Ramsey classes of finite trees and SOP\(_2\)

Lynn Scow

University of Illinois at Chicago

ASL 2012 North American Annual Meeting
Outline

1. basic notions

2. indiscernibility as a tool

3. application to trees
Classification theory seeks to isolate properties that act as good dividing lines between more-complicated and less-complicated theories.

Often such a property is described by the presence of a formula encoding certain information.

In our discussion of trees T, nodes $\eta, \nu \in T$ will be written $\eta \perp \nu$ to signify that they are incomparable with respect to the partial tree order.

Typically T will be $\omega^{<\omega}, 2^{<\omega}$.

In general a, x stand for finite tuples \bar{a}, \bar{x} of parameters/variables.
Here is such a dividing-line property.

Definition

A theory T has *tree property-1* (TP_1) if there is a model $M \models T$, a formula $\varphi(x; y)$ and parameters $a_\eta \in |M|$ such that:

1. $\{ \varphi(x; a_\sigma|_n) : \sigma \in \omega^\omega \}$ is consistent ("branches are consistent"), and
2. $\{ \varphi(x; a_\eta) \land \varphi(x; a_\nu) \}$ is inconsistent, for $\eta, \nu \in \omega^{<\omega}, \eta \perp \nu$ ("incomparable nodes are inconsistent")

- A theory with TP_1 is on the more-complicated side of the dividing line provided by the property, TP_1.
- Naming a set $\omega^{<\omega}$ implies facts about this set that can be expressed in a first-order way. Can we isolate the relevant parts of the “theory” of this set?
TP₁ and SOP₂

- Here we name a second property, SOP₂ which is equivalent to TP₁ for theories:

Definition

A theory T has **strong order property-₂ (SOP₂)** if there is a model $M \models T$, a formula $\varphi(x; y)$ and parameters $a_\eta \in |M|$ such that:

1. $\{\varphi(x; a_\sigma | n) : \sigma \in 2^\omega\}$ is consistent (“branches are consistent”), and
2. $\{\varphi(x; a_\eta) \land \varphi(x; a_\nu)\}$ is inconsistent, for $\eta, \nu \in 2^{<\omega}, \eta \perp \nu$ (“incomparable nodes are inconsistent”)

- There are many relations we could suggest to be basic relations on our tree: \sqsubseteq (partial order), \land (meet function), $<_{\text{lex}}$ (linear order extending \sqsubseteq).

- We need only look at \sqsubseteq-embeddings to transfer SOP₂ to TP₁; to obtain *trees* with the right partition properties, we may be required to take on more of the language.
what structure on $2^{<\omega}$ is relevant to SOP$_2$?

- We might feel we had isolated the relevant part of the “theory” of $2^{<\omega}$ if somehow $M = (2^{<\omega}, \leq)$ and $\varphi(x; y) = (x \leq y)$ gave the most canonical example of SOP$_2$. (This is not so.)

- The *strict order property (sOP)* is another dividing-line property that is known to be strictly stronger than SOP$_2$.

- A theory T has the strict order property if there is a formula $\varphi(x; y)$ and parameters in some $M \models T$, $(a_i : i < \omega)$ such that the following implication holds strictly:

 $$\varphi(x, a_i) \Rightarrow \varphi(x; a_{i+1})$$

- $x \leq y$ witnesses the sOP in $2^{<\omega}$, so this can’t be our best example of SOP$_2$.

An early effort to better understand the witnesses \((a_\eta : \eta \in 2^{<\omega})\) to SOP\(_2\) in a theory was to find an assumption of indiscernibility we could make, without loss of generality.

This approach was first pursued in [DS04] for SOP\(_2\); the following notion of \(I\)-indexed indiscernible is from [She90]:

Definition

Fix structures \(I, M\). An \(I\)-indexed indiscernible is a set of parameters from \(M\), \((b_i : i \in I)\) such that for all \(n < \omega\) and \(i_1, \ldots, i_n; j_1, \ldots, j_n\) from \(I\):

\[
\text{qftp}(i_1, \ldots, i_n; I) = \text{qftp}(j_1, \ldots, j_n; I) \Rightarrow \text{tp}(b_{i_1}, \ldots, b_{i_n}) = \text{tp}(b_{j_1}, \ldots, b_{j_n})
\]

- We say “quantifier-free type” in order to get a stronger notion of homogeneity.
We would like to assume parameters “in a certain configuration” are indiscernible, without loss of generality.

Definition
Fix a structure I and parameters $\mathbf{I} := (a_i : i \in I)$ from some structure M. Define the EM-type of \mathbf{I} to be:

$$EMtp(\mathbf{I})(\{x_i : i \in I\}) := \{\psi(x_{i_1}, \ldots, x_{i_n}) : n < \omega, \psi(x_1, \ldots, x_n) \in \mathcal{L}(M),$$

for all j_1, \ldots, j_n from I such that $qftp(j) = qftp(i),$

$$\models \psi(a_{j_1}, \ldots, a_{j_n})\}$$

The $I = (\omega, <)$ case of the above is referred to as $EM(\mathbf{I})$ in [TZ11]. We are careful not to confuse our terminology with $EM(I, \Phi)$ ([Bal09, She90]), which is a term that denotes a certain type of model. Note that $EMtp(\mathbf{I})$ derives a kind of profile/pattern/template from an I-indexed set of parameters, whether or not this set is indiscernible.
We want some terminology for the next development. Fix a structure I (with some intended language.)

The *age*, $\text{age}(I)$, of a structure I is the class of all finitely-generated substructures of I, closed under isomorphism.

Let (C_A) be the substructures of C isomorphic to A (the "A-substructures of C.")

Say that a class \mathcal{K} of finite structures is a *Ramsey class* if for all $A, B \in \mathcal{K}$ there is a $C \in \mathcal{K}$ such that given any 2-coloring $c : (C_A) \to \{0, 1\}$ there is a $B' \subseteq C$, $B' \cong B$, such that $c : (B'_A) \to \{i_0\}$, for some choice of $i_0 \in \{0, 1\}$.

It is equivalent to state the property for k-colorings, where $k < \omega$ is arbitrary ≥ 2.
Consider the property: for any I-indexed parameters $I = (a_i : i \in I)$ from sufficiently-saturated M we may find I-indexed indiscernible $J = (b_s : s \in I) \models EMtp(I)$.

We may call the latter the *modeling property* for I-indexed indiscernibles.

Theorem ([Sco12])

For I a structure in a finite relational language, where one basic relation $<$ linearly orders I, I-indexed indiscernibles have the modeling property just in case $age(I)$ is a Ramsey class.
The following generalization helps us deal with the case of $I = (2^{<\omega}, \subseteq, \wedge, <_{\text{lex}})$.

Theorem

For uniformly locally finite I in a finite language, where one basic relation $<$ linearly orders I, I-indexed indiscernibles have the modeling property just in case $\text{age}(I)$ is a Ramsey class.

- A similar argument to one in [Sco12] shows that the modeling property implies the Ramsey class property for $\text{age}(I)$.
- This argument requires that we isolate the quantifier-free types by way of formulas, and we can still do this.
This direction is a little harder because there isn’t as obvious a correspondence between realizations of a quantifier-free type and substructures of I.

For $\bar{i} \models \eta(v_1, \ldots, v_n)$, a complete quantifier-free type (consistent with $v_1 < \ldots < v_n$), and $A = \langle \bar{i} \rangle$ the substructure generated by \bar{i}, let $\text{cl}(\bar{i})(x_1, \ldots, x_N)$ be the isomorphism-type of A in $<\!-$increasing enumeration.

Let x_{i_1}, \ldots, x_{i_n} be the indices at which \bar{i} occurs in the increasing enumeration of A. Every copy of A determines a unique copy of \bar{i}, and every copy of \bar{i} in a structure B occurs within a copy of A in B.

Homogeneity for copies of A implies homogeneity for $\bar{j} \models \eta$, as we shall see from the nature of a type-coloring:
For a finite structure B of size m, let $p_B(x_1, \ldots, x_m)$ be the complete quantifier-free type of B listed in \prec-increasing order.

Definition

Let I be any structure. By a *type-coloring of tuples from I* we mean a χ-coloring (χ a cardinal) \[c : I^{<\omega} \to \chi \] with the property that for length-m $\bar{b}, \bar{b}' \in I$ such that $c(\bar{b}) = c(\bar{b}')$, for any $n \leq m$ \[c(\langle b_{i_1}, \ldots, b_{i_n} \rangle) = c(\langle b'_{i_1}, \ldots, b'_{i_n} \rangle) \]

If we let $\Delta(x_1, \ldots, x_n)$ be a finite set of formulas from M, then an I-indexed set in M, $(a_i : i \in I)$ comes equipped with a (finite) type-coloring by way of $c(\langle i_1, \ldots, i_n \rangle) = \text{tp}_\Delta(a_{i_1}, \ldots, a_{i_n}; M)$.
in sum

- Given an I-indexed set of parameters $I = (a_i : i \in I)$, we have a type-coloring of tuples from I.

- Here is the “type of our indiscernible”:
 \[
 \Gamma(x_i : i \in I) = \{ \psi(x_{i1}, \ldots, x_{im}) \rightarrow \psi(x_{j1}, \ldots, x_{jm}) : \\
 \psi(x_1, \ldots, x_m) \in \mathcal{L}(M); \text{ qftp}(\vec{i}) = \text{ qftp}(\vec{j}); \; \vec{i}, \vec{j} \text{ from } I \}
 \]

- To find our I-indexed indiscernible $\models \text{ EMtp}(I)$, it suffices to satisfy a finite portion of the “type of our indiscernible” in $(a_i : i \in I)$, a portion indexed by a finite set $I_0 \subseteq I$ and mentioning a finite set of $\mathcal{L}(M)$-formulas Δ.

- This amounts to, for given structures $A, B = \langle I_0 \rangle$, finding a homogeneous $B' \cong B$ in I for the type-coloring above, as it applies to A-substructures of I.

- In general we must perform an induction on the A_1, \ldots, A_n that are generated by tuples from I_0.

• It would be good to develop a technology for countable languages.
• The non-locally finite case does not seem practicable, because partition properties often fail when we are searching for an infinite substructure B.
• For example, $\mathbb{Q} \not\rightarrow (\mathbb{Q})_2^{a_1 < a_2}$.
• Similarly for the random graph \mathcal{R}: $\mathcal{R} \not\rightarrow (\mathcal{R})_2^{a_1 R a_2}$.
Thanks for your attention!
John T. Baldwin.
Category, volume 50 of University Lecture Series.

M. Džamonja and S. Shelah.
On \prec^*-maximality.

L. Scow.

S. Shelah.
Classification Theory and the number of non-isomorphic models (revised edition).

K. Tent and M. Ziegler.
A Course in Model Theory, 2011.