackerman ordinal. The following are equivalent over RCA_0

- Kruskal’s theorem.
- The Π^1_1-reflection principle for Π^1_2-transfinite induction.

Thm: [M.–Weiermann 2006] The following are equivalent over RCA_0

- ATR_0
- For every \mathcal{P}, *if \mathcal{P} is a WQO, then so is $\mathcal{T}(\mathcal{P})$*,
 where $\mathcal{T}(\mathcal{P})$ is the set of finite trees with labels in \mathcal{P}, ordered by
 $T \preceq S$ if $\exists f : T \to S$ which preserves $<$ and increasing on labels.
Theorem: [Robertson–Seymour]

Let \mathcal{G} be the set of finite graphs ordered by the minor relation. Then \mathcal{G} is a WQO.
The minor-graph theorem

Theorem: [Robertson–Seymour] Let G be the set of finite graphs ordered by the minor relation. Then G is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of G is $\geq \phi_0(\epsilon_{\Omega_\omega+1})$.

$(\text{where } \phi_0(\epsilon_{\Omega_\omega+1}), \text{the Takeuti-Feferman-Buchholz ordinal, is the the proof-theoretic ordinal of } \Pi_{1}^1-\text{CA}_0).$
The minor-graph theorem

Theorem: [Robertson–Seymour] Let G be the set of **finite graphs** ordered by the minor relation. Then G is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of G is $\geq \phi_0(\epsilon_{\Omega +1})$. (where $\phi_0(\epsilon_{\Omega +1})$, the Takeuti-Feferman-Buchholz ordinal, is the proof-theoretic ordinal of Π^1_1-CA_0.)
The minor-graph theorem

Theorem: [Robertson–Seymour] Let \(G \) be the set of finite graphs ordered by the minor relation. Then \(G \) is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of \(G \) is \(\geq \phi_0(\epsilon_{\Omega^\omega+1}) \).

(Where \(\phi_0(\epsilon_{\Omega^\omega+1}) \), the Takeuti-Feferman-Buchholz ordinal, is the proof-theoretic ordinal of \(\Pi_1^1-CA_0 \).

\(\Pi_1^1-CA_0 \) – is the system that allows \(\Pi_1^1 \)-comprehension.)
The minor-graph theorem

Theorem: [Robertson–Seymour] Let G be the set of finite graphs ordered by the minor relation. Then G is a WQO.

Theorem: [Friedman–Robertson–Seymour] The length of G is $\geq \phi_0(\epsilon_{\Omega+1})$. (where $\phi_0(\epsilon_{\Omega+1})$, the Takeuti-Feferman-Buchholz ordinal, is the proof-theoretic ordinal of Π_1^1-CA$_0$. Π_1^1-CA$_0$ – is the system that allows Π_1^1-comprehension.)

Corollary: [Friedman, Robertson, Seymour] (RCA$_0$) The minor-graph theorem $\Rightarrow \phi_0(\epsilon_{\Omega+1})$ well-ordered. Therefore,

$$\Pi_1^1$$-CA$_0$ $\not\vdash$ minor-graph theorem.
Theorem [Fraïssé’s Conjecture ’48; Laver ’71]

FRA: The countable linear orderings are WQO under embeddability.
Fraïssé’s Conjecture

Theorem [Fraïssé’s Conjecture ’48; Laver ’71]

FRA: The countable linear orderings are WQO under embeddablity.

Theorem [Shore ’93]

FRA implies ATR_0 over RCA_0.

Conjecture: [Clote ’90][Simpson ’99][Marcone]

FRA is equivalent to ATR_0 over RCA_0.

\[
\begin{align*}
\Pi^1_2-\text{CA}_0 & \downarrow \quad \Pi^1_1-\text{CA}_0 \quad \text{FRA} \\
\text{ATR}_0 & \downarrow \quad \text{ACA}_0 \quad \text{FRA} \\
\text{WKL}_0 & \downarrow \quad \text{RCA}_0
\end{align*}
\]
The “big five” subsystems of 2nd-order arithmetic

Axiom systems:

RCA$_0$: Recursive Comprehension + Σ^0_1-induction + Semiring ax.

WKL$_0$: Weak König’s lemma + RCA$_0$

ACA$_0$: Arithmetic Comprehension + RCA$_0$

\[\iff \text{“for every set } X, X' \text{ exists”}. \]

ATR$_0$: Arithmetic Transfinite recursion + ACA$_0$.

\[\iff \text{“} \forall X, \forall \text{ ordinal } \alpha, X^{(\alpha)} \text{ exists”}. \]

Π^1_1-CA$_0$: Π^1_1-Comprehension + ACA$_0$.

\[\iff \text{“} \forall X, \text{ the hyper-jump of } X \text{ exists”}. \]
Fraïssé’s conjecture.

Claim

$\text{RCA}_0 + \text{FRA}$ is the least system where it is possible to develop a reasonable theory of embeddability of linear orderings.
Fraïssé’s conjecture.

Claim

\[\text{RCA}_0 + \text{FRA} \text{ is the least system where it is possible to develop} \]
\[\text{a reasonable theory of embeddability of linear orderings.} \]

Theorem ([M. 05])

The following are equivalent over \(\text{RCA}_0 \)

- \(\text{FRA} \);
- Every scattered lin. ord. is a finite sum of indecomposables;
- Every indecomposable lin. ord. is either an \(\omega \)-sum or an \(\omega^* \)-sum of indecomposable l.o. of smaller rank;
- Jullien’s characterization of extendible linear orderings
A Partition theorem

Theorem: [Folklore] If we color \mathbb{Q} with finitely many colors, there exists an embedding $\mathbb{Q} \to \mathbb{Q}$ whose image has only one color.
A Partition theorem

Theorem: [Folklore] If we color \(\mathbb{Q} \) with finitely many colors, there exists an embedding \(\mathbb{Q} \to \mathbb{Q} \) whose image has only one color.

Theorem (\(\ast \)): [Laver ’72]

For every countable \(\mathcal{L} \), there exists \(n_{\mathcal{L}} \in \mathbb{N} \), such that:

If \(\mathcal{L} \) is colored with finitely many colors,

there is an embedding \(\mathcal{L} \to \mathcal{L} \) whose image has at most \(n_{\mathcal{L}} \) colors.

Theorem (\(\ast \)): [M. 2005]
FRA is implied by Theorem (\(\ast \)) over RCA\(_0\).

Theorem (\(\ast \)): [Kach–Marcone–M.–Weiermann 2011]
FRA is equivalent to Theorem (\(\ast \)) over RCA\(_0\).
A Partition theorem

Theorem: [Folklore] If we color \mathbb{Q} with finitely many colors, there exists an embedding $\mathbb{Q} \rightarrow \mathbb{Q}$ whose image has only one color.

Theorem (*)&: [Laver ’72]
For every countable \mathcal{L}, there exists $n_\mathcal{L} \in \mathbb{N}$, such that:
If \mathcal{L} is colored with finitely many colors,
there is an embedding $\mathcal{L} \rightarrow \mathcal{L}$ whose image has at most $n_\mathcal{L}$ colors.

Theorem ([M. 2005])

FRA is implied by Theorem ()& over RCA$_0$.\)
A Partition theorem

Theorem: [Folklore] If we color \mathbb{Q} with finitely many colors, there exists an embedding $\mathbb{Q} \rightarrow \mathbb{Q}$ whose image has only one color.

**Theorem (*)&:[Laver ’72]
For every countable \mathcal{L}, there exists $n_{\mathcal{L}} \in \mathbb{N}$, such that:
If \mathcal{L} is colored with finitely many colors,
there is an embedding $\mathcal{L} \rightarrow \mathcal{L}$ whose image has at most $n_{\mathcal{L}}$ colors.

Theorem ([M. 2005])

FRA is implied by Theorem () over RCA$_0$.*

Theorem ([Kach–Marcone–M.–Weiermann 2011])

FRA is equivalent to Theorem () over RCA$_0$.*
Def: Let \mathbb{L}_α be the set of linear orderings of Hausdorff rank $< \alpha$, quotiented by the bi-embeddability relation, and ordered by the embeddability relation.
Def: Let L_α be the set of linear orderings of Hausdorff rank $< \alpha$, quotiented by the bi-embeddability relation, and ordered by the embeddability relation.

1. [Laver 71] For countable α, L_α is countable.

Question: Given α, what is the length of L_α? Given α, what is the rank of L_α as a well-founded poset?
Def: Let \mathbb{L}_α be the set of linear orderings of Hausdorff rank $< \alpha$, quotiented by the bi-embeddability relation, and ordered by the embeddability relation.

1. [Laver 71] For countable α, \mathbb{L}_α is countable.
2. [M. 05] For computable α, $(\mathbb{L}_\alpha, \preccurlyeq)$ is computably presentable.
Def: Let \mathbb{L}_α be the set of linear orderings of Hausdorff rank $< \alpha$, quotiented by the bi-embeddability relation, and ordered by the embeddability relation.

1. [Laver 71] For countable α, \mathbb{L}_α is countable.
2. [M. 05] For computable α, $(\mathbb{L}_\alpha, \preceq)$ is computably presentable.
3. (This was used to prove that every hyparithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
Def: Let \mathbb{L}_α be the set of linear orderings of Hausdorff rank $< \alpha$, quotiented by the bi-embeddability relation, and ordered by the embeddability relation.

1. [Laver 71] For countable α, \mathbb{L}_α is countable.
2. [M. 05] For computable α, $(\mathbb{L}_\alpha, \preccurlyeq)$ is computably presentable.
3. (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
4. FRA is equivalent to “\forall ordinal $\alpha < \omega_1$ (\mathbb{L}_\alpha$ is WQO).”
Def: Let \mathbb{L}_α be the set of linear orderings of Hausdorff rank $< \alpha$, quotiented by the bi-embeddability relation, and ordered by the embeddability relation.

1. [Laver 71] For countable α, \mathbb{L}_α is countable.
2. [M. 05] For computable α, $(\mathbb{L}_\alpha, \preccurlyeq)$ is computably presentable.
3. (This was used to prove that every hyperarithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
4. FRA is equivalent to "\forall ordinal $\alpha < \omega_1$ (\mathbb{L}_α is WQO)."

Question: Given α, what is the length of \mathbb{L}_α?
Def: Let \mathbb{L}_α be the set of linear orderings of Hausdorff rank $< \alpha$, quotiented by the bi-embeddability relation, and ordered by the embeddability relation.

1. [Laver 71] For countable α, \mathbb{L}_α is countable.
2. [M. 05] For computable α, $(\mathbb{L}_\alpha, \lesssim)$ is computably presentable.
3. (This was used to prove that every hypearithmetic linear ordering is bi-embeddable with a computable one in [M. 05])
4. FRA is equivalent to “\forall ordinal $\alpha < \omega_1$ (\mathbb{L}_α is WQO).”

Question: Given α, what is the length of \mathbb{L}_α?
Given α, what is the rank of \mathbb{L}_α as a well-founded poset?
Finite Hausdorff rank

Theorem ([Marcone, M 08])

*The length of** \mathbb{L}_ω *is* ε_ω, where

ε_α is the $(\alpha + 1)^{\text{st}}$ fixed point for the function $\beta \mapsto \omega^\beta$.

Note: ε_ω is the proof-theoretic ordinal of ACA$^+$, where ACA$^+$ is the system RCA$^0 + \forall X (X(\omega) \text{ exists})$.

(So ε_ω is the least ordinal that ACA$^+$ can’t prove is well-ordered.)

Theorem ([Marcone, M 08])

That \mathbb{L}_ω is a WQO, follows from ACA$^+$ + “ε_ω is well-ordered”, but not from ACA$^+$.
The length of L_ω is $\varepsilon\varepsilon\varepsilon...$, where $\varepsilon\varepsilon...$ is the first fixed point of the function $\alpha \mapsto \varepsilon_\alpha$, where ε_α is the $(\alpha + 1)$st fixed point for the function $\beta \mapsto \omega^\beta$.

Note: $\varepsilon\varepsilon\varepsilon...$ is the proof-theoretic ordinal of ACA$^+$, where ACA$^+$ is the system RCA$^0 + \forall X (X(\omega) \text{ exists})$. (So $\varepsilon\varepsilon\varepsilon...$ is the least ordinal that ACA$^+$ cannot prove is well-ordered.)
Finite Hausdorff rank

Theorem ([Marcone, M 08])

The length of L_ω is $\epsilon\epsilon\epsilon\ldots$,
where $\epsilon\epsilon\epsilon\ldots$ is the first fixed point of the function $\alpha \mapsto \epsilon_\alpha$,
where ϵ_α is the $(\alpha + 1)$st fixed point for the function $\beta \mapsto \omega^\beta$.

Note: $\epsilon\epsilon\epsilon\ldots$ is the proof-theoretic ordinal of ACA$^+$,
where ACA$^+$ is the system RCA$_0 + \forall X (X^{(\omega)} \text{ exists})$.
(So $\epsilon\epsilon\epsilon\ldots$ is the least ordinal that ACA$^+$ can't prove is well-ordered.)
The length of \mathbb{L}_ω is $\epsilon\epsilon\epsilon\ldots$, where $\epsilon\epsilon\epsilon\ldots$ is the first fixed point of the function $\alpha \mapsto \epsilon_\alpha$, where ϵ_α is the $(\alpha + 1)$st fixed point for the function $\beta \mapsto \omega^\beta$.

Note: $\epsilon\epsilon\epsilon\ldots$ is the proof-theoretic ordinal of ACA$^+$, where ACA$^+$ is the system RCA$_0 + \forall X (X(\omega) \text{ exists})$. (So $\epsilon\epsilon\epsilon\ldots$ is the least ordinal that ACA$^+$ can’t prove is well-ordered.)

That \mathbb{L}_ω is a WQO,
- follows from ACA$^+ + "\epsilon\epsilon\epsilon\ldots \text{ is well-ordered}"$,
- but not from ACA$^+$.
1 Background on WQOs

2 WQOs in Proof Theory
 - Kruskal’s theorem and the graph-minor theorem
 - Linear orderings and Fraïssé’s Conjecture

3 WPOs in Computability Theory
complexity of maximal order types

Recall: \(o(\mathcal{P}) = \sup \{ \text{ordType}(\mathcal{P}, \leq_L) : \text{where } \leq_L \text{ is a linearization of } \mathcal{P} \} \).
complexity of maximal order types

Recall: $o(\mathcal{P}) = \sup\{\text{ordType}(\mathcal{P}, \leq_L) : \text{where } \leq_L \text{ is a linearization of } \mathcal{P}\}$.

Theorem: [De Jongh, Parikh 77]
Every WPO \mathcal{P} has a linearization of order type $o(\mathcal{P})$.
complexity of maximal order types

Recall: \(o(\mathcal{P}) = \sup \{ \text{ordType}(\mathcal{P}, \leq_L) : \text{where } \leq_L \text{ is a linearization of } \mathcal{P} \} \).

Theorem: [De Jongh, Parikh 77]
Every WPO \(\mathcal{P} \) has a linearization of order type \(o(\mathcal{P}) \).

We call such a linearization, a *maximal linearization* of \(\mathcal{P} \).
Recall: \(o(P) = \sup\{\text{ordType}(P, \leq_L) : \text{where } \leq_L \text{ is a linearization of } P\} \).

Theorem: [De Jongh, Parikh 77]
Every WPO \(P \) has a linearization of order type \(o(P) \).

We call such a linearization, a *maximal linearization* of \(P \).

Such linearizations have been found by different methods in different examples.
Recall: $o(P) = \sup\{\text{ordType}(P, \leq_L) : \text{where } \leq_L \text{ is a linearization of } P\}$.

Theorem: [De Jongh, Parikh 77]
Every WPO P has a linearization of order type $o(P)$.

We call such a linearization, a *maximal linearization* of P.

Such linearizations have been found by different methods in different examples.

Question [Schmidt 1979]:
Is the length of a computable WPO computable?
Q: Is the length of a computable WPO, computable?
Q: Is the length of a computable WPO, computable?

We mentioned that $o(\mathcal{P}) + 1 = \text{rk}(\text{Bad}(\mathcal{P}))$, where

$$\text{Bad}(\mathcal{P}) = \{\langle x_0, ..., x_{n-1} \rangle \in W^{<\omega} : \forall i < j \ (x_i \nleq_P x_j)\},$$

Since $\text{Bad}(\mathcal{P})$ is computable and well-founded, it has rank $< \omega_1^{CK}$. So, $o(\mathcal{P})$ is a computable ordinal.
Q: Is the length of a computable WPO, computable?

We mentioned that $o(P) + 1 = \text{rk}(\mathcal{B}ad(P))$, where

$$\mathcal{B}ad(P) = \{ \langle x_0, \ldots, x_{n-1} \rangle \in W^\omega : \forall i < j (x_i \not\leq_P x_j) \},$$

Since $\mathcal{B}ad(P)$ is computable and well-founded, it has rank $< \omega_1^{CK}$. So, $o(P)$ is a computable ordinal.

Q:
Does every computable WPO have a computable maximal linearization?
A computable maximal linearization

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.
A computable maximal linearization

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?
A computable maximal linearization

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that given \mathcal{P} produces a linearization \mathcal{L} such that for some δ

$$\omega^\delta \leq \mathcal{L} \leq o(\mathcal{P}) < \omega^{\delta+1}.$$
A computable maximal linearization

Theorem ([M 2007])

Every computable WPO has a computable maximal linearization.

Q: Can we find them uniformly?

Theorem ([M 2007])

There is computable procedure that given \(P \) produces a linearization \(L \) such that for some \(\delta \)

\[
\omega^\delta \leq L \leq o(P) < \omega^{\delta+1}.
\]

Theorem ([M 2007])

Let \(a \) be a Turing degree. TFAE:

1. \(a \) uniformly computes maximal linearizations of computable WPOs.
2. \(a \) uniformly computes \(0^{(\beta)} \) for every \(\beta < \omega_1^{CK} \).
The height of a WPO

We denote by \(\text{Ch}(\mathcal{P}) \) the collection of all chains of \(\mathcal{P} \).

Theorem: [Wolk 1967] If \(\mathcal{P} \) is a WPO, there exists \(C \in \text{Ch}(\mathcal{P}) \) with order type \(\text{ht}(\mathcal{P}) \).

Such a chain is called a maximal chain of \(\mathcal{P} \).
The height of a WPO

We denote by $\text{Ch}(\mathcal{P})$ the collection of all chains of \mathcal{P}.

\mathcal{P} is a WPO \Rightarrow all its chains are well-orders.
The height of a WPO

We denote by $\text{Ch}(\mathcal{P})$ the collection of all chains of \mathcal{P}.

\mathcal{P} is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

$$\text{ht}(\mathcal{P}) = \sup \{ \alpha : \exists C \in \text{Ch}(\mathcal{P}) \alpha = \text{ordType}(L) \}.$$
The height of a WPO

We denote by $\text{Ch}(\mathcal{P})$ the collection of all chains of \mathcal{P}.

\mathcal{P} is a WPO \implies all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

$$\text{ht}(\mathcal{P}) = \sup\{\alpha : \exists C \in \text{Ch}(\mathcal{P}) \alpha = \text{ordType}(\mathbb{L})\}.$$

Theorem: [Wolk 1967]

If \mathcal{P} is a WPO, there exists $C \in \text{Ch}(\mathcal{P})$ with order type $\text{ht}(\mathcal{P})$.

Q: How difficult is it to compute maximal chains?

Antonio Montalbán (U. of Chicago)

Well-Partial-Orderings

Madison, March 2012
We denote by $\text{Ch}(\mathcal{P})$ the collection of all chains of \mathcal{P}.

\mathcal{P} is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

$$\text{ht}(\mathcal{P}) = \sup \{ \alpha : \exists C \in \text{Ch}(\mathcal{P}) \alpha = \text{ordType}(\mathbb{L}) \}.$$

Theorem: [Wolk 1967]

If \mathcal{P} is a WPO, there exists $C \in \text{Ch}(\mathcal{P})$ with order type $\text{ht}(\mathcal{P})$.

Such a chain is called a *maximal chain* of \mathcal{P}.

Q: How difficult is it to compute maximal chains?

Antonio Montalbán (U. of Chicago)

Well-Partial-Orderings

Madison, March 2012 20 / 22
The height of a WPO

We denote by $\text{Ch}(\mathcal{P})$ the collection of all chains of \mathcal{P}.

\mathcal{P} is a WPO \Rightarrow all its chains are well-orders.

Definition

If \mathcal{P} is well founded, its *height* is

$$\text{ht}(\mathcal{P}) = \sup \{ \alpha : \exists \mathcal{C} \in \text{Ch}(\mathcal{P}) \alpha = \text{ordType}(L) \}.$$

Theorem: [Wolk 1967]

If \mathcal{P} is a WPO, there exists $\mathcal{C} \in \text{Ch}(\mathcal{P})$ with order type $\text{ht}(\mathcal{P})$.

Such a chain is called a *maximal chain* of \mathcal{P}.

Q: How difficult is it to compute maximal chains?
Computing maximal chains

Theorem ([Marcone-Shore 2010])

Every computable WPO \mathcal{P} has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it’s Δ^1_1.)
Computing maximal chains

Theorem ([Marcone-Shore 2010])

Every computable WPO \mathcal{P} *has a hyperarithmetic maximal chain.*

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it’s Δ^1_1.)

Maximal chains aren’t easy to compute:
Computing maximal chains

Theorem ([Marcone-Shore 2010])

Every computable WPO \mathcal{P} has a hyperarithmetic maximal chain.

(Recall: $X \subseteq \omega$ is hyperarithmetic iff it’s Δ^1_1.)

Maximal chains aren’t easy to compute:

Theorem ([Marcone–M.–Shore 2012])

Let $\alpha < \omega_1^{CK}$.

*There exists a computable WPO \mathcal{P} such that $0^{(\alpha)}$ does not compute any maximal chain of \mathcal{P}.***
Maximal chains are not easy to compute,

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic. Then G can compute a maximal chain in every computable WPO.

Pf:

• The key observation is that all downward closed subsets of P are computable.

• Suppose that P has cofinality $\omega_\alpha+1$.

• Then, build an operator Φ_{P, G_α} that returns a sequence of computable sub-partial orderings $P_0 \leq P_1 \leq ...$, such that, if G is generic, then infinitely many of the P_i will have cofinality ω_α.

• Then use effective transfinite recursion.
Maximal chains are not easy to compute,
but almost everybody can compute them.

Theorem (Marcone-M.-Shore 2012)

Let $G \in 2^{\omega}$ be hyperarithmetically generic.
Then G can compute a maximal chain in every computable WPO.

Pf:

• The key observation is that all downward closed subsets of P are computable.

• Suppose that P has cofinality $\omega^{\alpha} + 1$.

• Then, build an operator Φ_P, G_α, that returns a sequence of computable sub-partial orderings $P_0 \leq P_1 \leq \ldots$, such that, if G is generic, then infinitely many of the P_i will have cofinality ω^{α}.

• Then use effective transfinite recursion.
Computing maximal chains

Maximal chains are not easy to compute, but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^\omega$ be hyperarithmetically generic. Then G can compute a maximal chain in every computable WPO.
Maximal chains are not easy to compute, but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^{\omega}$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:

- The key observation is that all downward closed subsets of P are computable.
Computing maximal chains

Maximal chains are not easy to compute, but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^\omega$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:
- The key observation is that all downward closed subsets of P are computable.
- Suppose that P has cofinality $\omega^{\alpha+1}$.
- Then, build an operator $\Phi_{\alpha}^{P, G}$, that returns a sequence of computable sub-partial orderings $P_0 \leq P_1 \leq ...$, such that, if G is generic, then infinitely many of the P_i will have cofinality ω^{α}.
Maximal chains are not easy to compute,
but almost everybody can compute them.

Theorem ([Marcone-M.-Shore 2012])

Let $G \in 2^\omega$ be hyperarithmetically generic.

Then G can compute a maximal chain in every computable WPO.

Pf:
- The key observation is that all downward closed subsets of P are computable.
- Suppose that P has cofinality $\omega^{\alpha+1}$.
- Then, build an operator $\Phi^P_{\alpha,G}$, that returns a sequence of computable sub-partial orderings $P_0 \leq P_1 \leq \ldots$, such that, if G is generic, then infinitely many of the P_i will have cofinality ω^α.
- Then use effective transfinite recursion.