On Ershov Semilattices of Degrees of Σ -definability of Structures

Alexey Stukachev

The notion of Σ -definability of a structure in an admissible set, introduced by Yu.L. Ershov [1], is an effectivization of the model-theoretical notion of interpretability of structures, and, at the same time, a generalization of the notion of constructivizability of a structure on natural numbers. For structures \mathfrak{M} and \mathfrak{N} , let $\mathfrak{M} \leq_{\Sigma} \mathfrak{N}$ means that \mathfrak{M} is Σ -definable in $\mathbb{HF}(\mathfrak{N})$, the least admissible set over \mathfrak{N} . Preordering \leq_{Σ} , considered for structures of cardinality $\leq \alpha$, generates the upper semilattice $S_{\Sigma}(\alpha)$. Σ -degrees of some uncountable structures (fields of real, p-adic and complex numbers, dense linear orders, etc.) were studied in [1,2,3].

We show that the semilattices of Turing and enumeration degrees are embeddable in a natural way into the semilattices of Σ -degrees, by means of Σ -degrees of structures having a degree (resp., *e*-degree). The notion of a structure having a degree, known in computable model theory, gives only a partial measure of complexity, since there are a lot of structures which do not have a degree. Σ -degrees, as well as degrees of presentability with respect to different effective reducibilities [4], are natural measures of complexity which are total, i.e. defined for any structure.

In this talk we consider some recent results on some local and global properties of Ershov semilattices [5].

[1] Yu.L. Ershov, Definability and Computability, Plenum, NY, 1996

[2] A.I. Stukachev, Uniformization property in hereditary finite superstructures, *Siberian Advances in Mathematics*, **7** (1997), 123-132

[3] A.I. Stukachev, Σ -definability in hereditary finite superstructures and pairs of models, *Algebra and Logic*, **46** (2004), 258-270

[4] A.I. Stukachev, On mass problems of presentability, J.-Y. Cai, S.B. Cooper, and A. Li (eds.): TAMC2006, *LNCS*, **3959** (2006), 774-784

[5] A.I. Stukachev, On degrees of presenability of structures, I.II, *Algebra* and *Logic*, to appear

Sobolev Institute of Mathematics Acad. Koptyug avenue 4 Novosibirsk, 630090, Russia e-mail: aistu@math.nsc.ru