The Scott logic \(SL = Li + \{ (\neg \neg p \supset p) \supset p \lor \neg p) \supset \neg p \lor \neg \neg p \} \) (where Li is the intuitionistic logic) is one of the first examples of an intermediate logic with the disjunction property. In [1] it was proved that \(SL = Li + X(\mu, D, \bot) \), where \(X(\mu, D, \bot) \) is the intuitionistic canonical formula with the frame \(\mu \):

A logic is called paraconsistent if it is not intermediate and does not contain axiom \(\neg p \).

We study the paraconsistent analogue \(Ls = Lj + \{ (\neg \neg p \supset p) \supset p \lor \neg p) \supset \neg p \lor \neg \neg p \} \) of the Scott logic (\(Lj \) is the minimal logic).

We prove that \(Ls = Lj + J(\eta_1, D^1) + J(\eta_2, D^2) + J(\eta_3, D^3) + J(\eta_4, D^4) + J(\eta_5, D^5) \), where \(J(\eta_1, D^1), J(\eta_2, D^2), J(\eta_3, D^3), J(\eta_4, D^4), J(\eta_5, D^5) \) are canonical formulas [2] with

http:// semr.math.nsc.ru