Jumps of nontrivial splittings of r.e. sets

MICHAEL A. INGRASSIA, STEFFEN LEMPP

Abstract. In an infinite injury construction, we construct a nonrecursive recursively enumerable (r.e.) set \(A \) such that whenever \(A \) is split into nonrecursive r.e. sets \(A_0 \) and \(A_1 \) then \(A'_0, A'_1 < T A' \).

1. The theorem. A pair of recursively enumerable (r.e.) sets \(A_0 \) and \(A_1 \) is said to split an r.e. set \(A \) if \(A = A_0 \cup A_1 \) (i.e., \(A = A_0 \cup A_1 \) and \(\emptyset = A_0 \cap A_1 \)). Friedberg [5] was the first to prove that any nonrecursive r.e. set can be split into two nonrecursive r.e. sets. Sacks [15] improved this result by showing that the two halves can be made of low incomparable degrees. Other well-known splitting results were obtained by Owings [13], R. W. Robinson [14], Morley and Soare [12], and Lachlan [8].

Lerman and Remmel introduced the universal splitting property (USP) of an r.e. set \(A \), namely, that any r.e. degree \(d \leq \text{deg}(A) \) is realized as the degree of a splitting half of \(A \). They showed [10, 11] that both the degrees containing USP sets and the degrees not containing any USP set are downward dense in the partial order \(R \) of the r.e. degrees. Downey [3] exhibited a non-USP set in every nonrecursive r.e. degree. The so-called strong universal splitting property (in which the degrees of both splitting halves can be prescribed) was introduced and studied by Ambos-Spies and Fejer [2].

In a different direction, call an r.e. set \(A \) mitotic if \(A \) can be split into r.e. sets of the same degree. Lachlan [7] proved the existence of nonmitotic r.e. sets, and Ingrassia [6] improved this result by showing that their degrees are dense in \(R \). Ambos-Spies [1], and independently Downey and L. Welch [4], constructed antimitotic sets (r.e. sets such that the degrees of any splitting into nonrecursive r.e. sets form a minimal pair).

Ambos-Spies [1] also initiated the study of jumps of splittings of r.e. sets by building an r.e. set \(A \) such that for any splitting into r.e. sets \(A_0 \) and \(A_1 \), not both \(A_0 \) and \(A_1 \) have the same jump as \(A \) (a property he called strong nonmitoticity). We strengthen this result and answer a question of Remmel (see Downey and L. Welch [4]) as follows:

Theorem. There is a nonrecursive r.e. set \(A \) such that whenever \(A \) is split into two nonrecursive r.e. sets \(A_0 \) and \(A_1 \) then \(A'_0, A'_1 < T A' \).

The proof uses a new technique for handling jumps of r.e. sets, developed by Lempp and Slaman [9] in their solution to the deep degree problem.

Our notation follows Soare [16].

2. The requirements and the strategies. We will build an r.e. set \(A \) satisfying the following requirements (for all \(e, i, j \)):

\[
\mathcal{R}_e : A \neq \{e\}, \\
\mathcal{S}_{i,j} : A = W_i \sqcup W_j \implies A' \not\lesssim_T W'_i \text{ or } W'_j \lesssim_T \emptyset.
\]

The second author was partially supported by NSF grant DMS-8701891.
For each $S_{i,j}$ we construct a partial recursive functional $\Gamma_{i,j}$. Using the Limit Lemma, we will then ensure $S_{i,j}$ by satisfying for all k the requirements

$$S_{i,j,k} : A = W_i \sqcup W_j \implies \lim_s \Gamma_{i,j}^A((-), s) \neq \lim_v \Phi_k^W((-), v) \text{ or } W_j \leq T \emptyset$$

(There is also a hidden requirement that if $A = W_i \sqcup W_j$ and $W_j > T \emptyset$ then $\Gamma_{i,j}^A$ is total and $\lim_s \Gamma_{i,j}^A(x, s)$ exists for all x.)

Each R_e-strategy acts at most once, so an $S_{i,j,k}$-strategy need not be concerned about the (finite) injury by higher-priority R_e-strategies. A typical $S_{i,j,k}$-strategy α will first try to show W_j recursive via some recursive functional Δ, which requires (potentially) infinite A-restraint (to prevent W_j from changing). It will deal with the (necessary) infinite injury by lower-priority R_e-strategies as follows: Whenever a lower-priority R_e-strategy wants to put some number z into A, then α will first start setting $\Gamma_{i,j}^A(x, s) = 1$ with use $\gamma_{i,j}(x, s) = z$ for larger and larger s (where z is the argument at which α is trying to achieve $\lim_s \Gamma_{i,j}^A(x, s) \neq \lim_v \Phi_k^W(x, v)$) and search for a (new) v such that $\Phi_k^W(x, v) = 1$. If and when it finds that v, then z is allowed into A, enabling us to reset $\Gamma_{i,j}^A(x, s) = 0$. If only finitely many of these z enter W_j then the injury to Δ is finite, and therefore W_j is recursive. On the other hand, if infinitely many of these z enter W_j then these z will not enter W_i, and if we can protect infinitely many of the corresponding computations $\Phi_k^W(x, v) = 1$ from later injury to W_i then the limits of $\Gamma_{i,j}^A(x, -)$ and $\Phi_k^W(x, -)$ will be different (if the latter exists at all).

Protection of these Φ_k^W-computations of one $S_{i,j,k}$-strategy α from injury by infinitely many R_e-strategies can be ensured by “rearranging the priorities” of the R_e-strategies, using a noneffective function b and letting an $R_{b(n)}$-strategy β have higher priority than any $b' \in C(n)$, the set of R_e-strategies with $b(n - 1) < e < b(n)$. Now when $b(n - 1)$ has been determined permanently, then $b(n)$ will be the index of the (next) R_e-strategy whose z enters W_j, at stage $t(n)$, say, and therefore no R_e-strategy can injure the Φ_k^W-computation of $\alpha = a(n)$ since they stopped acting for $e \leq b(n - 1)$ by hypothesis, or have to respect the restraint for $e > b(n - 1)$ by the rearrangement of priorities. (In the construction below, we will actually rearrange the R_e-strategies in the tree priority ordering rather than the linear ordering outlined above. To ensure that every $S_{i,j,k}$-strategy has infinitely many chances to rearrange the priorities of the R_e-strategies, we will define a function P, rearranging the priorities of the $S_{i,j,k}$-strategies for this purpose.)

Notice finally that above we have suppressed the two finite outcomes of an $S_{i,j,k}$-strategy, namely, $A \neq W_i \sqcup W_j$, and that the search for a new v such that $\Phi_k^W(x, v) = 1$ is unsuccessful in which case $\lim_s \Gamma_{i,j}^A(x, s) = 1$ but not $\lim_s \Phi_k^W(x, v) = 1$.

3. The construction. The construction is organized on a tree $T = 2^{<\omega}$ of strategies. Strategy $\gamma \in T$ works on requirement $S_{i,j,k}$ if $|\gamma| = 2(i, j, k)$ is even, and on requirement R_e if $|\gamma| = 2e + 1$ is odd.

Diagrams 1 and 2 show the flow charts for $S_{i,j,k}$- and R_e-strategies. A strategy, upon initialization, starts in state init, picking a witness x or z bigger than any number mentioned in the construction so far, and, whenever eligible to act, proceeds along the arrows to the next state (denoted by a circle). Along the way, it executes the instructions (in rectangular boxes) and makes decisions (in diamonds or hexagons). Through outside action, it may
pick new \(x \), set \(v_0 = 0 \), set \(\Delta_\alpha = \lambda n[1] \),
set \(s_0 = \) the current substage

\[\ell > \ell_{s_0} \]

set \(\Delta_\alpha(|\text{dom} \, \Delta_\alpha|) = W_j(|\text{dom} \, \Delta_\alpha|) \),
set \(s_0 = \) the current substage.

request to start setting \(\Gamma_{i,j}^A(x,-) = 1 \)
with use \(\gamma_{i,j}(x,-) = z \)

\(\exists v > v_0 \)

(\(\Phi_k^{W_i}(x,v) \downarrow = 1 \))

set \(v_0 = \) least such \(v \)

request to stop setting \(\Gamma_{i,j}^A(x,-) = 1 \)

\(z \in W_i \cup W_j \)

Diagram 1: \(S_{i,j,b} \)-strategy \(\alpha \)
Diagram 2: R_e-strategy β

1. Initialize: Pick a new z
2. Wait for n: Check if $\{e\}(z) \models 0 \land \forall w \in A(\neg \{e\}(w) \models 0)$
3. Put α_n into req_z
4. Wait for α_n: Check if α_n is ready
5. Put α_{n-1} into req_z
6. Wait for α_{n-1}: Check if α_{n-1} is ready
7. Put α_1 into req_z
8. Wait for α_1: Check if α_1 is ready
9. Win: Put z into A, put all α_m into reset
be put into special states (in half-circles) from which it proceeds immediately to the next state. All parameters are taken at the current substage unless sub-indexed by a previous substage. (We will assume from now on that a substage also codes the corresponding stage.)

For diagram 1, the parameters x, s_0, v_0, and Δ_α are defined in the diagram and roughly denote the witness at which α tries to achieve $\lim, r; (', s) \neq \lim v_i IJ :: V' (', v)$, the last $(A = W_i \sqcup W_j)$-expansory stage, the last "opponent's stage" at which $W_i(u) + W_j(u)$, and the partial recursive function trying to witness the recursiveness of W_i, respectively.

The parameter r is the length of agreement $r = \max \{ y \mid \forall u < y (A(u) = W_i(u)) \}$. The partial recursive functional Γ_i,j is global to the construction and shared by all $S_{i,j,k}$-strategies for this pair (i, j). An $S_{i,j,k}$-strategy can only issue requests for Γ_i,j, which will be observed at the end of a stage as described below.

For Diagram 2, the parameter z is defined in the diagram and denotes the witness at which f_3 is trying to achieve $A, \{ e \}$. The strategies a_1, \ldots, a_n mentioned in the diagram are exactly the $S_{i,j,k}$-strategies a_m with $a_m(0) \subseteq \beta$ in increasing order of length.

We are now ready to describe the full construction.

At stage 0 of the construction, all strategies are initialized in order of increasing length, the functions $a, b, C,$ and t are completely undefined, and we set $P(\gamma) = |\gamma|$ for all $\gamma \in T$.

A stage $s + 1$ consists of three steps:

First, pick the highest-priority R_c-strategy β that is in some state $\text{wait}_{c,m-1}$ and that can proceed to state $\text{wait}_{c,m-1}$ or win. If β exists let it act. If β also reaches win and $\beta \in C(n_0)$ for some n_0, then initialize all $\gamma > \beta$, make the functions $a, b, C,$ and t undefined for arguments $n > n_0$, and set $P(\gamma) = P_t(n_0) (\gamma)$ for all $\gamma \in T$.

Secondly, we proceed in substages $t \leq s$. At a substage $t < s$, a strategy γ of length t is eligible to act according to its flow chart.

If γ is an $S_{i,j,k}$-strategy and has changed states from wait_d to wait_W at this substage while its $z \in W_j$ then let n_0 be the greatest n such that $a(n)$ is defined and $P_t(n_0) (a(n)) \leq P(\gamma)$. (Allow $n_0 = -1$ here.) Then (re)define

\[a(n_0 + 1) = \gamma, \]
\[b(n_0 + 1) = \text{the } R_c\text{-strategy that put } z \text{ into } A, \]
\[C(n_0 + 1) = \beta \in T - \bigcup_{n \leq n_0} C(n) \mid |\beta| \leq s \text{ odd}, \]
\[t(n_0 + 1) = \text{the current substage}. \]

Make the functions $a, b, C,$ and t undefined for arguments $n > n_0 + 1$.

Increment $P(\gamma)$ by $+1$ and set $P(\alpha) = P_t(n_0) (\alpha)$ for all $S_{i,j,k}$-strategies $\alpha \neq \gamma$. Initialize all $\beta \in C(n_0 + 1)$.

The strategy eligible to act at the next substage is $\gamma(0)$ if γ is an $S_{i,j,k}$-strategy and has extended the definition of Δ_γ at the current substage, otherwise $\gamma(1)$.

At the end of the second step of stage $s + 1$, we initialize all $\gamma' > \gamma$ where γ is the strategy that acted at substage s.

In the third and final step of stage $s + 1$, we (re)define $\Gamma_i,j(x, u)$ for all i, j, x and all $u \leq s$ if it is now undefined. If some $S_{i,j,k}$-strategy α currently works with witness
x and requests to start setting $\Gamma_{i,j}^A(x,\cdot) = 1$, i.e. is currently in state $\text{wait}\Phi$ or ready, then set $\Gamma_{i,j}^A(x, u) = 1$ with requested use $\gamma_{i,j}(x, u) = z$; otherwise set $\Gamma_{i,j}^A(x, u) = 0$ with $\gamma_{i,j}(x, u) = 0$.

4. The verification. We first need to show that the rearrangement of priorities works properly:

Lemma 1 (Rearrangement of Priorities Lemma).

(i) The limit functions $a = \lim_s a_s$, $b = \lim_s b_s$, $c = \lim_s c_s$, and $t = \lim_s t_s$ are well-defined and total.

(ii) If for an $S_{i,j,k}$-strategy α there are infinitely many n and s such that $a_s(n) = \alpha$ then there are infinitely many n such that $a(n) = \alpha$. (Thus $P(\alpha) = \lim_n P_s(a(n))$ exists for all α.)

Proof: i) Since $W_i = 0$, $W_j = A$ for some i, j, and since A is infinite, we will set $a_s(n) = \alpha$ infinitely often (for some α). Observe that all strategies working on a fixed requirement R_e combined put at most finitely many numbers into A. Since $P_s(a_s(n))$ is nondecreasing in n (at all s), and since $P_{s-1}(a_{s-1}(n)) \uparrow > P_s(a_s(n))$ when we define $a_s(n)$, part (i) follows by induction on $p = P_s(a_s(n))$ and on n.

(ii) We will first show that for any p we define $a(n)$ with $P_s(a(n)) \leq p$ only finitely often. We proceed by induction on p and assume the statement for $P_s(a(n)) < p$. (Allow $p = 0$ here.) Suppose the statement is false for $P_s(a(n)) \leq p$. Since $P_s(\alpha) \geq |\alpha|$, it suffices to show that there are not $n_1 < n_2$ such that $a(n_1) = a(n_2) = \alpha$ and $P_{s-1}(a(n_1)) = P_s(a(n_2)) = p$. For the sake of a contradiction, assume there is such an α. It is impossible that some $\beta \in C_2(n)$ decreased $P(\alpha)$ between $t(n_1)$ and $t(n_2)$ since this would have caused a redefinition of $a(n_1)$. So some $S_{i,j,k}$-strategy α' must have decreased $P(\alpha)$ to $p - 1$ between $t(n_1)$ and $t(n_2)$, say, at some (least) substage s'. Then $P_{s'}(\alpha) = P_{s'}(a(n_0))$ for some n_0 with $n_1 < n_0 < n_2$, and $t_{s'}(n_0) \geq t(n_1)$, so $P_{s'}(a(n_0)) \geq P_{s'}(a(n_1)) = p$, a contradiction.

For part (ii), we now just observe that, by the above, each α will eventually either satisfy $P_s(\alpha) \geq p$ for all p, or else eventually not want to set $a(n) = \alpha$ for any n.

We now define the true path f of the construction as the leftmost path on T on which any strategy is eligible to act infinitely often.

Lemma 2 (Initialization Lemma). Any $\gamma \subset f$ is initialized at most finitely often.

Proof: By induction on $|\gamma|$, let s' be the least substage $> |\gamma|$ after which γ^- is no longer initialized. (Set $s' = 0$ for $\gamma = \emptyset$.) If γ is an R_e-strategy, we define $n_s(\gamma)$ to be the unique n such that $\gamma \in C_s(n)$ at $s (> |\gamma|)$, observe that $n_s(\gamma)$ is nonincreasing in s, and set $n(\gamma) = \lim_s n_s(\gamma)$. Then we assume furthermore that $C(n(\gamma))$ has been defined permanently before s'.

Now, by our assumptions on s', the construction can initialize γ at a substage s after s' only if $\gamma = \gamma^- \langle 1 \rangle$ and $\gamma^- \langle 0 \rangle$ is eligible to act at s, or if γ puts its z into A. By the definition of the true path or by the construction, respectively, this will happen at most finitely often.
We are now in a position to prove the two main lemmas that establish the theorem:

Lemma 3 (Convergence Lemma). For all i and j:

(i) $\Gamma^A_{i,j}$ is total, and

(ii) $\lim_{s} \Gamma^A_{i,j}(x,s)$ exists for all x.

Proof: Since $\gamma_{i,j}(x,s)$ increases at most once for fixed x and s, (i) follows by the third step of each stage of the construction.

Again by the third step, part (ii) is trivial if eventually no $S_{i,j,k}$-strategy works on x. Otherwise, some fixed $S_{i,j,k}$-strategy will eventually always work on x. But then $\Gamma^A_{i,j}(x,s)$ is set or reset to 0 eventually for all s unless α is eventually always in state wait or ready in which case $\Gamma^A_{i,j}(x,s) = 1$ for almost all s.

Lemma 4 (Outcome Lemma). Each $\gamma \subset f$ satisfies its requirement.

Proof: By Lemma 2, let s' be the least stage such that $-y$ is not initialized after stage s'. First assume that $-y$ is an $R_{i,j,k}$-strategy. Since $-y \subset f$, $-y$ must eventually be in state wait or in state win. In either case, R_{e} is satisfied.

On the other hand, assume that γ is an $S_{i,j,k}$-strategy and that $A = W_i \sqcup W_j$. Suppose first that $\gamma^A(1) \subset f$. Then, since $\gamma \subset f$ and $A = W_i \sqcup W_j$, α must eventually always be in state wait or in state win. But then $\lim_{s} \Gamma^A_{i,j}(x,s) = 1$ and not $\lim_{s} \Phi^w_k(x,s) = 1$.

Finally, assume $\gamma^A(0) \subset f$. Then Δ_{γ} must be a total recursive function. Suppose $W_j \neq \Delta_{\gamma}$. Then for infinitely many n and s, $a_s(n) = \gamma$, so by Lemma 1 (i) there are infinitely many n such that $a(n) = \alpha$. But then, for all these n, by the construction, no $\beta \in \bigcup_{m<n} C(m)$ will put a number into A after $t(n)$; every $\beta \in C_i(n)(n)$ is initialized at $t(n)$, so its number $z > t(n)$ if it enters after $t(n)$; and any other R_{e}-strategy β has $|\beta| > t(n)$. Therefore we have an increasing sequence $\{v_n\}_{n \in w}$ such that $\Phi^A_k(x,v_n) \downarrow = \Phi^A_{i,\alpha(t(n))}(x,v_n) \downarrow = 1$ while $\Gamma^A(x,s) = 0$ for all s as in the proof of Lemma 2 (ii). This establishes W_j recursive, or $\lim_{s} \Gamma^A(x,s) = 0$ and not $\lim_{s} \Phi^w_k(x,s) = 0$, in the case $\gamma^A(0) \subset f$.

The last two lemmas complete the proof of the theorem.

References

15. G. E. Sacks, *On the degrees less than $\mathbf{0}'$,* Ann. of Math. (2) 77 (1963), 211–231.

1980 *Mathematics subject classifications: 03D25*

Department of Mathematics and Computer Science, State University of New York, College at New Paltz, New Paltz, NY 12561, USA

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA